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Abstract—A new modified Fuzzy transform (F -transform)
method which is combined with the bootstrap technique for
forecasting is proposed in this paper. We apply the bootstrap
technique to improve the accuracy of the F -transform method.
An example is given to show the superior of proposed method.

I. INTRODUCTION

We propose a new method to analyze data based on a
combination of two methods : Fuzzy transform (F -transform)
and bootstrap technique. The F -transform is first introduced
by Perfilieva [9] in 2001. It has been studied by Perfilieva
et al. [8-13], and applied to many practical problems such
as the construction of approximate models, filtering, solution
of differential equations, and data compression. From the
practical point of view, it finds the estimated original data
using the F -transform with respect to fuzzy sets of given
domain identified by their membership functions. In a time
series analysis and forecast, the use of the F-transform (in
its inverse form) was reported in several studies, e.g. Novák
et al. [8]; Di Martino et al. [6]; Troiano and Kriplani [15];
Štěpniǩa et al. [14]. In Novák et al. [8] and Štěpniǩa et al.
[14], this technique was used to extract a low-frequency trend
component, whereas in Di Martino et al. [6] it was used
for the modeling of an autoregression function. In Troiano
and Kriplani [15], the inverse F -transform was used as a
technical indicator in a stock market instead of the commonly
used simple and exponential moving averages. In Novák et
al. [8] and Štěpniǩa et al. [14], the inverse F -transform was
used in combination with perception-based logical deduction,
where the latter provides forecasts of the future F -transform
component(s). In this contribution, the bootstrapping technique
is combined with F -transform. The bootstrap method is intro-
duced by Efron [2-3], which has been widely used in various
fields. It allows estimation of sampling distribution using
resampling from observed dataset. This can be implemented
by constructing a number of resamples of the observed dataset
(and of equal size to the observed dataset), which is ob-
tained by random sampling with replacement from the original
dataset. It has been shown by many authors that the accuracy
of statistical inference or performance of data analysis can
be improved by bootstrap method [3-5,7]. The general fuzzy
transform method use the F -transform with respect to fuzzy
sets of given domain to obtain inverse F -transform of original
data. The main idea of this contribution is applying bootstrap

technique to find the cumulative distribution of F -transform
by rearrangement of the residuals after we get the original F -
transform. The forecasted value can be obtained by inverse F -
transform using cumulative distribution of F -transform based
on bootstap method. The forecasting values of out-of-sample
data can be obtained when the input data is located in domain
which is called universe.

This paper is organized as follows. In section II, we
introduce some basic concepts and definitions regarding F -
transform. In section III, the procedure for F -transform com-
bined with bootstrap technique is proposed. We confirm that
the accuracy of data forecasting can be improved by proposed
method in section IV through an example.

II. PRELIMINARIES

For any fuzzy set A, the function µA represents the mem-
bership function for which µA(x) indicates the degree of
membership that x, of the universal set X , belongs to set A
and is, usually, expressed as a number between 0 and 1, i.e
µA(x) : X → [0, 1]. The fuzzy sets can be either discrete or
continuous.

A. F-transform

Here, we introduce some basic concepts and definitions in
[11].
Definition 1
Let x1 < · · · < xn be fixed nodes within [a, b], such that x1 =
a, xn = b and n ≥2. We say that fuzzy sets A1 < · · · < An,
identified with their membership functions A1(x) < · · · <
An(x) defined on [a, b], constitute a fuzzy partition of [a, b] if
they fulfill the following conditions for k = 1, · · · , n:
1) Ak : [a, b]→ [0, 1], Ak(xk) = 1;
2) Ak(x) = 0 if x 6∈ (xk−1, xk+1) where for the uniformity
of denotation, we put x0 = a and xn+1 = b;
3) Ak(x) is continuous;
4) Ak(x), k = 2, · · · , n, strictly increases on [xk−1, xk] and
Ak(x), k = 1, · · · , n− 1, , strictly decreases on [xk, xk+1]
5) For all x ∈ [a, b],

n∑
k=1

Ak(x) = 1.
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The membership functions A1, · · · , An are called basic
functions.

Let [a, b] be an interval on R and c1 < · · · < ck be
fixed nodes within [a, b] such that c1 = a, ck = b. The
assigned fuzzy sets µAi : [a, b] → [0, 1], identified with their
membership functions(basic functions), fulfill the following
conditions for all l = 1, · · · , k

(i) µAl
(cl) = 1, (ii)

k∑
l=1

µAl
(x) > 0.

F -transform can use several different basic functions µAl
. In

contrast to Fourier and wavelet transforms, the basic functions
µAl

in a fuzzy come from linguistic terms.

Fig.1. Examples of basic functions

The example of fuzzy sets A1, · · · , Ak with symmetric
triangular membership functions on the interval [a, b] is given
below (l = 1, · · · , k):

µAl
(x) =

 1−
∣∣∣∣x− clhl

∣∣∣∣ x ∈ [cl−1, cl+1]

0 otherwise

where hl = cl+1 − cl, c0 = c1 and ck+1 = ck.

Definition 2
Let a discrete function f : X → R be given at a finite set of
points X = {xt : t = 1 · · · , n} ⊆ [a, b]. The F -transform of
a discrete function f with respect to A1, · · · , Ak define the
numerical vector Fk[f ] = [F1, F2, · · · , Fk], where each Fl is
given by

Fl =

∑n
t=1 f(xt)µAl

(xt)∑n
t=1 µAl

(xt)
, l = 1, · · · , k. (1)

The Fl are weighted mean values of f , where the weights
are determined by the membership values. The Fl are called

components of the discrete F -transform.

Definition 3
Let Fk[f ] = [F1, · · · , Fk] be the F -transform of f with respect
to A1, · · · , Ak. Then the function

fF,k(xt) =

∑k
l=1 µAl

(xt)Fl∑k
l=1 µAl

(xt)
, t = 1, · · · , n. (2)

is called the inverse F -transform of f .

The inverse F -transform fF,k can approximate f with an
arbitrary precision. For various properties of the F -transform
and detailed proofs, see [11].

B. Performance measures

The accuracy of the forecast can be evaluated on the basis
of the average forecasting error percentage (AFEP) and the
index of agreement(d) suggested in [16], which are defined as
follows:

AFEP =
1

N

N∑
i=1

∣∣∣∣Pi −Oi

Oi

∣∣∣∣ (3)

d = 1−
[

Σ(Pi −Oi)
2

Σ(|Pi − Ō|+ |Oi − Ō|)2

]
, 0 ≤ d ≤ 1, (4)

where, N is the total number of data and Oi, and Pi are
the observed and predicted data, respectively. Ōi is the mean
value of the observed load. The metric d quantifies the relative
contribution of systematic error to random error and has a
value of 1 in a perfect model [16].

III. F-TRANSFORM BASED ON BOOTSTRAP TECHNIQUE

The new procedure uses to fit original data not a fixed
F-transform with respect to fuzzy set which constitute a
fuzzy partition of domain but a cumulative distribution of
F-transforms generated by bootstrap samples. The procedures
of F -transform based on bootstrap technique is as follows.

Step 1. For a fixed decomposition R on the universe [a,b],
generate fuzzy sets(A1, A2, · · · , Ak) by assigning the
membership function.

Step 2. Calculate the F -transform Fk[f ] = [F1, · · · , Fk] with
respect to A1, A2, · · · , Ak, which is defined in (1).

Step 3. Calculate the inverse F -transform fF,k(xt)(t =
1, · · · , n) which is definded in (2).

Step 4. Generate bootstrap samples using the residuals
(ε̂t = f(xt) − fF,k(xt)) of F -transform as follows:
f̂ b(xt) = f(xt) + êbt (b = 1, · · · , B) where êt = ε̂t − ¯̂εt.
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Step 5. Find F b
k [f ] = [F b

1 , · · · , F b
k ] with respect to

A1, A2, · · · , Ak. (b = 1, · · · , B).

F b
l =

∑n
t=1 f

b(xt)µAl
(xt)∑n

t=1 µAl
(xt)

, l = 1, · · · , k. (5)

Step 6. Calculate the inverse F -transform f̂(xt) .

f̂(xt) =

∑k
l=1 µAl

(xt)Fl(µAl
(xt))∑k

l=1 µAl
(xt)

, t = 1, · · · , n. (6)

We take Fl(µAl
(xt)) among one of the values of

F b
l (b = 1, · · · , B). For the choice of Fl(µAl

(xt)), after
ordering F b

l (b = 1, · · · , B), we take F b
l when its cumulative

ordered ratio coincides with µAl
(xt).

In Step 4, the boostrap samples are obtained from rearrange-
ments of residuals. For B bootstrap samples, rearrangements
of residuals are performed B times.
In general F -transform method, when a new data (x∗t , f(x∗t ))
is observed, the forecasted value fF,k(x∗t ) will be obtained
from k F -transformed values Fk[f ] = [F1, · · · , Fk]. But
proposed method doesn’t use fixed k values Fk[f ] =
[F1, · · · , Fk], it finds a empirical distribution of F b

k for each
k, then it uses the membership degrees of Al of the new data
x∗t to find the forecasted value fF,k(x∗t ).

IV. EXAMPLE

Jet fuel production and flight distances data are used to com-
pare the accuracy of the proposed F-transform method and the
general F-transform method. The data used are monthly avi-
ation fuel production of Turkey and Turkish airlines monthly
flight distances, which are taken from [1]. Both time series
data is given in table I.

TABLE I
JET FUEL PRODUCTION AND FLIGHT DISTANCES DATA

2005 Actual Fight 2006 Actual Fight 2007 Actual Fight
Productions Distance Productions Distance Productions Distance

1 109638 13095 1 112841 14710 1 158228 18020
2 117833 11250 2 111585 12637 2 169590 15026
3 129249 12868 3 140647 14456 3 196069 17270
4 155930 12789 4 175648 15913 4 209676 18745
5 170577 13410 5 185818 16685 5 199312 19378
6 176257 14649 6 213993 18226 6 218337 20287
7 202266 15909 7 215639 20316 7 262617 22123
8 204692 16646 8 237061 21256 8 231397 22013
9 198061 15609 9 202908 19932 9 236127 20828
10 190251 19994 10 193121 18494 10 213711 20253
11 176401 17775 11 172281 16442 11 227243 18252
12 165861 19607 12 157865 18135 12 235386 19951

For the fuzzy partition, 12 triangular basic functions (i.e.,
k=12) are used in given universe. For each k, 1000 iteration
(i.e., B=1000) for F -transform based on bootstrap technique
is repeated 1000 times.

AFEP and d are obtained taking average of 1000 repetitions.
The proposed method performed better 787 times out of 1000
repetitions with respect to AFEP, and 1000 times out of 1000
repetitions performed better than the general method with
respect to d. Table II shows a comparison of the average
forecasting accuracy of the proposed method and the general

Fig.3. F -transformed values based on bootstrap technique

Fig.4. Actual data and estimated values

method. We can see that the forecasting results of the proposed
method performs better than the forecasting results of the
general method. The 1000 iterated F -transform based on
bootstrap technique are shown in Figure 3. It is repeated
1000 times for each k, and the F -transform values by general
method are marked in each iteration in Figure 3. Figure 4
shows the actual data and estimated values using general F -
transform and F -transform based on bootstrap technique.
Next, we perform validations to ensure superiority of the
proposed method. 35 data out of 36 are used as a training
dataset for validation, and the removed data is used as a new
data. Each data is removed when it is used as a new data and
the other 35 data are used as a training dataset. Using the
performance measures suggested in section II, AFEP and d
with these 36 dataset, each of which excludes one data, for
validation are repeated 1000 times, respectively. The average
of 1000 AFEP, d are shown in Table III. AFEP(T) and d(T)
shows the average of 1000 AFEP and d using 36 training
dataset, each of which excludes one data. For AFEP in the
last cell, it is AFEP of a new input as a new data which was

TABLE II
THE COMPARISON OF ACCURACY

AFEP d
The proposed method 0.1123995 0.8806755
F -transform method 0.1146653 0.8709050
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excluded in each 36 training dataset. After taking average of
36 dataset, it is repeated 1000 times to get average of 1000
AFEP, which is is shown in Table II.

TABLE III
VALIDATION

AFEP (T) d (T) AFEP
The proposed method 0.1127435 0.8833037 0.1198886
F -transform method 0.1143231 0.8714363 0.1252016

For the performances of the proposed model in table III,
AFEP(T), the average of 1000 repetition of AFEP, is 0.113
and AFEP of a new input data is 0.120. Thus, we see that
our new procedure of F-transform is superior to the general
F-transform. In addition we can ensure that the proposed
F-transform based on bootstrap technique have the better
forecasting accuracy for new input data than the general F-
transform method.

V. CONCLUSIONS

In this paper, F-transform combined bootstrap technique is
proposed. The cumulative distributions are used to find the
membership grade of input data. An example is suggested to
show the performance of the proposed method. We confirm the
superiority of proposed method through the average forecast-
ing error percentage (AFEP) and the index of agreement (d).
The prediction of out-of-sample will be focused in our further
research, another combined method to improve accuracy will
be proposed as well.
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