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Abstract— Data is growing at an unprecedented rate in
commercial and scientific areas. Clustering algorithms for large
data which require small memory consumption and scalability
become increasingly important under this circumstance. In this
paper, we propose a new clustering approach called stochastic
gradient based fuzzy clustering(SGFC) which achieves the
optimization based on stochastic approximation to handle such
kind of large data. We derive an adaptive learning rate which
can be updated incrementally and maintained automatically in
gradient descent approach employed in SGFC. Moreover, SGFC
is extended to a mini-batch SGFC to reduce the stochastic noise.
Additionally, multi-pass SGFC is also proposed to improve
the clustering performance. Experiments have been conducted
on synthetic data to show the effectiveness of our derived
adaptive learning rate. Experimental studies have been also
conducted on several large benchmark datasets including real
world image and document datasets. Compared with existing
fuzzy clustering approaches for large data, the mini-batch
SGFC shows comparable or better accuracy with significant less
time consumption. These results demonstrate the great potential
of SGFC for large data analysis.

I. INTRODUCTION

LARGE data is much easier to be acquired and becomes

prevalent and unprecedented due to the development of

technologies such as the digit camera, distribution of various

sensors, world wide web .etc. which are producing lots of

data in the form of image, video or text every day. For exam-

ple, there are over 50 billion pages indexed and more than 2

million queries per minute in Google, about 4.5 million pho-

tos uploaded every day in Flickr and about 48 hours of video

uploaded every minute in YouTube. Mining valuable infor-

mation by large data analysis techniques becomes critical for

different organizations to get the competitive advantages and

has the potential to transform many facets of society. Clus-

tering as an unsupervised learning technique to find pattern

structure underlying the unlabelled data plays a pivotal role

in data analysis. Many different clustering algorithms based

on various theories have been developed and successfully

applied in different applications over the past decades[1],

[2], [3]. For clustering large data, two main challenges are

memory consumption and scalability. Traditional clustering

methods that need the entire data matrix reside in the memory

become infeasible when the data is too large for the memory.

To handle these problems and accelerate the clustering,

different strategies are used in large data clustering including

random sampling[4], [5], summarization[6], [7], distributed

methods[8], [9], approximation[10], [11] and incremental

methods[12], [13], [14], [15]. Fuzzy clustering algorithms are
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also extended to handle large data because they may capture

the natural structure of a dataset more closely as discussed in

the literature [16], [17], [18], [19]. Two popular fuzzy clus-

tering algorithms for large data are called single pass fuzzy c

means(SPFCM) [20] and online fuzzy c means(OFCM) [21].

In the two approaches, data is processed in a chunk-based

way which means data is loaded and processed partially

in the computer to reduce the memory consumption. In

this paper, we propose a new clustering approach called

stochastic gradient based fuzzy clustering(SGFC) which is

based on stochastic approximation to handle such kind of

large data. Our approach has the properties with low memory

consumption and also high scalability. Additionally, for the

gradient descent algorithm, instead of using heuristic learning

rate, we derive an adaptive learning rate which can be

updated incrementally and maintained automatically during

the clustering process. The experiments are conducted to

show the effectiveness of our adaptive learning rate.

The rest of the paper is organized as follows: in the next

section, a review on the related fuzzy clustering approaches

is highlighted. In section 3, the details of the proposed

stochastic gradient based fuzzy clustering called SGFC and

its mini-batch and multi-pass version are presented. Experi-

ments on several large datasets are conducted and the results

are analyzed in section 4. Finally, conclusions are drawn in

section 5.

II. RELATED WORK

In this section, two Fuzzy c means(FCM) [16] based

clustering algorithms for large data are reviewed. The com-

mon and different characteristics of the two approaches are

discussed.

A. SPFCM and OFCM

Both SPFCM [20] and OFCM [21] are designed for

handling large data based on FCM which is a kind of batch

algorithm. As we know, batch algorithm which needs load the

entire dataset into the memory may not be suitable for large

data when the data is too large for the memory. Therefore,

to handle large data, both SPFCM [20] and OFCM [21]

process the data in a mini-batch way to reduce the memory

consumption. In other words, the entire dataset is considered

as coming chunk by chunk in which a set of centroids is

identified to represent each chunk. For identifying the cen-

troids, weight FCM(wFCM) is applied in both approaches.

The main difference between SPFCM and OFCM is the

way that how the identified centroids from each chunk

are processed. In SPFCM, the centroids identified from the

previous chunk are combined into next chunk and the final set

of centroids for the entire data is generated after last chunk
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is processed. While in OFCM, the identification of centroids

for every chunk is processed individually and an additional

step is needed to generate the final set of centroids for the

entire data.

As discussed previously, SPFCM and OFCM adopt the

mini-batch way to handle large data. However, the time to

identify the centroids for each mini-batch by using wFCM

maybe long if the data in the mini-batch needs to iterate for

many times to converge. To accelerate the clustering process,

in our approach we adopt stochastic gradient method to iden-

tify the centroids for the entire dataset. Next, we propose our

new fuzzy clustering approach based on stochastic gradient

called SGFC including its extension named mini-batch SGFC

and multiple-pass SGFC.

III. THE PROPOSED APPROACH

In this section, we firstly introduce the proposed approach

SGFC and derive the self-adaptive learning rate. Then, to

reduce the impact of noisy gradient, we extend SGFC to

mini-batch SGFC in which the data is considered as coming

in mini-batch. The detail steps of the algorithms are presented

respectively.

A. Stochastic gradient based fuzzy clustering(SGFC)

Given n objects {x1, x2...xn} ∈ R
d generated from an

unknown probabilistic space P ∈ R
d, fuzzy clustering can be

regarded as identifying k centroids to represent the objects.

The problem can be formulated as follows:

min
V ∈Rd×k

Jn(V ) =
1

n

n∑
i=1

l(xi, V ) (1)

where V is the cluster centroids and

l(xi, V ) =

k∑
c=1

um
ci‖xi − vc‖

2 (2)

subject to
k∑

c=1

uci = 1 (3)

where uci is the membership of object xi in cluster c, and

vc is the centroid of the cth cluster. As pointed out by the

authors in [22], for large scale learning instead of minimizing

the empirical cost Jn(V ), one can pay more attention on

minimizing the expected cost J(V ) as follow.

min
V ∈Rd×k

J(V ) = Ex∈P (l(x, V )) (4)

where Ex∈P is the expectation on probabilistic space P .

It is difficult to solve (4) directly because (4) is nonconvex.

Similar to most fuzzy clustering approaches, alternating

optimization(AO) is used to solve (4). In particular, (2) is

optimized by fixing V and (4) is optimized by fixing uci.

These two steps are recursively conducted. For optimizing

(2) under the constraint of (3), we use Lagrangian Multi-

plier method to derive the updating rule for this step. The

Lagrangian function with V fixed is given as follows:

L =

k∑
c=1

um
ci‖xi − vc‖

2 + λi(

k∑
c=1

uci − 1) (5)

where the λi is the Lagrangian Multiplier. The updating rule

of uci can be derived as:

uci =


 k∑
j=1

(
‖xi − vc‖

‖xi − vj‖

) 2

m−1



−1

(6)

For optimizing (4), inspired by the work in [23], stochastic

gradient method is used to approximately minimize (4) by

moving the centroid along the negative direction of the

gradient of (2). Each centroid vc is updated after each object

is processed whose increment can be calculated as follows:

∆vc = ηtu
m
ci(xi − vc) (7)

where um
ci(xi − vc) is the negative gradient of (2) and ηt is

the learning rate on iteration t which controls the amount of

increment. According to [24], ηt is often set to be ηt = η0/t,
and η0 is a small positive value. Based on the previous

discussion, we now give the algorithm called stochastic

gradient based fuzzy clustering(SGFC) as follows. As shown

in Algorithm 1, SGFC processes one object at a time. The k
centroids for the entire dataset is initialized in step 1. Then

after each object coming, the membership uci of each object

and the centroid vc to the cth cluster are calculated in step 3

and 4 respectively. The steps continue until every object in

the dataset is processed and the final set of centroids V is

identified.

Algorithm 1: SGFC

Input: Dataset X with size n, Cluster Number k,

learning rate ηt
Output: Cluster centroids V
Method:

1 Initialize centroids vc by randomly select k objects.

for i = 1 ton
2 for c = 1 to k
3 Update uci using equation (6);

4 Update vc using equation (7);

end for

end for

B. Learning Rate in SGFC

As shown in Algorithm 1, the proper learning rate ηt need

to be specified in the beginning. And the value of η0 is always

specified by heuristic. In this paper, a much better way of

setting the self-adaptive learning rate is derived which can

be determined automatically during the process of gradient-

descent based optimization in SGFC. Based on Algorithm

1, when pth object is processed, only the pth column of

membership matrix Uc×n is updated and the columns from

1 to p− 1 are not changed. Under this circumstance, it can

be shown as follow that the increment of centroid ∆vc is

determined by the new observed data xp+1 and the previous

2512



centroid vpc . To minimize (1) by using Lagrangian Multiplier

method, the updating rule for vc can be derived as:

vc =

n∑
i=1

um
cixi

n∑
i=1

um
ci

(8)

Based on (8), the increment of centroid ∆vc can be written

as follows:

∆vc = vp+1
c − vpc =

p+1∑
i=1

um
cixi

p+1∑
i=1

um
ci

−

p∑
i=1

um
cixi

p∑
i=1

um
ci

=

(
p∑

i=1

um
ci)(

p∑
i=1

um
cixi + um

c(p+1)xp+1)

p+1∑
i=1

um
ci

p∑
i=1

um
ci

−

(
p∑

i=1

um
cixi)(

p∑
i=1

um
ci + um

c(p+1))

p+1∑
i=1

um
ci

p∑
i=1

um
ci

=

(
p∑

i=1

um
ci)u

m
c(p+1)xp+1 − (

p∑
i=1

um
cixi)u

m
c(p+1)

p+1∑
i=1

um
ci

p∑
i=1

um
ci

=
1

p+1∑
i=1

um
ci

um
c(p+1)(xp+1 −

p∑
i=1

um
cixi

p∑
i=1

um
ci

)

=
1

p+1∑
i=1

um
ci

um
c(p+1)(xp+1 − vpc )

(9)

From the result of the derivation, it is shown that ∆vc is

determined by xp+1 and vpc which means the centroid vc can

be updated incrementally. Compared with equation (7), the

learning rate ηt can be naturally specified as the coefficient

1/
p+1∑
i=1

um
ci in equation (9). Note that it also can be updated

incrementally and maintained automatically since
p∑

i=1

um
ci is

calculated and stored in previous updating step.

C. Mini-batch SGFC

The performance of SGFC may be affected by stochastic

noise, which is caused by the optimization mechanism intro-

duced here. The gradient in SGFC is estimated by processing

data as one object at each time. In other words, SGFC

updates the centroids by computing a gradient descent step

for each object. This may generate lower quality clustering

results because of the deviation of gradient estimation. To

reduce the influence of stochastic noise, we propose mini-

batch SGFC which is given as follows. Here |Mp| is the

number of objects in pth mini-batch. As shown in Algorithm

2, instead of processing data as one object at a time, mini-

batch SGFC handles the dataset as one mini-batch at a time.

After initializing the centroids in step1, mini-batch SGFC

first updates the membership uci of the objects in the current

mini-batch in step 3-7. Note that the centroids are cached

and not updated in these steps. Then the centroids of all the

clusters are updated in step 8-12. The algorithm stops when

all the mini-batches have been processed.

Algorithm 2: Mini-batch SGFC

Input: Data of pth mini-batch Mp, Cluster Number k
Output: Cluster centroids V
Method:

1 Initialize centroids vc by randomly select k objects .

2 for p = 1 toP
3 for i = 1 to |Mp|
4 for c = 1 tok
5 Update uci using equation (6);

6 end for

7 end for

8 for i = 1 to |Mp|
9 for c = 1 tok
10 Update vc using equation (9);

11 end for

12 end for

13 end for

D. Multi-Pass Mini-batch SGFC

The SGFC and Mini-batch SGFC are one-pass algorithms

which means the dataset is accessed and processed only

one time. However, in many applications the datasets are

available for being accessed multiple times. The data which is

too large for the memory can be stored in the disk and passed

into memory in mini-batches. As shown in algorithms 1 and

2, the centroids in V and membership U are updated after

each object or each mini-batch coming. The errors caused by

the random initial centroids and stochastic noise may be high

and not easy to correct in one pass algorithm. We propose

multi-pass mini-batch SGFC in which U can be updated

based on the V calculated in the previous pass. It is expected

that we can achieve better centroids and memberships for

the dataset and also get better clustering performance for

large data. The clustering performance of the approaches are

compared and discussed in next section.

IV. EXPERIMENTAL RESULTS

In this section, experimental studies of the proposed ap-

proach are presented on synthetic data and two real world

datasets including image and document data. Two types of

experiments are conducted and reported. First, on synthetic

data we compare our derived learning rate with heuristic

learning rate to see if using our learning rate produces better

clustering results. Meanwhile, we compare SGFC and Mini-

batch SGFC to show if mini-batch can help improve the

performance of clustering. The multi-pass version of each

algorithm is also investigated to see if multiple passes can
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Fig. 1: 2D15 synthetic data

improve the clustering results. Second, we compare Mini-

batch SGFC with SPFCM and OFCM which are both fuzzy

clustering methods and handling data in mini-batch form to

show the effectiveness and efficiency of our approach. The

experiments implemented in Matlab were conducted on a

PC with four cores of Intel I5-2400 with 24 gigabytes of

memory.

A. Dataset

We compare the performance of the algorithms on the

following datasets.

2D151: This is a synthetic dataset which is composed of

5000 two dimensional points with 15 classes. The distribu-

tion of the points is shown in Fig. 1.

MNIST2: This dataset is composed of 10 classes which are

0 to 9 handwritten digit images. There are 70000 28×28 pixel

images. We normalize the pixel value to [0,1] by dividing 255

and each image is represented as a 784 dimensional feature

vector.

RCV1 5: This dataset is part of RCV1[25] in which we

select 5 classes. It composed of 29008 documents with 47236

dimensions.

The basic characteristics of the three datasets are shown

in the following Table. I.

TABLE I: Experimental DataSets

Name No. of Objects No. of Clusters Dimension

2D15 5000 15 2

MNIST 70,000 10 784

RCV1 5 29,008 5 47,236

B. Evaluation criteria

Three external metrics F-measure, Normalized Mutual In-

formation(NMI), and Adjusted Rand Index(ARI) are used to

evaluate the clustering results, which measure the agreement

1This dataset was designed by Ilia Sidoroff and can be downloaded on
http://www.uef.fi/en/sipu/datasets.

2This dataset can be downloaded on http://yann.lecun.com/exdb/mnist/.

of cluster results produced by an algorithm and the ground

truth. If we refer class as the ground truth, and cluster as

the results of a clustering algorithm, the NMI is calculated

as follows:

NMI =

k∑
c=1

m∑
p=1

np
c log(

n·np
c

nc·np
)

√
(

k∑
c=1

nclog(
nc

n
))(

m∑
p=1

nplog(
np

n
))

(10)

where n is the total number of objects, nc and np are the

numbers of objects in the cth cluster and the pth class,

respectively, and np
c is the number of common objects in

class p and cluster c. For F-measure, the calculation based

on precision and recall is as follows:

F −measure =
2 · precision · recall

precision + recall
(11)

where,

precision =
np
c

nc

(12)

recall =
np
c

np

(13)

Adjusted Rand Index(ARI) [26] is an adjusted form of Rand

Index which is a measure of the similarity between two

clustering results. The calculation of ARI is as follows:

ARI =

∑
cp

(
np
c

2

)
−
∑

c

(
qc
2

)∑
p

(
sp
2

)
/
(
n
2

)
1
2 (
∑

c

(
qc
2

)
+
∑

p

(
sp
2

)
)−

∑
c

(
qc
2

)∑
p

(
sp
2

)
/
(
n
2

)
(14)

where,
(
n
k

)
= n!

k!(n−k)! is the binomial coefficient and

qc =
∑
p

np
c , sp =

∑
c

np
c (15)

All the three criterions reflect better clustering results if the

values of them are higher. The clustering result is same as

the ground truth if their values equal to 1.

C. Results on 2D15

To better show and compare the effectiveness of different

algorithms and provide the visual view of the clustering

results, we first conduct experiments on the synthetic dataset

2D15 as shown in Fig. 1. For SGFC, two kinds of experi-

ments are conducted. First, we compare the effectiveness of

two kinds of learning rate discussed in previous section to

show if our derived learning rate is better than the heuristic

one. We also compare SGFC with mini-batch SGFC to

see if mini-batch SGFC can improve the clustering perfor-

mance. Second, multiple-pass SGFC is compared with one-

pass SGFC to see if multiple-pass improves the clustering

results. To fairly compare their performances, we initialize

the centroids with same set of points for each algorithm

as shown in Fig. 2(a) and the data is drawn in the same

order. According to [24], the learning rate is often set to be

ηt = η0/t in which t is the iteration number. We try η0 with

different values in the range [1,50] and select the value which

produces the best clustering result. Based on the experimental
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(a) 2D15 synthetic data with the random
initialized centroids

(b) SGFC with learning rate ηt = 16/t (c) SGFC with derived learning rate

(d) Mini-batch SGFC with learning rate
ηt = 35/t

(e) Mini-batch SGFC with derived learning
rate

Fig. 2: (a) shows the same initialized centroids for different algorithms. (b), (c), (d), (e) show the final identified centroids

of the four algorithms respectively. All the centroids are marked as pentagrams

results, the best values ηt = 16/t and ηt = 35/t are selected

for SGFC and Mini-batch SGFC respectively. For Mini-batch

SGFC, the mini-batch size is set to be 1% of size of the entire

dataset. For each algorithm the same value of fuzzifier is set

to be m = 1.7 for this dataset. The clustering results of

one-pass algorithms on the dataset are shown in Fig. 2 and

Table. II. By comparing sub-figures in Fig. 2 horizontally that

is comparing Fig. 2(b) with (c) and (d) with (e) we can see

that our derived learning rate identifies better centroids for

the 15 classes than the selected learning rate ηt on both SGFC

and Mini-batch SGFC. The results of F-measure, NMI and

ARI in Table. II also show our derived learning rate produces

better clustering results. While by comparing sub-figures in

Fig. 2 vertically, we can see that Mini-batch SGFC always

performs better than SGFC no matter what kind of learning

rate used. The same property also shows in Table. II.

TABLE II: Results on 2D15 data with one-pass

Algorithm F-measure NMI ARI

SGFC, ηt = 16/t 0.9065 0.9184 0.8440

SGFC, derived learning rate 0.9352 0.9497 0.8967

Mini-batch SGFC, ηt = 35/t 0.9474 0.9513 0.9124

Mini-batch SGFC, derived learning rate 0.9878 0.9793 0.9745

Next, we show the results of multiple-pass SGFC in

Fig. 3 and Table. III. For 2D15 dataset, two-pass SGFC is

conducted because the properties of the algorithms already

shown apparently. From the results, we can easily see that

the influence of multiple-pass to the algorithms with different

learning rate is opposite. Note that in Fig. 3(a), (c), instead

of improving the clustering performance, multiple-pass de-

teriorates the results with one identified centroid apart far

from the correct position. While, the algorithms equipped

with our derived leaning rate are able to take advantage of

the multiple-pass and achieve the ideal set of centroids as

shown in Fig. 3(b) and (d). And the identified centroids in (d)

is slightly better than in (b) which is also shown in Table. III

in which multiple-pass mini-batch SGFC achieve the best

results.

TABLE III: Results on 2D15 data with Multiple-pass(two

pass)

Algorithm F-measure NMI ARI

SGFC, ηt = 16/t 0.9372 0.9512 0.9054

SGFC, derived learning rate 0.9934 0.9858 0.9859

Mini-batch SGFC, ηt = 35/t 0.9399 0.9554 0.9063

Mini-batch SGFC, derived learning rate 0.9938 0.9867 0.9868

D. Results on MNIST and RCV1 5

In this section, we compare mini-batch SGFC with two

related fuzzy clustering SPFCM and OFCM on two large

real world datasets. The fuzzifier m is set to be 1.7 for

all the approaches. Cluster number k is set to be 10 and

5 for each mini-batch of MNIST and RCV1 5 respectively.

We set mini-batch size as 1%, 2.5%, 5%, 10% and 25% of

size of the entire dataset. The clustering results on MNIST

are shown in Table. IV and Table. V respectively. Note
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(b) SGFC with derived learning
rate
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(c) Mini-batch SGFC with learn-
ing rate ηt = 35/t
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(d) Mini-batch SGFC with de-
rived learning rate

Fig. 3: (a), (b), (c), (d) show the final identified centroids of

the four algorithms with multiple-pass(two-pass) on the data

respectively. All the centroids are marked as pentagrams

that the results of mini-batch SGFC in Table. IV is based

on single pass on the dataset. From the table we can see

that the value of F-measure, NMI and ARI of mini-batch

SGFC is comparable with SPFCM and OFCM. The time

spent by mini-batch SGFC is much less than SPFCM and

OFCM. To show the effectiveness of multi-pass mini-batch

SGFC, the experiments are conducted with different passes

on MINST dataset. The results of 1-pass, 3-pass and 5-

pass are shown in Table. V. It is shown that the accuracy

of the clustering results improves as the number of passes

increases. The algorithm will certainly spend more time when

the number of passes increases. However the total time spent

shows that mini-batch SGFC with 5-pass on the data is

still much faster than SPFCM and OFCM. Compared with

SPFCM and OFCM, the time reduction of 5-pass mini-batch

SGFC on average time over all the mini-batch sizes are

92.2% and 86.8%. In other words, the time spent by 5-pass

mini-batch SGFC is less than 1/12 and 1/7 of SPFCM and

OFCM respectively. Table. VI shows the results for RCV1 5

dataset and mini-batch SGFC is conducted with single pass

on the dataset. As shown in Table. VI, mini-batch SGFC

is much faster than SPFCM and OFCM with all the mini-

batch sizes. More importantly, the clustering performance of

mini-batch SGFC is much better than SPFCM and OFCM.

Compared with SPFCM on the three evaluation criterions(F-

measure, NMI and ARI), the improvement of mini-batch

SGFC on average results over all mini-batch sizes are 49.1%,

161.2% and 179.8%, respectively. Compared with OFCM,

the improvement of mini-batch SGFC are 82.2%, 573.7%
and 658.1%, respectively.

TABLE IV: Results on MNIST dataset

(a) F-measure

Mini-batch Algorithm
size SPFCM OFCM MiniBatch-SGFC

1% 0.57± 0.03 0.57± 0.01 0.53± 0.05
2.5% 0.57± 0.01 0.56± 0.01 0.53± 0.03
5% 0.57± 0.03 0.56± 0.01 0.52± 0.04
10% 0.57± 0.02 0.56± 0.02 0.50± 0.04
25% 0.56± 0.02 0.57± 0.01 0.50± 0.03

(b) NMI

Mini-batch Algorithm
size SPFCM OFCM MiniBatch-SGFC

1% 0.48± 0.02 0.48± 0.01 0.45± 0.03
2.5% 0.48± 0.01 0.48± 0.01 0.44± 0.02
5% 0.48± 0.02 0.48± 0.01 0.43± 0.03
10% 0.48± 0.01 0.48± 0.01 0.42± 0.03
25% 0.48± 0.02 0.47± 0.01 0.41± 0.02

(c) ARI

Mini-batch Algorithm
size SPFCM OFCM MiniBatch-SGFC

1% 0.37± 0.03 0.36± 0.01 0.33± 0.04
2.5% 0.37± 0.02 0.36± 0.01 0.33± 0.03
5% 0.37± 0.03 0.36± 0.01 0.32± 0.04
10% 0.37± 0.02 0.36± 0.01 0.31± 0.04
25% 0.36± 0.02 0.36± 0.01 0.30± 0.03

(d) Time

Mini-batch Algorithm
size SPFCM OFCM MiniBatch-SGFC

1% 159.3 ± 31.4 357.0 ± 29.1 9.7 ± 0.2

2.5% 340.2 ± 73.2 444.7 ± 43.5 9.7 ± 0.1

5% 561.7± 104.4 363.4 ± 65.3 9.7 ± 0.2

10% 799.2± 219.6 358.6± 136.8 9.9 ± 0.2

25% 1241.9 ± 249.1 310.6± 157.0 10.0 ± 0.1

V. CONCLUSIONS

We have proposed a new stochastic gradient based fuzzy

clustering approach called SGFC including its mini-batch

and multi-pass version for large data analysis, and apply

mini-batch SGFC on large real world datasets to demonstrate

its effectiveness and scalability. Mini-batch SGFC processes

large data by considering the data as coming mini-batch

by mini-batch. Instead of using heuristic learning rate, an

adaptive learning rate which can be updated and maintained

automatically is derived for SGFC in this paper. Experimental

results on a synthetic dataset show that our derived adaptive

learning rate helps to achieve better clustering results than

heuristic learning rate. Experiments conducted on two large

datasets show that mini-batch SGFC outperforms related

incremental algorithms with much less time consumption but

comparable or higher clustering accuracy. The merits shown

in the experiments indicate that SGFC including its mini-

batch and multi-pass version has a great potential to be used

for large data clustering.
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