
Generating Interpretable Mamdani-type fuzzy rules using a
Neuro-Fuzzy System based on Radial Basis Functions

Diego G. Rodrigues and Gabriel Moura and Carlos M. C. Jacinto and
Paulo Jose de Freitas Filho and Mauro Roisenberg

Abstract— This paper presents a novel neuro-fuzzy inference
system, called RBFuzzy, capable of knowledge extraction and
generation of highly interpretable Mamdani-type fuzzy rules.
RBFuzzy is a four layer neuro-fuzzy inference system that takes
advantage of the functional behavior of Radial Basis Function
(RBF) neurons and their relationship with fuzzy inference
systems. Inputs are combined in the RBF neurons to compound
the antecedents of fuzzy rules. The fuzzy rules consequents
are determined by the third layer neurons where each neuron
represents a Mamdani-type fuzzy output variable in the form
of a linguistic term. The last layer weights each fuzzy rule
and generates the crisp output. An extension of the ant-colony
optimization (ACO) algorithm is used to adjust the weights of
each rule in order to generate an accurate and interpretable
fuzzy rule set. For benchmarking purposes some experiments
with classic datasets were carried out to compare our proposal
with the EFuNN neuro-fuzzy model. The RBFuzzy was also
applied in a real world oil well-log database to model and
forecast the Rate of Penetration (ROP) of a drill bit for a given
offshore well drilling section. The obtained results show that
our model can reach the same level of accuracy with fewer rules
when compared to the EFuNN, which facilitates understanding
the operation of the system by a human expert.

I. INTRODUCTION

Classical machine learning techniques such as regression
analysis and artificial neural networks (ANNs) suffer from
the lack of explanation of the knowledge learned from the
problem data, i.e., they don’t explain the relationship between
input and output variables in a natural language description.
They also do not allow explicit knowledge elicited from
an expert to be easily incorporated into the created model.
Neuro-Fuzzy Systems (NFS) are used to overcome this
kind of restrictions. NFSs combine the linguistic terms and
human-like language description of fuzzy systems with the
learning capability of neural networks. NFSs use a linguistic
model to mathematically describe human reasoning. This
linguistic model is composed of a set of IF-THEN fuzzy
rules and fuzzy sets [33]. Having an interpretable model,
a domain expert can read the model and fine-tune it, thus
overcoming some limitations inherent to many machine
learning techniques. The domain expert can also introduce
new knowledge to further improve the model.

However, this approach introduces a problem known as
the Accuracy-Interpretability tradeoff [34]. Interpretability

Diego G. Rodrigues and Paulo Jose de Freitas Filho and Mauro Roisen-
berg and Gabriel Moura are with the Department of Informatics and
Statistics, Federal University of Santa Catarina, Brazil (email: {dgr, freitas,
mauro}@inf.ufsc.br, gabriel.moura@posgrad.ufsc.br). Carlos M. C. Jacinto
is with Petrobras Research Center, Rio de Janeiro, RJ, Brazil (email:
cmcj@petrobras.com.br)

This work was supported by Petrobras and the Federal University of Santa
Catarina (UFSC) as part of a research project.

refers to the the representation of the real system in an
understandable way, while accuracy refers to the precision
of the response given by the model. These concepts are
contradictory in Fuzzy Systems and after a certain threshold
they become almost mutually exclusive (e.g., a model with
only one rule will be highly interpretable but will have no
accuracy; a model with thousands of rules will be highly
accurate but will be incomprehensible to a human reader).
So as the complexity of the model increases, the quality
of interpretability decreases and the quality of accuracy
increases (See Figure 1). The problem then arises as to what
is the best balance between accuracy and interpretability.

Interpretability Accuracy

Q
ua
lit
y

Complexity

Fig. 1. Accuracy-Interpretability tradeoff

According to Wang [32] and Gabryel [12] NFS can be
classified depending on the connections between the an-
tecedents and the consequences in fuzzy rules as: Takagi-
Sugeno neuro-fuzzy systems which are characterized by a
functional dependence between antecedents and consequents
[31]; and Mamdani-type neuro-fuzzy systems where an-
tecedents and consequents in the rules are connected by a
t-norm [26] [27].

Although Takagi-Sugeno type neuro-fuzzy systems are
more accurate and automatic learning can be more easily
implemented, the generated rules suffer from the lack of
a model easily understandable by a human. Mamdani-type
neuro-fuzzy systems are less accurate, but the generated rules
are much more understandable [17].

In this paper we present a new neuro-fuzzy system called
RBFuzzy that implements Mamdani-type fuzzy rules and
seeks to provide the best cost-benefit ratio between accuracy
and interpretability. It can be applied in applications where
low quality of available data hinders the application of
traditional machine learning techniques as it allows that
additional explicit expert knowledge to be easily incorporated
into the model. RBFuzzy is a four layer neural network that
uses Radial Basis Function (RBF) neurons as a fuzzy rule

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 1352

base with gaussian membership functions so that the RBF
neurons represent the fuzzy input membership functions.
The regularization of RBF neurons is accomplished by a
clustering algorithm. The other parameters of the system
are determined by an improved Ant Colony Optimization
Algorithm (ACO) designed for continuous domain variables
called ACORV, proposed in [10]. Just like other Evolutionary
Methods, the ACORV uses a fitness function to measure the
quality of the represented solution. So in order to find the
most interpretable rules without losing accuracy, a fitness
function is designed having two objectives: minimize the
error and minimize the complexity. This way the learning
algorithm discards high error and high complexity solutions
where the complexity is essentially related to the amount of
rules needed to model the input-output mapping present in
the training data.

This paper is organized as follows. In Section II inter-
pretability and accuracy are defined. Section III describes two
classic neuro-fuzzy systems. Section IV describes the pro-
posed method, namely, RBFuzzy, including the architecture
and learning algorithm. Section V presents the experiments,
using simulated and real data, and the analysis of the results.
Finally, in Section VI conclusions and suggestions for further
research are presented.

II. INTERPRETABILITY AND ACCURACY

Accuracy in a prediction model can be defined as the
capability of the model to precisely represent a real world
system [7]. This capability can be measured in the percentage
of correctly classified patterns by a classification model or
the mean square error(MSE) in a regression model. Usually
the main focus when making a prediction model is to get the
highest possible accuracy.

Interpretability is considered as the main advantage of
fuzzy systems over other prediction models [28], such as
neural networks. Interpretability is the ability of the model
to represent a real world system in an understandable way
[7]. The more comprehensive the model is to a human
reader the more interpretable it is. Interpretability is not
as easily measured as accuracy and often there is some
controversy when choosing the optimal way to measure it
([15], [35], [2], [13]). The measure used in this paper to
evaluate interpretability is based on the number of rules of
the model. Regarding the number of rules the optimal model
would be the model with the least number of rules in which
the accuracy is in a satisfactory level.

Fuzzy systems when constructed from expert knowledge
present a well understandable model with satisfactory ac-
curacy. But when the fuzzy system is extracted from data,
most methods focus on improving the accuracy [16]. In order
to provide an accurate and at the same time understandable
model this paper proposes an approach using a Neuro-
Fuzzy System using an optimization algorithm with a fitness
function designed to satisfy these two constraints, which is
described in the next sections.

III. BACKGROUND

In literature several neuro-fuzzy systems have been studied
and developed (see [21], [18]). They offer the linguistic
knowledge description of fuzzy systems combined with the
learning capability of neural networks. In this section two
classic NFSs are described.

A. ANFIS

The Adaptive Neural Fuzzy Inference System (ANFIS)
was introduced by Jang in [18]. The ANFIS consists of a
Generalized Neural Network (GNN), which is a feed-forward
network with a gradient-descent-based learning procedure,
that is used to build a Takagi-Sugeno Fuzzy Inference
System.

A1

A2

B1

B2

Π

Π

N

N

ω1

ω2

ϖ1

ϖ2

Ʃ

input1

input2

input1

input1 input2

input2

Output

ϖ1*f1

ϖ2*f2

Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Fig. 2. ANFIS Architecture

Five layers are used in the ANFIS, as depicted in Figure
2. Each one of these layers has several nodes described by a
function. There are two types of nodes: adaptive nodes and
fixed nodes, the adaptive nodes can be added and modified,
while the fixed nodes only have the connection weights
changed.

The first layer has adaptive nodes, describing fuzzy mem-
bership functions for each input. The second layer has
product nodes, the output of the product nodes is the product
of all incoming signals. The third layer is a normalized layer,
its output is the sum of all incoming signals weighted by
$i which is then normalized. The fourth layer represents
the consequent part of the rules, where each node is an
adaptive node, its output is the result of a function that takes
as parameter the incoming signal from the third layer and
the inputs. The fifth layer computes the sum of all incoming
signals weighted by $i ∗ fi.

Despite being the first neuro-fuzzy system found in lit-
erature, recent research attribute good results to the ANFIS
([29], [8]). The main disadvantage of the ANFIS is the fact
that it uses the Takagi-Sugeno FIS ([18]). Takagi-Sugeno FIS
have lower interpretability when compared to Mamdani FIS
([20], [19]).

B. EFuNN

Evolving Connectionist Systems (ECoS) is a family of
artificial neural networks introduced by Kasabov in [21].
Evolving in the context of ECoS is not related to evolution
in the context of genetic algorithms, but refers to the fact
that these systems change over time, the structure of a ECoS
network is dynamic. Figure 3 shows the basic architecture
of an ECoS.

1353

Input
Vector

Input
Layer

Evolving
Layer

Output
Layer

Fig. 3. ECoS Basic Architecture

Evolving Fuzzy Neural Networks (EFuNN) is a special
application of ECoS and was introduced in [21]. It is a five-
layer feed-forward neural network. The first neuron layer is
the input layer. The second layer is the condition layer. Each
neuron of the condition layer represents a fuzzy membership
function (MF) for an input. The third layer of neurons is the
evolving layer, where the fuzzy rules are added and stored.
The fourth layer is the action layer, the neurons in this layer
represent fuzzy membership functions attached to the output
neurons. The fifth layer is the output layer, where a crisp
output value is calculated from the fuzzy output value from
the fourth layer by using a defuzzification method.

Mamdani fuzzy rules can be extracted from a EFuNN
using a specific algorithm as described in [23].

Good results showing fast performance and low error
have been attributed to the EFuNN (see [9], [1]). However,
disadvantages attributed to the EFuNN is the fact that some
variables, such as number and type of membership functions
for each output variable, are automatically calculated and
can‘t be changed and optimal learning parameters are diffi-
cult to be configured (see [30]).

IV. PROPOSED METHOD

The proposed fuzzy inference system, called RBFuzzy, is
a neuro-fuzzy system that implements Mamdani-like fuzzy
rules. Similar to the algorithm proposed by Li ([24]), which
gives a fuzzy interpretation to RBF neural networks, the RB-
Fuzzy also uses neurons activated by radial basis functions
and a clustering algorithm, but different from that proposal
the RBFuzzy uses neurons that represent linguistic terms for
the output variable.

RBFuzzy can be trained using a hybrid learning algorithm
which occurs in two steps. In the first stage, a clustering
algorithm determines the membership functions for the input
variables based in the data distribution on the input space. In
the second step an optimization algorithm, in this case the
ACORV, determines the weights of the network. Through
the use of the ACORV it is possible to incorporate more
than one objective in the learning algorithm thus optimizing
at the same time accuracy and interpretability.

The next subsections are organized as follows. Subsection
IV-A describes the architecture of the RBFuzzy. Subsection
IV-B describes how the learning algorithm of the RBFuzzy
works. Subsection IV-C explains how to convert the trained
network to the form of linguistic fuzzy rules.

Output1

Output2

Output3

Input
Layer

Layer
Rule

Layer
Fuzzy Output

Layer
Crisp Output

w11

w12

w21

w22

w23

wi1

wi2

wi3

x1

xk

x2

o

w13

Fig. 4. RBFuzzy Architecture

A. Architecture

The architecture is depicted in Figure 4. It consists of a
4-Layer Neural Network. This Neural Network is basically
a representation of a Fuzzy Inference System.

The first layer is the Input Layer, where the data is pre-
sented to the network and which represents input variables.

The second layer is called the Rule Layer. Each neuron
of the Rule Layer represents a set of fuzzy membership
functions and is generated by the result of a clustering
algorithm on the training data set. By using a clustering
algorithm, each neuron will represent a cluster in the input
space. The data distribution of each cluster is used to define
the parameters of the activation function for each input
variable. The activation function of the Rule Layer is a Radial
Basis Function (RBF). For each input variable a symmetric
Gaussian Function is calculated and then the activation of
a given neuron i is calculated as being the minimum of all
input gaussians as shown in equation 1:

f(x, c, s) = exp

(
− (x− c)2

2 ∗ s2

)
gi = min(f(x1, c1, s1), . . . , f(xk, ck, sk))

(1)

where xk represents an input variable, ck and sk represent
the center and spread value of the membership function
respectively. For each cluster, ck is defined as being equal to
the mean of the cluster’s data and sk is the standard deviation
of the cluster’s data.

The number of neurons in the Rule Layer is a user chosen
parameter to control the number of clusters in the input space.
A higher number of neurons will result in a higher number of
rules, since the number of neurons will determine the number
of membership functions for each input. In each neuron of
the Rule layer the input variables are combined to form the
antecedent part of the fuzzy rules as depicted in Figure 6. For
example, suppose that a given neuron of the Rule layer has
two input variables with parameters (c1, s1) for Input1 and

1354

(c2, s2) for Input2 as can be seen in the red cluster of Figure
6. In this case the antecedent of the fuzzy rules represented
by this neuron would be: “IF Input1 IS IN gaussmf(c1, s1)
AND Input2 IS IN gaussmf(c2, s2) THEN. . .”

When an input vector is submitted to the network, the
output activation of the neurons from the Rule Layer describe
the degree of membership of the input vector to each rule
represented by the neurons. The connections wij from the
Rule Layer to the Fuzzy Output Layer represent the weight
of the rules for each fuzzy output, which are adjusted by the
ACORV. This step is covered in detail in section IV-B.

The third layer is the Fuzzy Output Layer. The number
of neurons in this layer is a user chosen parameter and is
equal to the number of the desired output fuzzy sets, e.g., by
defining 3 as the number of neurons in this layer, 3 output
fuzzy sets are generated and are linguistically interpreted
as: LOW, MEDIUM and HIGH. The membership functions
employed are triangular functions.

The output of each neuron j in the Fuzzy Output Layer
is the degree of membership of the input to the output fuzzy
variables weighted by wij . As a result we have the following
activation function for the Fuzzy Output Layer, defined by
equation 2:

zj = max(w1j ∗ g1, w2j ∗ g2, . . . , wij ∗ gi), (2)

Each neuron in the Rule Layer is connected to all neurons
of the Fuzzy Output Layer. Thus, the total number of rules
generated by RBFuzzy model is i ∗ j, where i is the number
of neurons in the Rule Layer and j is the number of neurons
in the Output Layer. Observe that for each neuron of the
Rule Layer, j rules are created, each one with the same
antecedent part and with a different consequent part. Each
one of these rules will have a different weight determined
by the learning algorithm. Note that rules with low weights
are cut from the final set of rules and tests show that this
doesn’t significantly affect the accuracy of the model. In the
following example we show the rules generated when the
neuron of the Rule Layer represented by the red region of
Figure 6 is connected to the neurons of the Fuzzy Output
Layer:

Rule 1 =


IF Input1 IS IN gaussmf(c1, s1) AND
IF Input2 IS IN gaussmf(c2, s2)
THEN OUTPUT IS HIGH WITH w = (w11)

Rule 2 =


IF Input1 IS IN gaussmf(c1, s1) AND
IF Input2 IS IN gaussmf(c2, s2)
THEN OUTPUT IS MEDIUM WITH w = (w12)

Rule 3 =


IF Input1 IS IN gaussmf(c1, s1) AND
IF Input2 IS IN gaussmf(c2, s2)
THEN OUTPUT IS LOW WITH w = (w13)

The fourth and final layer is the Crisp Output Layer,
which computes the numeric value of the network output. In

this paper, this value is computed by applying the centroid
defuzzification method to the outputs of the Fuzzy Output
Layer, but other defuzzification methods can be applied.

B. Learning Algorithm

Figure 5 depicts the basic process of the learning al-
gorithm that RBFuzzy implements. In the first step the
number of RBF neurons should be chosen by the user. The
algorithm could also choose the optimal number of RBF
neurons using a specialized clustering algorithm, the ECM
for example [22]. In the second step the number of output
membership functions is chosen, typically between 3 and
5 output membership functions give good results. Then the
data is divided using a cluster algorithm. In our tests k-means
and fuzzy c-means yielded good results. Then the data are
statistically analyzed to define the parameters of the Radial
Basis Functions, in this step the centers and spread values of
the input membership functions are defined for each cluster
separately, Figure 6 shows the result of this stage. In the final
step the ACORV is used to minimize the error and minimize
the total weight of the rules by using an appropriate fitness
function, which is shown in equation 3. The weights of the
rules are minimized because rules whose weights are so small
that they have little influence on the output are discarded in
the cut off step, thus making the model more interpretable.
This whole process is explained in more depth below.

1: N RULES ← Choose the number of rules
2: N OUT ← Choose the number of output membership

functions
3: CLUSTERS ← Use a cluster algorithm to cluster the

training data into N RULES clusters
4: for all clusteri in CLUSTERS do
5: Define the RBF center parameter of the rulei equals

to clusteri center.
6: Define the RBF spread parameter of the rulei equals

to clusteri standard deviation
7: end for
8: Use the ACORV to find the optimal weights for the

network
9: Cut off the rules below the user defined output weight

threshold

Fig. 5. RBFuzzy Learning Algorithm Overview

The learning algorithm can be divided into two phases, the
first being responsible for defining the input space covered by
each rule and the second phase being responsible for finding
the optimal weights of the network and cutting unnecessary
rules.

In the first phase the training data is divided in i regions
in the input space, being i equal to the number of RBF
neurons in the Rule Layer. In order to do this a clustering
algorithm is used to partition the training data into i clusters.
The activation function for the neurons of the Rule Layer
is defined by equation 1. Figure 6 shows the result of this
process, where each cluster is represented by a different

1355

- 3 - 2 - 1

In
p
u
t1

Input2

x

x

x

S1

S2

C2

C1

Fig. 6. Input Membership Functions

color.
In the second phase the ACORV algorithm is used to find

the weights between the Rule Layer and the Fuzzy Output
Layer. The idea is to simultaneously minimize the network
error and the network weights. The fitness function optimized
by the ACORV is defined by equation 3

fit = α

√√√√ 1

N

N∑
i=1

(oi − ti)2 + λ
m∑
i=1

n∑
j=1

(wij) (3)

where α and λ are respectively the weights for accuracy and
interpretability, N is the total number of training data points,
oi is the output value for the data point i, ti is the correct
value for the data point i, and wij is the weight between the
Rule Layer neuron i to the Fuzzy Output Layer neuron j.
The definition of the complexity should be modeled based on
the interpretability measure chosen. In this paper the measure
used to evaluate interpretability is the number of rules, so our
complexity function is the weighted sum of all rule weights.
By adopting this definition the ACORV algorithm will favor
models with lower weights. Since rules with low weights
have almost no influence on the output, all rules with low
weights will be discarded from the model in the Rule Cutting
step. This ensures that a model with lower weights will result
in a fuzzy inference system with higher interpretability.

Thus the fitness function is responsible for minimizing
the error and maximizing the interpretability of the rules.
By changing the weights α and λ the precision and inter-
pretability can be adjusted to better suit different problems.
If interpretability is an issue λ could be raised and more
interpretable rules will be generated.

After the ACORV algorithm has found the optimal weights
the Rule Cutting step takes place. The Rule Cutting is
the final step of the learning algorithm, where every rule
with the output weight below a user defined threshold is
discarded from the model. Since the fitness function used
favors models with lower weights, this step is expected to cut
off a good number of rules without significant degradation
in the accuracy of the neuro-fuzzy model.

C. Fuzzy Interpretation

After the training phase, the network can be interpreted
as a Mamdani Fuzzy Inference System (FIS), where the
RBFs of the Rule Layer represent the antecedent membership
functions and the Fuzzy Output Layer neurons represent
the consequent membership functions for each rule. The
crisp output can be obtained by the defuzzification of the
consequent. The RBFuzzy extracted rules are defined in the
form:

IF x1 IS IN gaussmf(c1, s1) AND
IF x2 IS IN gaussmf(c2, s2) AND
...
IF xk IS IN gaussmf(ck, sk)
THEN OUTPUT IS Outputj with w = (wij)

being k the number of input variables, xk an input variable,
ck and sk being the RBF center and spread for the respective
input variable, gaussmf the gaussian membership function,
j the number of fuzzy output sets or number of neurons in
the Fuzzy Output Layer and wij being the connection weight
from the neuron i of the Rule Layer to the neuron j of the
Fuzzy Output Layer, found by the ACORV algorithm.

V. EXPERIMENTS AND RESULTS

In this section the results are presented. The experiments
used simulated data from the Mackey-Glass Time-Series
[25] and the Engine dataset [3], where RBFuzzy was tested
against EFuNN. An experiment using real world data from
an oil well-log database was also performed.

A. Mackey-Glass Time-Series Prediction

In order to evaluate the performance of our method, we
have performed experiments using the Mackey-Glass (MG)
chaotic time-series function [25]. This time-series is defined
by the differential equation 4:

∂x

∂t
= β

xτ
1 + xnτ

− γx(t), γ, β, n > 0, (4)

where β, γ, τ, n are real numbers, and xτ represents the value
of the variable x at time (t−τ). The experiments were carried
out using the MG data set with 1000 data points. The exact
same data sets were used for both models.

Prediction quality has been evaluated using the non-
dimensional error index (NDEI). NDEI is defined as the
RMSE divided by the standard deviation of the target series.

Experiment results are summarized in Table I and Figures
7 and 8 show the graphical results for the EFuNN and
RBFuzzy respectively. Analyzing the graphical results we
can conclude that both models offered good approximations.
The RBFuzzy had difficulty to predict the extremes of the
series. We believe that this is due to the values found by
the clustering algorithm for the centers and spreads of the
gaussian membership functions. Some adjustments in the
clustering algorithm could mitigate this problem.

EFuNN achieved a NDEI of 0.4481, but failed to provide
a good number of rules, generating 53 fuzzy rules while the

1356

NFS # of Rules NDEI
RBFuzzy 7 0.3684
EFuNN 53 0.4481

TABLE I
MACKEY-GLASS DATASET RESULTS

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Desired
Predicted

Fig. 7. EFuNN Mackey-Glass Dataset Prediction

RBFuzzy generated only 7 fuzzy rules and a NDEI of 0.3684.
RBFuzzy achieved better interpretability due to the lower
number of rules when compared to the EFuNN. The fitness
function that was used in this experiment had a weight of
0.8 to improve accuracy and 0.2 to the interpretability term.

Figure 10 shows the rules generated by the RBFuzzy using
Matlab‘s Fuzzy Logic Toolbox. For comparison reasons,
Figure 9 shows the rules generated by the RBFuzzy before
the Rule Cutting is applied, a set with 36 rules is reduced to
7 rules after the Rule Cutting. The Rule Cutting step used
a threshold of 0.1 and after the Rule Cutting step the error
percentage showed a difference of only 1.2%. This shows
that our fitness function improves the interpretability of
the resulting fuzzy inference system without compromising
accuracy.

B. Engine Dataset Prediction

The next experiments were performed using the Engine
dataset [3] with 1199 data points, having the Fuel rate as the
input to predict the Nitrous oxide emissions.

The RBFuzzy generated 6 fuzzy rules and a NDEI of
0.4225. The fitness function that was used in this experiment
had a weight of 0.8 to improve accuracy and 0.2 to improve
interpretability.

The graphical result, shown in Figure 11, shows that the
RBFuzzy gives a good approximation of the desired function
using 6 fuzzy rules.

C. Application in offshore oil drilling

In order to reduce costs in offshore oil drilling operations
the time required to successfully drill a well has to be

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Desired
Predicted

Fig. 8. RBFUZZY Mackey-Glass Dataset Prediction

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

0 1 0 1

Input1 = 0.5 Input2 = 0.5

-0.5 1.5

Fig. 9. RBFuzzy Mackey-Glass Rule Set Before the Rule Cutting

Output1 = 0.456

2

3

4

5

6

7

0 1 0 1

Input1 = 0.5 Input2 = 0.5

-0.5 1.5

Fig. 10. RBFuzzy Mackey-Glass Rule Set After the Rule Cutting

estimated fairly precisely, since most of the costs associated
are tied to the rental of equipment required for the operation
[14]. However, each operation has unique properties that
make this task highly difficult. Many properties vary, such
as rock type, rock porosity, gas presence, pressure, drill bit
wear rate among others. All these properties affect the Rate

1357

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RBFuzzy

Desired
Predicted

Fig. 11. RBFUZZY Engine Dataset Prediction

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Meters

R
O
P

Desired
Predicted

Fig. 12. RBFUZZY Training Set for ROP prediction

Of Penetration (ROP), that is the speed at which a drill bit
breaks the rock in order to deepen the petroleum borehole
[6]. There are other parameters that also affect the ROP and
that can be controlled by a drilling operator [5]: weight on bit
(WOB), revolutions per minute (RPM), bit type, bit diameter
and drilling fluid pressure.

Most of the work in the planning phase of a drilling
operation is restricted to adjusting the bit type, RPM and
WOB in order to achieve an acceptable ROP. To optimize this
work many systems using artificial neural networks (ANN)
were proposed in the past [5] and even choose automatically
some parameters such as RPM and WOB [11].

These models were tested against the available data but
they did not achieve good results, mostly because the avail-
able data is of poor quality. The available data is from the
pre-salt layer, where target depths are greater than 5000
meters, crossing salt layers that can reach 2000 meters in
thickness [4]. Because of those extreme conditions, the poor
quality is an inherent and unavoidable characteristic of the
data.

The RBFuzzy is used to overcome this problem by pro-
viding the linguistic interpretation of the forecast model to
the oil drilling specialist. The specialist reads the model and
corrects it where mistakes were inserted by bad parts of the
data. If there are input variables missing from the data the
specialist can insert them using his knowledge. After the

model is corrected by the specialist it is saved in a database
where it is accessible for the rest of the company.

The fitness function that was used in this experiment had
a weight of 0.7 to improve accuracy and 0.3 to improve
interpretability. Figure 12 shows the graphical result for the
generated model. Using 35 rules the RBFuzzy achieved a
RMSE of 0.0319.

VI. CONCLUSION

In this paper we have proposed the RBFuzzy, a new NFS
used to extract Mandami fuzzy rules from data in order to
perform time series forecasting. Using radial basis functions
as activation for the neurons in the middle layer and an
optimization algorithm in the training of the network, we
showed that it is possible to extract knowledge from data in
the form of fuzzy rules with a high level of accuracy and
interpretability.

The proposed neuro-fuzzy inference system uses an opti-
mization algorithm to improve the extraction of knowledge
from data in the form of fuzzy if-then rules. This method
has a lot of advantages, its multi-objective nature makes it
possible to insert new constraints to knowledge extraction
process. This can be done by modifying the fitness function
and adding new objectives.

Experimental results show that our proposed model can
reach a good level of accuracy with better interpretability
when compared to EFuNN.

REFERENCES

[1] Almomani, A., Wan, T.C., Altaher, A., Manasrah,
A., Almomani, E., Anbar, M., Alomari, E., Ramadass,
S.: Evolving fuzzy neural network for phishing emails
detection. Journal of Computer Science 8(7), 1099
(2012)
[2] Alonso, J.M., Magdalena, L., González-Rodrı́guez,
G.: Looking for a good fuzzy system interpretability
index: An experimental approach. International Journal
of Approximate Reasoning 51(1), 115–134 (2009)
[3] Beale, M., Hagan, M.T., Demuth, H.B.: Neural
network toolbox. Neural Network Toolbox, The Math
Works pp. 5–25 (1992)
[4] Beltrao, R.L., Sombra, C., Lage, A., Fagun-
des Netto, J., Henriques, C.: Ss: Pre-salt santos basin-
challenges and new technologies for the development
of the pre-salt cluster, santos basin, brazil. In: Offshore
Technology Conference (2009)
[5] Bilgesu, H., Tetrick, L., Altmis, U., Mohaghegh, S.,
Ameri, S.: A New Approach for the Prediction of Rate
of Penetration (ROP) Values. In: SPE Eastern Regional
Meeting. Society of Petroleum Engineers, Lexington,
Kentucky (Oct 1997)
[6] Bourgoyne Jr., A., Young Jr., F.: A Multiple Re-
gression Approach to Optimal Drilling and Abnormal
Pressure Detection. SPE Journal 14(4), 371–384 (1974)
[7] Casillas, J., Cordon, O., Herrera, F., Magdalena,
L.: Interpretability improvements to find the bal-

1358

ance interpretability-accuracy in fuzzy modeling: an
overview. Springer (2003)
[8] Chang, F.J., Wang, K.W.: A systematical water
allocation scheme for drought mitigation. Journal of
Hydrology 507(0), 124 – 133 (2013)
[9] Chang, P.C., Fan, C.Y., Lin, J.J.: Monthly electricity
demand forecasting based on a weighted evolving fuzzy
neural network approach. International Journal of Elec-
trical Power & Energy Systems 33(1), 17–27 (2011)
[10] Conti, C.R., Roisenberg, M., Neto, G.S.: AcoRv-
an algorithm that incorporates the visibility heuristic
to the aco in continuous domain. In: Evolutionary
Computation (CEC), 2012 IEEE Congress on. pp. 1–
8. IEEE (2012)
[11] Fonseca, T.C., Mendes, J.R.P., Serapião, A.B.S.,
Guilherme, I.R.: A Genetic Neuro-Model Reference
Adaptive Controller for Petroleum Wells Drilling Oper-
ations. In: International Conference on Computational
Inteligence for Modelling Control and Automation and
International Conference on Intelligent Agents Web
Technologies and International Commerce. p. 3 (2006)
[12] Gabryel, M., Rutkowski, L.: Evolutionary learning
of mamdani-type neuro-fuzzy systems. In: Artificial
Intelligence and Soft Computing–ICAISC 2006, pp.
354–359. Springer (2006)
[13] Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability
of linguistic fuzzy rule-based systems: An overview of
interpretability measures. Information Sciences 181(20),
4340–4360 (2011)
[14] Gandelman, R.A.: Predição da ROP e otimização
em tempo real de parâmetros operacionais na perfuração
de poços de petróleo offshore. Ph.D. thesis, UFRJ
(2012)
[15] Guillaume, S.: Designing fuzzy inference systems
from data: an interpretability-oriented review. Fuzzy
Systems, IEEE Transactions on 9(3), 426–443 (2001)
[16] Guillaume, S., Magdalena, L.: Expert guided inte-
gration of induced knowledge into a fuzzy knowledge
base. Soft computing 10(9), 773–784 (2006)
[17] Hsu, C.F., Lin, C.M., Yeh, R.G.: Supervisory
adaptive dynamic rbf-based neural-fuzzy control system
design for unknown nonlinear systems. Applied Soft
Computing 13(4), 1620–1626 (2013)
[18] Jang, J.S.R.: Anfis: adaptive-network-based fuzzy
inference system. IEEE Transactions on Systems, Man
and Cybernetics 23(3), 665–685 (1993)
[19] Jassbi, J., Alavi, S., Serra, P.J., Ribeiro, R.A.:
Transformation of a mamdani fis to first order sugeno
fis. In: Fuzzy Systems Conference, 2007. FUZZ-IEEE
2007. IEEE International. pp. 1–6. IEEE (2007)
[20] Jassbi, J., Serra, P., Ribeiro, R., Donati, A.: A
comparison of mandani and sugeno inference systems
for a space fault detection application. In: Automation
Congress, 2006. WAC’06. World. pp. 1–8. IEEE (2006)
[21] Kasabov, N.K.: The ECOS Framework and the
ECO Learning Method for Evolving Connectionist Sys-
tems. Journal of Advanced Computational Intelligence

and Intelligent Informatics 2, 195–202 (1998)
[22] Kasabov, N.K., Song, Q.: Denfis: Dynamic evolv-
ing neural-fuzzy inference system and its application
for time-series prediction. IEEE Transactions on Fuzzy
Systems 10(2), 144–154 (2002)
[23] Kasabov, N., Woodford, B.: Rule insertion and rule
extraction from evolving fuzzy neural networks: algo-
rithms and applications for building adaptive, intelligent
expert systems. In: Fuzzy Systems Conference Proceed-
ings, 1999. FUZZ-IEEE’99. 1999 IEEE International.
vol. 3, pp. 1406–1411. IEEE (1999)
[24] Li, W., Hori, Y.: An algorithm for extracting fuzzy
rules based on rbf neural network. Industrial Electron-
ics, IEEE Transactions on 53(4), 1269–1276 (2006)
[25] Mackey, M.C., Glass, L., et al.: Oscillation and
chaos in physiological control systems. Science
197(4300), 287–289 (1977)
[26] Mamdani, E.H.: Application of fuzzy algorithms
for control of simple dynamic plant. Electrical Engi-
neers, Proceedings of the Institution of 121(12), 1585–
1588 (1974)
[27] Mamdani, E.H.: Application of fuzzy logic to ap-
proximate reasoning using linguistic synthesis. Comput-
ers, IEEE Transactions on 100(12), 1182–1191 (1977)
[28] Mikut, R., Jäkel, J., Gröll, L.: Interpretability is-
sues in data-based learning of fuzzy systems. Fuzzy
Sets and Systems 150(2), 179–197 (2005)
[29] Ocak, H., Ertunc, H.M.: Prediction of fetal state
from the cardiotocogram recordings using adaptive
neuro-fuzzy inference systems. Neural Computing and
Applications pp. 1–7 (2012)
[30] Petrovic-Lazarevic, S., Zhang, J.Y.: Neuro-fuzzy
models and tobacco control. In: Proceedings of the
European Computing Conference. pp. 25–31. Springer
(2009)
[31] Takagi, T., Sugeno, M.: Fuzzy identification of
systems and its applications to modeling and control.
Systems, Man and Cybernetics, IEEE Transactions on
(1), 116–132 (1985)
[32] Wang, J.S., Lee, C.G.: Self-adaptive neuro-fuzzy
inference systems for classification applications. Fuzzy
Systems, IEEE Transactions on 10(6), 790–802 (2002)
[33] Zadeh, L.A.: Fuzzy sets. Information and Control
8(3), 338–353 (1965)
[34] Zadeh, L.A.: Outline of a new approach to the
analysis of complex systems and decision processes.
Systems, Man and Cybernetics, IEEE Transactions on
(1), 28–44 (1973)
[35] Zhou, S.M., Gan, J.Q.: Low-level interpretability
and high-level interpretability: a unified view of data-
driven interpretable fuzzy system modelling. Fuzzy Sets
and Systems 159(23), 3091–3131 (2008)

1359

