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Abstract— Pixel-scale fine details are often lost during im-
age processing tasks such as image reduction and filtering.
Block or region based algorithms typically rely on averaging
functions to implement the required operation and traditional
function choices struggle to preserve small, spatially cohesive
clusters of pixels which may be corrupted by noise. This
article proposes the construction of fuzzy measures of cluster
compactness to account for the spatial organisation of pixels. We
present two construction methods (minimum spannning trees
and fuzzy measure decomposition) to generate measures with
specific properties: monotonicity with respect to cluster size;
invariance with respect to translation, reflection and rotation;
and, discrimination between pixel sets of fixed cardinality with
different spatial arrangements. We apply these measures within
a non-monotonic mode-like averaging function used for image
reduction and we show that this new function preserves pixel-
scale structures better than existing monotonic averages.

I. INTRODUCTION

The ubiquitous nature of small display screens in smart-
phones, tablets and laptop computers has reinforced the need
for robust image reduction techniques. In particular, where
these screens are being used to display images captured at
higher resolutions than the screen is capable of displaying,
image reduction is essential. Even where large screens are
involved, the resolutions at which images may now be
captured far exceeds the capability of many screens to display
them at full resolution.

Another common application of image reduction is, along
with image filtering, as a pre-processing task in computer
vision applications. In such contexts reducing the number of
pixels processed also reduces the computational complexity
of the vision task and thus the memory and time require-
ments. In both of these scenarios it is important that the pre-
processing of the image does not cause the loss of fine image
details, which may convey important information relevant to
the analysis of the image content.

Block-based image reduction operators based on aver-
aging aggregation functions have been proposed for this
purpose [7]. Recent work has focused on the problem
of the preservation of fine, pixel-scale details in images,
which are represented by small, spatially coherent clusters of
pixels having similar intensities. Non-monotonic averaging
functions have been shown to improve the robustness of
image reduction compared to monotonic averages such as the
arithmetic mean or median [9]. As with convolution-based
image filters, in this previous work spatial organisation of
pixels was accounted for using distance-based weights. This
approach does not sufficiently describe the spatial structure

of a set of pixels such that structured image details may be
preserved during the reduction.

In this work we are interested in identifying geometrically
compact clusters of pixels having similar intensity, which
are tonally different from their local neighbourhood. Fur-
thermore, we consider the possibility that such clusters may
represent a minority of a local region, even when considering
block sizes as small as 3×3 pixels. We also assume that pixel
intensities may be corrupted by noise or undue variation due
to sampling effects in discrete digital imaging arrays.

To extend and improve upon previous work in this area
we propose that a measure of cluster compactness may be
used to weight the contribution of specific pixels within
a non-monotonic average, which is used to compute a
representative pixel value for a given block of pixels. This
article considers a novel approach of constructing cluster
compactness measures based on fuzzy measure theory.

Given a subset A of pixels within an m × n block,
the following requirements for a compactness measure SC
would seem to be reasonable in the image reduction context:
1) the function SC(A) must be non-decreasing in |A|, as
larger clusters are less likely to represent noise; 2) the
function SC must be invariant with respect to translation,
reflection and rotation (at least rotations by multiples of 90
degrees); and, 3) the function SC must discriminate between
compact groups and disconnected subsets of fixed cardinality.
For convenience we will require that SC is normalised.

We note that some simple measures of compactness exist,
such as those based inter-set and intra-set distances, however
these are not adequate for our purposes as they do not satisfy
the first requirement. This requirement though is precisely
the monotonicity condition used in the definition of fuzzy
measures and therefore it makes sense to look for a solution
within the class of fuzzy measure functions.

We present our work herein and our article is structured
as follows. Section II formulates the image reduction task as
an averaging problem over local image blocks and introduces
the role of a cluster compactness measure within this context.
Section III briefly presents fuzzy measures and Sections IV
and V present our proposed measures based on a minimum
spanning tree graph and a geometrical decomposition, re-
spectively. We briefly compare measures produced by these
methods in Section VI. In Section VII we present a validation
of the proposed measures in the context of non-monotonic
averaging for image reduction. Finally, Section VIII presents
our conclusions and describes briefly some future work.
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II. PROBLEM FORMULATION

We formulate the compactness measure problem using
an example of image reduction based on a local, block-
based reduction operator, as shown in Figure 1. An image
of size M ×N is subdivided into non-overlapping blocks of
size m × n. Each block is aggregated to generate a single
value representative of the original data, which becomes the
intensity of a single pixel within the reduced image. Thus, the
original image is reduced to the size M ′×N ′ = bMm c×b

N
n c.

Fig. 1: A scheme for image reduction within 3× 3 blocks.

The local operators based on aggregation functions have
been shown to be both effective , efficient and easily admit
parallel implementations [1], [8]. They require the properties
of averaging functions such as means, so that the output is
within the range of the intensities in the input pixels and
is also idempotent [2]. This latter property ensures that if
the block is of uniform intensity its representative value is
exactly the same as the intensity of all input pixels. The
simplest examples are the weighted arithmetic mean and
the median, which play an important role in Gaussian and
median filtering. All suitable averaging functions can be
obtained by using a penalty-based approach [4], wherein a
given penalty function for intensity deviations is minimised
to obtain the aggregate value.

The most well-known averaging functions satisfy another
condition, that of monotonicity [2]. Any increase in one
or more input values does not cause a decrease in the
output of the aggregation. This condition is useful when
the data are noiseless, however it is not desirable when
the data may be contaminated by noise, which appear as
tonal outiers within small pixel blocks. Previous work in
aggregation problems has focused on the design of non-
monotonic averages using penalty-based methods [3], [4] and
these approaches have been adapted for image reduction [9].
Many of the non-monotonic averages were recently shown
to be weakly monotone averaging functions, which have
desirable properties relevant to image processing tasks such
as reduction and filtering [10] and our current work continues
to pursue the design of such functions using penalty based
methods.

We represent by the vector x the intensities of a set of

p pixels with values in Ip, where I = [a, b] is any closed,
non-empty subset of the reals. The average intensity of these
inputs is the solution to the minimisation problem

y = f(x) = argmin
y
P(x, y), (1)

where P : Ip+1 → R is a penalty function satisfying the
conditions:

1) P(x, y) ≥ c ∀x ∈ Ip, y ∈ I;
2) P(x, y) = d if all xi = y,

for some constant d ∈ R. In [9] a penalty function based on
a weighted sum of intensity-based penalties was proposed,
which was given by

P(x, y) =
p∑

i=1

wi(y)ρ(xi, y) (2)

where

ρ(xi, y) =

{
r(k) r(k) < τ,
βτ r(k) ≥ τ.

(3)

τ = αmax(ε, r(t)) and α > 0, 0 ≤ β ≤ 1, 2 ≤ t ≤ p.

Given ri = ‖xi − y‖ then r(k) denoted the kth smallest
element of the set of ordered (ascending) values of ri, given
the aggregate value y. This function generates a mode-like
non-monotonic average of the input vector x and was shown
to outperform other monotonic and non-monotonic block-
based reduction operators when applied to images corrupted
by speckle or impulse noise.

Although the function ρ favours compact clusters of inten-
sity values in x by assigning smaller penalties to inputs closer
to the proposed output, it does not take into account spacial
organisation of the pixels. This is achieved by using weights
based on normalised distance between the pixels within the
block:

wi(y) =
d(xi, y)∑p
i=1 d(xi, y)

,∀y = xj ∈ {x1, ..., xp}. (4)

This function arose from the additional constraint that
the average must also be an internal function (i.e., the
output should be one of the inputs), which is a reasonable
requirement in image reduction tasks. In this current work
we wish to replace the weights wi(y) with a function that
incorporates spatial structure information and that appropri-
ately orders candidate clusters of pixels according to their
spatial arrangement. Consequently we desire a function over
the power set 2P , where P is the index set for the input
vector x and w : 2P → [0, 1].

As mentioned in the introduction we desire a monotone
set function as larger subsets are favoured and have smaller
penalties in the expression for P . We also impose suitable
boundary conditions so that the range of w is within the unit
interval. Since these conditions are the same as the ones used
in the definition of fuzzy measures we consider weighting
functions of the type w(A) = w0 − v(A), where w0 > 1
ensures that w is strictly positive, and v is a fuzzy measure.
Normalised weights are trivially obtained if required.
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III. FUZZY MEASURES

A fuzzy measure is defined as follows [6]:
Definition 1: Let N = {1, 2, . . . , n}. A discrete fuzzy

measure is a set function v : 2N → [0, 1] which is monotonic
(i.e. v(A) ≤ v(B) whenever A ⊂ B) and satisfies v(∅) = 0
and v(N ) = 1.

Definition 2: A fuzzy measure v is called submodular if
for any A,B ⊆ N

v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B). (5)

It is called supermodular if

v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B). (6)
Definition 3: A fuzzy measure v is called subadditive if

for any two nonintersecting subsets A,B ⊂ N , A ∩ B = ∅:

v(A ∪ B) ≤ v(A) + v(B). (7)

It is called superadditive if

v(A ∪ B) ≥ v(A) + v(B). (8)
Definition 4: A fuzzy measure v is called symmetric if

the value v(A) depends only on the cardinality of the set A,
i.e., for any A,B ⊆ N , if |A| = |B| then v(A) = v(B).

We require a non-symmetric fuzzy measure as we wish to
differentiate between compact and scattered groups of pixels
of the same cardinality, such as those depicted in Figures 2a
and 2b respectively. We also require symmetry among those
subsets A that represent translation, rotation and reflection
symmetry of the corresponding groups of pixels. In addition,
we require a non-additive fuzzy measure. If we consider a
compact cluster of pixels - such as the one shown in Figure
2a - and add another pixel to the cluster, the measure of this
larger set should depend on how close (Figure 2c) or away
(Figure 2d) this additional pixel is to the original cluster.

(a) Compact (b) Scattered (c) Close (d) Away

Fig. 2: Example of different clusters.

We shall consider two different approaches to constructing
fuzzy measures that satisfy our requirements. In the first case,
fuzzy measures reflecting cluster compactness are computed
directly based on the Minimum Spanning Tree. In the second
case we will use some extra information about the desired
fuzzy measure in terms of reference points and constraints. A
reference point is a specified value of v for a particular subset
A, which we believe is a reasonable choice. For example,
we could specify v(A) = 1 for all compact A of cardinality
|A| ≥ k, for some k < p, and where compactness means that
each pixel in A has a neighbour in A (that is, for ∀a ∈ A :
dH(a,A) = 1 and dH is the Housdorff distance). Further,
we will impose constraints such as v(A) ≥ v(B) + δ for
a some δ > 0 when we believe the measures of A and B

should differ at least by δ. We assume there are r reference
points and c inequality constraints.

IV. AN APPROACH BASED ON MINIMUM SPANNING
TREES

Minimum Spanning Trees (MST) have been used for clus-
tering for several decades [11]. Given a connected weighted
graph the MST is a subgraph (a tree connecting all vertices)
whose weight is the smallest. It is constructed from the
adjacency matrix using Prim’s or Kruskal’s algorithms [5]
and its complexity is quadratic in the number of vertices.

We shall use the weight of the MST (i.e., the sum of
all edge weights in the MST), constructed from a complete
graph connecting the elements of a cluster, whose weights
are pairwise distances between the data. In cluster analysis,
such MSTs are used to agglomerate the data and partition
it into several clusters by removing the edges of maximum
weight. Here we are interested in a measure of compactness
of a single cluster, hence we shall only use the weight of the
MST rather than its structure.

We are interested in devising a quantity that satisfies the
three criteria set out in the Introduction. We use the formula

SC(A) = C −
W (MST (A))

TM + 1

|A|
, (9)

where T = |U| is the cardinality of the largest cluster, M is
the largest distance between the elements of a cluster, and
C = 1 + T (M+1)−1

T 2M . For example, for a 3 × 3 block and
the Euclidean distance, T = 9 and M = 2

√
2, and hence

C = 1 + 1
9 + 4

81
√
2

. For brevity we will denote w(A) =

w(MST (A)).
The constant C is a normalisation constant which ensures

SC(A) ∈ (0, 1] (we implicitly assume that SC(∅) = 0),
and T and M are scaling parameters. This ensures the
function SC is a fuzzy measure, invariant with respect to
translation, refection and rotation and that it is discriminating
with respect to cluster compactness.

Example 1: The numerical results illustrating the formula
(9) are presented in Figure 3. We observe monotonicity with
respect to set cardinality and differentiation between tightly
compact and spread out sets of the same cardinality. One
inconvenience of (9) is that the numerical values of SC(A)
are clogged at the higher end of the spectrum near one, so
that the differences between more and less compact sets of
cardinality more than three are in the second or third decimal
place, see Figure 3(a). This can be rectified by raising SC(A)
to some power q, making the numerical values more evenly
distributed and clearly differentiating numerically between
the more compact and less compact sets. The CPU time
required to compute these values was negligible.

V. DECOMPOSING FUZZY MEASURE

In this approach to computing a fuzzy measure we explic-
itly account for geometrical symmetries in the clusters by
decomposing them into component blocks. Consider Figure 4
which shows examples of 4 building blocks of subsets, which
we call the basic components, BC. Each subset A can be

1106



Fig. 3: Estimated fuzzy measure using Minimum Spanning
Tree approach.

represented in a number of ways by the composition of a set
of (possibly overlapping) basic components BCi. The basic
components account for all geometrical symmetries and are
encoded using a hash function based on the average intra-
pixel distance

h(A) = 1

|A|
∑
a∈A

dH(a,A \ a).

The number of basic components and their shape can be
specified by the user and allows for the customisation of the
compactness measure (and thus penalty weights) to favour
certain structural patterns over others.

Fig. 4: Examples of basic components BC1 – BC4.

For a given subset A we identify its decompositions into
one or more basic components of the same type and identify
the number of possible ways to fit such a basic component
into A. Each of the basic components BCi is assigned a
value ui. The values of v(A) are computed as follows

SC(A) = min(1, n1u1 + n2u2 + . . .+ nquq), (10)

where q is the number of basic components, ui is the value
of the ith basic component, and ni is the count of the ith
basic component in the decomposition of A.

Suppose a subset A = {1, 2, 4} is a cluster with 3
connected elements in a 3 × 3 mask. There are 3 possible
ways to fit the 1-element component, 2 ways to fit 2-element
component, and 1 way to fit 3-element component into the
provided shape (note that overlapping is allowed). Assume

that the weights of the basic components are provided as
u = [0.1, 0.1, 0.05, 0.05]. Thus, the value of the fuzzy
measure would be:
v(A) = min(1, 3u1 + 2u2 + 1u3 + 0u4)

= min(1, 3 ∗ 0.1 + 2 ∗ 0.1 + 01 ∗ 0.05 + 0 ∗ 0.05)
= 0.55

Unlike the MST approach the fuzzy measure decompo-
sition computes the fuzzy measure based on a model; the
values u1, . . . , uq . These values are estimated with respect
to available reference points and constraints, which represent
the desired numerical values and relations between the values
of SC. Before we proceed with formulating a fitting problem,
let us demonstrate that the function SC is a fuzzy measure.
Let U denote the universal set (that is, the largest cluster,
being the whole block of m× n pixels).

Proposition 1: The function SC in (10) is a fuzzy mea-
sure irrespective of the values ui ∈ [0, 1]|

∑
i ni(U)ui ≥ 1.

SC discriminates between more and less compact clusters.
Proof: Evidently SC(∅) = 0 and SC(U) = 1. We need

to show monotonicity. For this we note that A ⊂ B implies
ni(A) ≤ ni(B). Consequently

∑
i ni(A)ui ≤

∑
i ni(B)ui.

Next, as more compact subsets A allow fitting more basic
components that are larger in size, they will have larger
values of ni, and hence larger values of SC(A).

We now need to fit the parameters ui to the available
reference points and constraints. Because the parameters
enter our expressions linearly we can set up the following
mathematical programming problem

minimize F (u1, . . . , uq) =
r∑

i=1

|SC(Ai)− vi|

subject to SC(Al)− SC(Bl) ≥ δl, l = 1, . . . , c,

SC(Ak) = min(1,

q∑
i=1

ni(Ak)ui),

q∑
i=1

ni(U)ui ≥ 1,

u1, . . . , uq ≥ 0.

(11)

and convert this into a linear programming problem by intro-
ducing slack variables r+i , r

−
i , and setting SCi = SC(Ai),

minimize
r∑

i=1

r+i + r−i

subject to r+i − r
−
i − SCi = −vi, i = 1, . . . , r,

− SCi + SCk ≤ −δik,

SCk ≤
q∑

i=1

ni(Ak)ui,

SCk ≤ 1,
q∑

i=1

ni(U)ui ≥ 1,

r+i , r
−
i ≥ 0, SCi ≥ 0,

u1, . . . , uq ≥ 0.

(12)
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The number of variables is 2r+ c+ q+ t and the number of
constraints is r + c+ 2t+ 1, where t is the total number of
subsets engaged in all the constraints and reference points.
Note that this number is smaller than the number of all
possible subsets 2n, because we care only about the values
SCi for those subsets. The values δik = δl correspond to
the pairs of sets (Al,Bl) = (Ai,Ak) in the lth inequality
constraint. The problem is solved by using the standard
simplex method.

Example 2: We illustrate the output of this approach using
an example of a 3 × 3 block. We provide a reference point
v({1, 2, 3, 4, 5, 6}) = 1 and impose a constraint v({1, 2}) ≥
v({1, 3}) + 0.05. We use the four basic components in
Figure 4 to construct the fuzzy measure. The weights are
estimated by solving the problem defined in eqn. (12), giving
the values u = [0.0042, 0.0799, 0.0228, 0.1169]. Figure 5
shows the estimated values of the fuzzy measure for several
representative clusters.

Fig. 5: Estimated fuzzy measure using decomposition ap-
proach.

VI. COMPARISON OF THE PROPOSED MEASURES

A special feature of the MST construction method is that
the computed fuzzy measure values are not only invariant
with respect to translation, refection and rotation, but also
invariant with respect to the shape of clusters with connected
elements. Figure 6a shows a fuzzy measure computed using
the Minimum Spanning Tree method. It can be observed that
different cluster shapes with the same number of connected
elements have the same fuzzy measure value, v({1, 2, 4}) =
v({1, 2, 3}) and v({1, 2, 3, 4, 5}) = v({1, 2, 3, 6, 9}). This
measure would be appropriate to apply in contexts where
there is little or no need to discriminate between cluster
shapes and only differentiate cluster cardinality.

On the other hand the Decomposing Fuzzy Measure pro-
vides shape discrimination due to its recognition of the basic

components of a cluster. For example, if we desire that for
clusters of connected elements with the same cardinality,
a more dense cluster receives a higher value of the fuzzy
measure, we may impose constraints such as v({1, 2, 4}) ≥
v({1, 2, 3})+0.01 and v({1, 2, 3, 4, 5}) ≥ v({1, 2, 3, 6, 9})+
0.01. Using four basic components as in Figure 4 and one
reference point, v({1, 2, 3, 4, 5, 6}) = 1, we compute the
weights of the basic components by solving eqn. (12)
and obtain the values u = [0.0106, 0.0321, 0.0621, 0.1075].
Figure 6b displays the computed values for this example and
it is clear that the constraints describing shape preferences
are satisfied.

(a) Minimum Spanning Tree

(b) Decomposing Fuzzy Measure

Fig. 6: Fuzzy measure of different cluster shapes of the same
cardinality.

VII. APPLICATION TO IMAGE REDUCTION

The image in figure 7 depicts a series of concentric circles
as thin curves having a width of one pixel. This pattern
contains a large variety of cluster patterns within small
3 × 3 blocks and in performing reduction on this image,
any operator must cope with the problem that the image
detail represents a minority of pixels at all scales. This image
is also easily assessed visually for global continuity of the
curves, making it useful for comparitive evaluation of various
reduction operators.
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The image I is constructed from the image

I = max(C · F ,B)

where C is a binary image depicting the circles, F is a fore-
ground noise field and B is a background noise field. These
fields were generated as uniformly distributed 8 bit pixel
intensities in the ranges [0, 10] and [245, 255] respectively.

Fig. 7: Concentric circle pattern used to test image reduction
operators.

We constructed a local block-based reduction operator
based on eqn. 2, by replacing the individual pixel weights
wi(y) with a cluster-based weight, such that

P(x, y) = w(A)
p∑

i=1

ρ(xi, y). (13)

Here w(A) = 2−v(A)q ≥ 1, v is a fuzzy measure computed
using either of the aforementioned approaches and A denotes
the subset of pixels having intensities that satisfy r(k) < τ as
per eqn. (3). These pixels define a candidate cluster within
the tonal space of the block for the given value y. This choice
of penalty function means that for two candidate clusters of
equal cardinality and equivalent pixel intensity differences
within the cluster, the more spatially coherent cluster will
have a lower penalty and thus be preferred as the significant
cluster of the block. Conversely, if the spatial patterns are
equivalent, the cluster with the more compact tonal range
will be preferred. As with the method described in [9] the
candidate average values y are taken from the set of input
pixel values for that block, so that the output image is a
proper subset of the input image.

We constructed versions of the penalty-based averaging
function using the proposed fuzzy measures, given by equa-
tions (9) and (10) and denoted herein as MST and DFM
respectively. For the MST measure we selected the exponent
value p = 200, to ensure the measure covered the full range
[0, 1] and for the DFM measure we took p = 1, since this

function already provides a well-distributed set of measure
values in [0, 1]. Our cluster-based mode-like average was
compared against the mode-like average using distance-based
weights and the Shorth function, given in [9], as well as
monotonic reduction operators using the arithmetic mean
and median. The parameters for the mode-like averages were
α = 12 and β = 0.3.

Fig. 8: Reduced circle test image using cluster-based mode-
like averaging functions.

Image reduction was performed over disjoint blocks of
size 3 × 3 (producing a 1

9 scale image) and the resulting
images are shown in Figure 8. It is apparent from these
results that the median based reduction operator does not
preserve the relevant curves of one pixel thickness. This is to
be expected since within a 3×3 block the high valued pixels
on the curve would appear as a minority of outliers against
the more common background. In the case of the arithmetic
mean, while the circles are preserved, their peak intensity
is diminished and they are spatially broadened, which is to
be expected. While the resulting image contains the desired
visual continuity of the curves, the structural detail of these
curves (specifically radial gradients) have been corrupted by
the reduction.

The mode-like average using distance-based weights out-
performs both the mean and median operators and preserves
sections of the curves. This indicates that certain cluster
patterns will result in an aggregate selected from the cluster,
whereas others are not significant enough to be preferred
over the background pixels. In such cases the minimisation
of the penalty favours reducing the number of outliers, even
though they may be centrally located within the local block.

The cluster-based mode-like averaging functions, built
using the various fuzzy measure construction methods, out-
performs the other averaging functions on this test image,
including the distance-based mode-like average, which is
most similar to it. Interestingly, it is able to preserve nearly
continuous curves. The missing sections appear to be asso-
ciated with sections of the original curves that were locally
corrupted by noise, or contained simple linear clusters of
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bright pixels (such as vertical lines). In such cases the
background pixels would form a larger contiguous cluster
and would be preferred in the penalty minimisation, since
the image detail would represent a minor cluster of outliers.

To test the practicality of these reduction operators and
their ability to preserve fine, pixel scale detail, they were
applied to a real satellite image. Figure 9 depicts the Port of
Los Angeles, showing many fine detail objects, include ships
and boats with wakes, shipping containers, houses and other
buildings, roads and parks.

Fig. 9: Port of Los Angeles, March 29, 2004. Image courtesy
of the U.S. Geological Survey (used with permission).

Each of the averaging functions described above was tested
using a variation on the disjoint block reduction algorithm. In
this case averages were computed within overlapping 5× 5
regions, where the inner 3 × 3 blocks of adjacent regions
were disjoint (i.e., the overlap was a single row or column).
The subsequent average was used to represent the inner
block in the reduced image, which was thus 1/9’th scale.
This approach was chosen as it indicated better structure
preservation than using averages of disjoint blocks.

Given the similarity of results for reducing circles using
the cluster-based mode-like average, only the MST approach
is tested herein (due to space constraints). Figure 11a shows
the reduction using our proposed cluster-based weights, as
well as reductions performed using the mode-like average
with distance-based weight, and averages computed using
the Shorth, median and arithmetic mean functions. It should
be noted that all images (the original, as well as the reduced
versions) have been scaled for publishing purposes, although
this scaling has been performed using the same inbuilt
algorithms within LaTeX. While there will be some affects
on the resulting images, the differences between them are
still apparent and thus we can assess the visual quality of
the local block-based reduction algorithms based on these
differences.

It is apparent that the mode-like averages produce images

(a)

(b)

Fig. 10: Reduction of Port of LA image using monotonic
averages: (a) median; and (b) arithmetic mean.

that retain fine detail, whereas the monotonic averaging
functions operate as low pass filters and smooth the image,
removing detail. For example, the small boats in the central
channel are poorly preserved in Figures 10a and 10b. Detail
such as the shipping containers (right side dock), the boats
in the marina and the houses are better preserved by the
mode-like averages (Figures 11a and 11b). The Shorth
performs better than the monotonic averages, but not as well
as the mode-like averages. Like the monotonic averages, the
Shorth image is smoothed and fine detail has been lost. It is
apparent from these tests that the mode-like operators not
only preserve the fine detail present in each local block,
but also retain information across neighbouring blocks to
represent larger coherent structures in the final image. Both
the cluster-based and distance-based weights produce very
similar results on this image.

VIII. CONCLUSION

In this paper, we have tackled the problem of charac-
terising the compactness of a single geometrical cluster
of spatially organised values, using a fuzzy measure with
specific reasonable properties. This problem arises in the
context of image processing, where we need to distinguish
between compact groups of pixels (of similar intensity)
representing an object, from scattered groups likely to be
noise. We proposed two novel approaches to defining a
fuzzy measure, based on the geometry of the cluster. One

1110



(a)

(b)

(c)

Fig. 11: Reduction of Port of LA image using non-monotonic
averages: (a) mode-like average with cluster-based weights;
(b) mode-like average with distance-based weights; and (c)
Shorth.

approach involves a suitably scaled weight of the minimum
spanning tree graph. It is simple to construct numerically
and requires negligible computational capacity, however it
is less flexible than the alternatives that involve fitting the
measure to user specified reference points and constraints.
The second approach is based on decomposing clusters into
simple geometrical (basic) components. Fitting of the fuzzy
measure to the power set is achieved by solving a small scale
linear programming problem.

We have demonstrated that the fuzzy measure was mono-
tone in set cardinality and discriminated between more and
less compact subsets. By construction, the resulting values

were invariant with respect to basic geometrical manipula-
tions of the clusters, such as translation, rotation and reflec-
tion. The application of our construction is within image fil-
tering and image reduction, where mode-like non-monotonic
averages have been applied to remove noise while preserving
fine details of the images, such as small objects. We presented
initial results validating the use of a fuzzy measure based
penalty weight and showed that it is capable of preserving
pixel-scale details in images corrupted by impulse noise and
having reasonable variation in intensity values within both
the background and foreground classes. We compared this
new approach to previously published methods involving
both monotonic and non-monotonic averaging functions and
found that our new non-monotonic averaging function out-
performs these previous methods on our test images. We also
tested these operators on a real satellite image and showed
that, as expected, the monotonic averages performed as low
pass filters and obliterated fine detail which would be relevant
to analysis of these images. The mode-like averages were
able to preserve this fine detail and clearly depict fine, pixel-
scale structures, such as individual boats, houses, cranes
and shipping containers. These initial results are promising
for pursuing mode-like non-monotonic averages as image
reduction operators and for using penalty weights based on
fuzzy measures of pixel cluster compactness for preferencing
spatially coherent pixels during reduction operations. Further
results from this research program will appear in an upcom-
ing publication and thesis.
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