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Abstract— Biological systems are said to learn from both in-
trinsic and extrinsic motivations. Extrinsic motivations, largely
based on environmental conditions, have been well explored
by Reinforcement Learning (RL) methods. Less explored, and
more interesting in our opinion, are the possible intrinsic
motivations that may drive a learning agent. In this paper
we explore such a possibility. We develop a novel intrinsic
motivation model which is based on the well known Yerkes
and Dodson stress curve theory and the biological principles
associated with stress. We use a stress feedback loop to affect the
agent’s memory capacity for retrieval. The stress and memory
signals are fed into a fuzzy logic system which decides upon
the best action for the agent to perform against the current
best action policy. Our simulated results show that our model
significantly improves upon agent learning performance and
stability when objectively compared against existing state-of-
the-art RL approaches in non-stationary environments and can
effectively deal with significantly larger problem domains.

I. INTRODUCTION

INTRINSIC motivation in learning agents was a term
first coined by Harlow [1] during 1950. Harlow argued

that an intrinsic manipulation drive is needed to explain
why mammals persistently solve problems, such as finding
routes through mazes, solving puzzles, seemingly without
any external stimulation or reward. In recent years the idea
of applying intrinsic motivation to RL has gained a lot of
interests, especially in situations where the environment con-
ditions are non-stationary, especially were the environment
is optimised around emotions, complex interactions, multi-
agents, particularly when the agents can transfer knowledge
between themselves. In this paper we introduce a novel
model which is inspired from biology.

Early RL research began with model-free approaches such
as the Q-learner [2]. However model-free approaches are
known to suffer from the sample inefficiency issue [3] where
the agent requires a large volume of samples to learn a
solution policy. RL research has developed considerably from
these early years; a current trend is model-based intrinsically
motivated models [4]. Fig. 1 shows the differences between
a model-free and model-based intrinsically motivated RL
approach, the key difference being the internal world memory
representation of the agent, or the agents mind, if you
will. The internal memory representation of the world is
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considered by the agent before any action is decided upon
or carried out. Information from the agent’s external sensor
no longer directly affects the agent but is integrated into
the agent’s internal memory model. What our model does is
effect the memory model proposed by Singh et al. [4] with
biological stressors. The stress model, based on the Yerkes
and Dodson [5] stress curve theory shrinks and contracts
the memory model to effectively group actions as either
deliberative sets (low stress) or reactive sets (high stress). In
high stress situations the agent may ask for help to reduce
stress. The help is intended to reduce stress when faced with
dynamic situations which prevent the agent from carrying
out its goal seeking tasks.

The critic term in model-free approach for Fig. 1 on the left
is describing the reward function from external environment.
Fig. 1 on the right explains the reward signals for animal.
The reward signals term which is specifically used in intrinsic
motivated model where rewards signals are triggered from
agent’s internal (intrinsic) neural signals. This comparison
diagram in Fig. 1 had been adapted from Singh et al. [4] with
additional stress model elements for our model perspective.
The agent’s input sensation can be divided into two parts
which are concept detection and stress sensation. Agent may
experience pain in stressful environment and thus it is treated
as environment feedback in our proposed model. Concept
detection is represented as a set of detected features about
the obstacle object abstract class, class and concept in our
model. The reason we have 3 categories of features for our
model is because in physical world where image concept
detection clarity will always be influenced by its environment
noise and agent movements. Furthermore, action output from
the learning agent can be normal (non-stressful) or reactive
action according to the agent environment’s condition. In
the centre of the right Fig. 1, the learning agent’s internal
environment is represented as previous actions in the learning
agent’s memory and its online neural network machine
learning. In our proposed model, the online neural network
is used to predict agent’s future actions with agent’s previous
correct actions. In additional to that, the learning agent’s in-
ternal memory environment is also controlled by the memory
retrieval performance corresponding to agent’s current stress
level (based on Lupien et al. [6] discovery) which will be
discussed later.

Nature had designed biological stress system within the
organism (e.g. Hypothalamic-Pituitary-Adrenal (HPA) Axis
[7]) to effectively solve uncertainty in non-stationary en-
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Fig. 1. This figure compares the difference between a model-free RL framework to intrinsically motivated model RL framework adapted from Singh et
al. [4].

vironment problem. Unknown changes in non-stationary
environment will cause stress to organism according to
Mason [8]. This observation motivated us to apply biological
stress inspired model to non-stationary RL agent problem.
This is the main reason we use biological stress inspired
model for artificial learning agent because biological stress
system consist of similar properties with intrinsic motivated
model where both models have internal memory environment
representation.

Our proposed approach has three contributions. 1) SBMRP
framework had been applied to the non-stationary environ-
ment RL with reasonable efficient performance gain when
it is compared with other approaches. Please refer to Fig. 7
where proposed SBMRP achieved lowest steps required for
each trial. 2) Furthermore, SBMRP framework had main-
tained its performance stability when it is compared with
other approaches. Please refer to Fig. 8 where the SBMRP’s
95% confidence interval variations (the coloured area) are
lower than other approaches. The SBMRP also maintain
its horizontal slope steps per trial stability performance
throughout its experiment execution. 3) In addition to that,
our proposed method had gradually reduced the action-state
complexity. The reduced action-state complexity is refer to
the introduction of three action categories where certain
actions can only be activated during certain stress conditions
(Please refer to section III), therefore the learning agent will
only consider less possible actions to be selected during
its learning. For example, normalAction category is only
consider of 5 possible actions, where else cognitiveAction
and randomAction categories are having total of 55 possible
actions to be considered.

Scaffolding minds theory was first introduced by Clark
[9]. This theory is about complexity reduction in learning
environment for learning agent with environment supports.
In scaffolding mind perspective, it emphasizes on continuous
concept detection for agent’s decision making process where
it has similar perception-action properties in our proposed
approach. Clark had argued that agent’s intelligence cannot
exist without taking into account of the whole agent’s body
functionality (not just the agent’s brain functions). Therefore

agent’s total action capabilities (e.g. speaking, movement)
are taken into account in RL in our approach. Agent’s total
executable actions are limited by its physical body stress
conditions and environment conditions according to scaffold-
ing mind theory. For example, during a stressful condition
the effected agent will be internally triggered its allostatic
process [10] to enable the agent to execute extraordinary
actions such as shut down of immune system, increase heart
rate and increase muscle stamina to mitigate threats. These
additional stress-enabled actions that is not executable during
normal (non-stressful) environment condition. Therefore, the
learning agent action-state complexity that is controlled by
its stress level and total executable actions are reduced
by limiting total actions to be select in different stress
conditions. Thus, action-state complexity can be reduced for
learning agent.

Yerkes and Dodson [5] are the researchers who first
discovered the important relationship between stress arousal
levels with cognitive performance (it is also known as the
stress curve) in the field of biological stress and anxiety
research. Since then many researchers continue to further
investigate on Yerkes and Dodson stress curve discovery.
Lupien et al. [6] investigated the stress curve relationship
between stress arousal levels with memory retrieval per-
formance (See Fig. 2). The stress curve relationship is
the another important motivation for our proposed SBMRP
approach in the perspective of scaffolding minds because
the memory retrieval performance of the agent is known
by corresponding agent’s stress level. Therefore, the level of
agent’s mind scaffolding (memory processing) intensity will
be based on Yerkes and Dodson’s stress curve relationship.
Referring to Fig. 2, the learning agent during low stressful
condition will have minimum memory retrieval performance,
middle stressful condition will trigger maximum retrieval
performance and high stressful condition will have minimum
memory retrieval performance.

II. LITERATURE REVIEW

RL problem is commonly represented in the form of
Markov Decision Process (MDP) [12]. In MDP environment,
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Fig. 2. This is a Hebbian version of Yerkes and Dodson curves [11] that
explains the non-linear relationship (stress curve) between simulated arousal
levels against memory retrieval performance of an organism.

we assume the last observation is representing a summary of
history and thus the agent’s state can be observes in the last
observation. RL methods (e.g. Q-learning [13]) are utilized
to obtain an optimal action-selection policy for any given
finite MDP. These RL methods will learn an action-value
function that will returns the expected utility of executing a
given action in a given state and following the optimal policy
thereafter. Therefore, if such action-value function is learned,
the optimal policy can be determined by selecting the action
with the highest value in each state in action-state space.

Qt+1(st, at) = Qt(st, at) + αt(st, at)[
Rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

]
(1)

Let denotes S as the set of states, R as the reward function
and A as the set of actions. Then, Q : S × A → R, so
that Q is the value set which S and A that are mapped to
real value R. Next s is denoted as agent’s state and time
step is defined as t. The action-state complexity of the RL
problem is determined by S × A. Then a is defined as the
agent’s action, lets a ∈ A where A are the executable actions
for agent and R is reward. Furthermore, α is denoted as
agent’s learning rates and γ is the discount factor. Then,
Rt+1 is the reward being observed after execute at in st and
where αt(st, at) (0 < α ≤ 1) is the learning rate that may
be the same for all pairs. Thus Q-learning (PlainQ) can be
formulated as equation 1.

State Action Reward State Action (SARSA) [13] (Equa-
tion 2) is the reduced complexity version of Q-learning
where max Q selection is omitted to improve computa-
tional performance in RL. In theory, SARSA approach will
perform its computation tasks faster but faster in solution
convergence under certain conditions when it is compared to
Q-learning approach [13]. The Q-learning and SARSA are
the computational efficient but they are not sample efficient
RL approaches. The reason is they are model-free approaches
and did not maintain a model during its RL process to predict
future action with previous actions in the memory (model).
Sample efficiency problem as described by Hester [3] is very
important to enable feasibility in physical robot applications
where reduced sample training can save huge amount of

learning time (thousands of physical robot’s actions is slow)
in physical world.

Qt+1(st, at) = Qt(st, at) + α

[Rt+1 + γQt(st+1, at+1)−Qt(st, at)] (2)

There is another multi-agent RL method is called Friend-
or-Foe Q (FFQ) proposed by Littman [14] (Equation 3). FFQ
approach uses the two special Nash equilibria conditions to
determine best reward for the learning agents. Yet, these
special conditions will cause heavy memory utilization by
calculating all possible condition pairs for each agent and
obstacle agent during experiment simulation. Obstacle agent
is an agent that will cause non-stationary effects in experi-
ments. Let’s denote π as the policy, a1, a2 are the agent pairs
to be considered. As stated in equation 3 where the equation
consider all possible agent pairs conditions to determine the
optimal Q1, Q2 values according to the state s.

Nash1(s,Q1, Q2) =

max
π∈Π(A1)

min
a2∈A2

∑
a1∈A1

π(a1)Q1[s, a1, a2] (3)

Busoniu et al. [15] had proposed Adaptive State Focus Q-
learning (ASFQ) for multi-agent RL. ASFQ is constructed
based on Q-learner RL algorithm, then it is expanded with
multi-agent implementation.

Qi
t+1(s

i
t, a

i
t) =

(1− αi
t)Q

i
t(s

i
t, a

i
t) + αi

t[r
i
t+1 + γmax

ai∈Ai
Qi

t(s
i
t+1, a

i] (4)

Let i as the agent identity index and S = S1 × . . . × Sn

is the complete state is the concatenation of all the agent’s
current state vectors), the sizes and structure of the ith

agents’ Q-tables before and after the expansion:

Qi
before(s

i, ai), dim(Qi
before) = |Si|.|Ai| (5)

Qi
after(s

1, . . . , sn, ai),

dim(Qi
after) = |S1| . . . |Sn|.|Ai| (6)

where |.| is the cardinality of a set. If Qi(si, ai) is a
good approximation of Qi(s1, . . . , sn, ai) then according to
Busoniu et al. [15] with equation 4 it is expected to converge
quickly and efficiently.

Qi
after(. . . , s

i, . . . , ai) = Qi
before(s

i, ai),

where, ∀si ∈ Si, ai ∈ Ai (7)

However, if the learning agent state and action dimension
increases, then at equation 6 ASFQ suffers from the expo-
nential increase in memory requirements and processing time
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which is cause by this concatenation and cardinality of the
set |Si|.|Ai|. Thus, ASFQ agent execution of each action
step will require exponential time to be processed. In short,
ASFQ is unable to performance under high dimensional RL
environment when the environment require high dimension
of actions to mitigate non-stationary problem. Intrinsically
motivated RL proposed by Singh et al. [4] has similar
property to our model with intrinsic motivated internal world
representation for their agent’s model. However, their ap-
proaches did not investigate the non-stationary environment
learning criteria for RL where learning agents may face
during their solution learning. Thus, it is difficult for their
approach to adapt to real world setting where non-stationary
conditions are common during RL.

III. STRESS BASED MEMORY RETRIEVAL
PERFORMANCE (SBMRP) FRAMEWORK

The proposed SBMRP framework is constructed on top of
Q-Learning (Equation 1) RL algorithm. SBMRP is motivated
from Herbian version of Yerkes and Dodson stress model
[6] which the learning agent’s memory retrieval performance
will have non-linear relationship to agent’s stress arousal
level (See Fig. 2). Fuzzy logic system is integrated into
this proposal to choose different categories of actions during
different stress conditions that affects the learning agent.
The fuzzy logic system is needed to determine the indef-
inite boundaries between different action categories for the
complex stress inputs experienced by the learning agent. The
three proposed action categories which are normalAction,
cognitiveAction and randomAction. The normalAction
category is consist of output generated from Q-Learning RL
algorithm. Next the cognitiveAction category is the output
generated from the proposed SBMRP framework. Finally,
randomAction category is the actions that are randomly
generated from all possible actions.

Algorithm 1 stressDetection
1) Function stressDetection(agent, concept)
2) δ = 0;
3) //Only obstacle agent will cause stress
4) If Not Empty Space Detected Then
5) delta = (randi([1, significant])/factor)×
6) RestaurantWorldStressTable(concept, 1);
7) Else
8) agent.hgc = agent.hgc×γ //Stress discount rate;
9) End If

10) agent.hgc = agent.hgc + δ //Include delta stress;
11) If agent.hgc > 1 Then //Set agent.hgc upper limit
12) agent.hgc = 1;
13) End If
14) If agent.hgc < 0 Then //Set agent.hgc lower limit
15) agent.hgc = 0;
16) End If
17) Return agent.hgc; //Return updated stress level

value
18) End Function

In addition to that, we also adopted the scaffolding minds
perspective [9] to our proposed SBMRP framework where
the environment interactions and its feedback provide the
cues for learning agent’s next action. The learning agent
stores its newly detected concepts into its memory and based
on the memory to construct a solution to its current situation
(refer to function stressMemoryProcessing). Next, the
intrinsically motivated RL property is located in the proposed
agent’s memory processing model (also refer to function
stressMemoryProcessing) where agent will execute its
corresponding actions within the memory retrieval boundary
determined by its current stress conditions. The learning
agent have to persistently executes a batch of actions selected
from the agent’s memory until all the actions in the batch
had been executed and replaced with a new batch of actions
(also refer to Fig. 5).

Let’s denote hgc as the current agent’s stress arousal
level (h is stands for hormone and gc is for Glucocorticoid
stress hormone). Let’s denote gamma γ as the stress level
discount rate. Then, we define randi as the function to assign
random integer in the range with the parameter range. We
also define delta δ as the stress level changes causes by the
obstacle agent. The δ stress intensity assignment is according
to the obstacle’s class on RestaurantWorldStressTable.
SBMRP model begins with stressDetection function (See
algorithm stressDetection). The stressDetection function
main feature is to assign stress changes to the learning agent’s
hgc level according to different obstacle agent’s class.

Then based on the learning agent’s two inputs criteria,
SBMRP framework will activates the fuzzy logic system to
choose an action category from the three possible action
categories according to the fuzzy logic system output. The
reason to have three action categories are due to when
multiple stress input criteria are introduced to the learning
agent and it will trigger allostatic process [10] in the learning
agent. Then, our proposed model will have captured the
learning agent behaviors which are changes in total possible
executable actions (e.g. biological changes of behaviors such
as faster metabolism, extra stamina can enable running,
shouting and etc). Therefore, the three action groups will
represent different actions that are only executable individu-
ally by the learning agent during different stress conditions
determined by the output from the fuzzy logic system.

The highest cognitive activities (maximum memory re-
trieval performance) are suitable for learning agent during
medium stress condition according to Yerkes and Dodson [5].
This stress condition is caused by task assignment human
class obstacle agent. For example, a manager instructs a
learning agent to perform an unknown working task at a
robot restaurant world. The learning agent try to randomly
assembles a set of actions (within the bounded memory
in scaffolding mind perspective) to construct a solution
for the medium stress condition safely. The reason why
during medium stressful condition the learning agent can
safely explore different actions set solution for the unknown
working task problem is because the learning agent still can
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tolerate certain amount of mistake of its actions during the
medium stressful condition.

A. Fuzzy Logic System

There is a fuzzy logic system integrated into SBMRP
framework. The fuzzy logic system consists of 2 in-
puts (stressLevel and frustrationRate) and 1 out-
put (actionCategory) variables. The stressLevel is re-
ferring to hgc learning agent current stress level. The
frustrationRate is the failure of response rate detected
from learning agent when it is interacting with obstacle agent.
In addition to that, it also maintained a 9 fuzzy logic rules
set which are predefined for fuzzy inference system in each
experiment setting. Each of the fuzzy logic rules is having
the same weight importance. The Fig. 4 is a 3D surface
output presentation of the proposed SBMRP framework’s
fuzzy logic system. Next the Fig. 3 is the membership
function settings of the proposed SBMRP framework’s fuzzy
logic system. The defuzzification method selected for the
experiment setting is mean of maximum.

1) If (stressLevel is low) and (frustrationRate is low)
then (actionCategory is normalAction)

2) If (stressLevel is low) and (frustrationRate is
middle) then (actionCategory is normalAction)

3) If (stressLevel is low) and (frustrationRate is
high) then (actionCategory is cognitiveAction)

4) If (stressLevel is middle) and (frustrationRate is
low) then (actionCategory is normalAction)

5) If (stressLevel is middle) and (frustrationRate is
middle) then (actionCategory is cognitiveAction)

6) If (stressLevel is middle) and (frustrationRate is
high) then (actionCategory is cognitiveAction)

7) If (stressLevel is high) and (frustrationRate is
low) then (actionCategory is cognitiveAction)

8) If (stressLevel is high) and (frustrationRate is
middle) then (actionCategory is randomAction)

9) If (stressLevel is high) and (frustrationRate is
high) then (actionCategory is randomAction)

Next, stressActionSelection function is an online learn-
ing function with feed forward Artificial Neural Network
(ANN). Let’s denotes σ and mu as the sigma and mean are
for the Gaussian function gaussmf . The ANN is denoted
as agent.net. The inputs for the online learning function
are detected features when the learning agent encounters the
obstacle agent within nearest 8 grid areas. If the learning
agent executed the correct action for the obstacle agent
within nearest 8 grid areas, then the obstacle agent will
provides positive feedback to the learning agent else negative
feedback. The stressMemoryProcessing is a function to
process agent’s memory according to learning agent current
stress level hgc. The learning agent’s memory retrieval per-
formance is determined by the output of gaussmf .

mrp = gaussmf(agent.hgc × 10, [σµ]) × 7 (8)

Fig. 3. This figure illustrates the membership functions and its graph
settings of stressLevel (first graph), frustrationRate (second graph)
and actionCategory (third graph).

Fig. 4. This figure illustrates the relationship between stressLevel,
frustrationRate and actionCategory in 3D surface presentation.
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Then, we define mrp as the memory retrieval performance
(measured in agent’s action count). The Gaussian function
gaussmf is used to compute the learning agent’s mrp
corresponding to agent stress level agent.hgc. Equation 8
shows how mrp was derived with the learning agent’s current
stress level agent.hgc. We define agent.memory as the
learning agent’s memory matrix which stores the previous
actions in the agent’s memory. The maximum mrp is set to
7 because Miller had identified that humans had 7 maximum
concepts storage for short term memory [16].

Algorithm 2 stressActionSelection
1) Function stressActionSelection( agent, action)
2) If agent received feedback Then
3) For each agent
4) //Prepare detected features for ANN training;
5) End For
6) End If
7) For each action
8) If agent action had trained with features Then
9) //Activate agent.net and assign output proba-

bility;
10) End If
11) End For
12) If sample reached batch total And is feedback Then
13) For each action
14) If action is triggered for training Then
15) //Train agent.net with detected features;
16) //Reset the sample batch;
17) End If
18) End For
19) End If
20) If no activated action Or is first call Then
21) //Assign random action;
22) Else
23) //Return maximum output probability action;
24) End If
25) End Function

The agent.memory capacity will expand or contract
according to agent’s current stress level agent.hgc. The
agent.action_set is denoted as the batch of actions that
represented as the temporary memory (short term memory)
for agent’s actions that needed to be executed in sequence
(Refer to red color action numbers in Fig. 5). After all the
old actions in the previous batch is completed, then the
new batch of actions will be selected to be assigned to
agent.action_set. The total length of agent.action_set is
depending on the mrp with maximum of 7 actions. Please
refer to algorithm stressMemoryProcessing and Fig. 5
for further understanding.
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Fig. 5. The diagram is the visual illustration of
stressMemoryProcessing function. The green number in the
box represents the newly assigned action to the agent’s agent.memory.
The red color number in the box represents the selected actions for
batch action execution. Lastly the black color number in the box is the
temporary memory storage of previous executed actions. The agent’s stress
arousal levels agent.hgc will have influence to agent’s memory retrieval
performance mrp.

Algorithm 3 stressMemoryProcessing
1) Function stressMemoryProcessing(agent, action)
2) σ = 2; //Define mrp standard deviation
3) µ = 5; //Define mrp mean
4) mrp = gaussmf (agent.hgc ×10, [σ µ]) ×7;
5) If mrp < 1 Then
6) mrp = 1; //Set lower limit for mrp
7) End If
8) If agent.action_set still have non-selected actions

Then
9) //Select the first action from action_set

10) //Remove the first action from action_set
11) Else
12) //Randomly choose row and column coordinates
13) //Assign action to agent.memory at selected

random coordinates
14) //Randomly select uniqe set of |mrp| total actions

from agent.memory for agent.action_set
15) End If
16) End Function

IV. EXPERIMENT SETTINGS

This simulation environment was adopted from Busoniu’s
Multi Agent RL (MARL) Matlab toolbox [17]. We con-
structed a virtual robot restaurant environment (See Fig. 6)
for performance comparisons with implemented state of the
art RL approaches in MARL toolbox. The experiments are
executed on Intel 3770 i7 CPU at 3.4GHz, 16GB of RAM
PC with Windows 7 64 bits operating system.

The experiments settings are divided into two parts. The
reduced and the full trial experiment settings. The purpose of
reduced trial setting experiment is to visualize immediate re-
sults available for the heavy processing RL approaches such
as ASFQ and FFQ. The full trial setting experiment is used
to visualize the overall experiment’s performance stability.
This simulation environment’s parameter for reduced trial
settings were set to 30 trials and maximum 5, 000 steps per
trial. This simulation environment’s parameter for full trial
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settings were set to 100 trials and maximum 100, 000 steps
per trial. Both reduced and full trial settings accumulate total
of 5 sample experiments to compute the 95% confidence
interval. The robot restaurant environment RL parameters
were configured as follows: learning rates α = 0.2, discount
factor γ = 0.95, eligibility trace decay rate λ = 0.5
and exploration probability ϵ = 0.333. Robot restaurant
environment is a 10 × 10 virtual grid world with no wall
obstacle.

If the nearer learning agent is detected then the obstacle
agent will pursuit the nearer learning agent except for neutral
obstacle agent class. For all the obstacle agents except neutral
class, these obstacle agents have the authority to retain the
learning agents as their original location until the obstacle
agent is provided the correct consecutive actions from the
learning agent. This retain effect is only applicable to learn-
ing agent in the nearest 8 grid areas to obstacle agent at
robot restaurant world. The hostile human and hostile animal
class will need to have 4 consecutive correct actions from
learning agent in order to let learning agent set free from
retention. Then, the task assignment human class require 8
consecutive correct actions to enable learning agent to be set
free from retention. The reason for task assignment human
class that needed more consecutive correct actions is because
in real world work instructions from task assignment human
to the learning agent is more detailed and required precise
consecutive actions and intrinsic motivation to get the task
done (e.g. What foods to bring). On the other hand, hostile
obstacle agents class requires less precise consecutive actions
to mitigate because in actual distress call for help does not
need to be precise to be effective.

An online ANN machine learning algorithm with feed
forward network had been assigned to our proposed SBMRP
model (See algorithm stressMemoryProcessing). The on-
line ANN machine learning will be trained in backpropaga-
tion algorithm. The parameters are set with 55 hidden nodes,
learning epochs of 10, each input batch of 5 inputs with
32 binary features. The 32 input binary features is consist
of 2 binary features for abstract class, 5 binary features
for class and 15 binary features for concept. The table I
shows the abstract classes, classes and concepts for obstacle
agent in robot restaurant world and it will be represented in
input features for SBMRP online learning. An online ANN
machine learning algorithm with feed forward network had
been assigned to our proposed SBMRP model (See algorithm
stressMemoryProcessing). The parameters are set with
55 hidden nodes, learning epochs of 10, each input batch
of 5 inputs with 32 binary features. The 32 input binary
features is consist of 2 binary features for abstract class, 5
binary features for class and 15 binary features for concept.
The table I shows the abstract classes, classes and concepts
for obstacle agent in robot restaurant world and it will be
represented in input features for SBMRP online learning.

V. SIMULATION RESULTS

The experiment results are divided into two parts, the
reduced trial experiment settings (Fig. 7) and full trial

Fig. 6. This figure illustrates the simulated robot restaurant environment.

experiment settings (Fig. 8).

Fig. 7. The 30 trials and 5, 000 maximum steps experiment results for
SBMRP, SARSA, PlainQ, ASFQ and FFQ model simulation comparison for
robot restaurant world. The line indicates the mean number of steps for the
5 sample experiment executions. The green, grey, red, blue and grey area
are the 95% confidence interval for the SBMRP, SARSA, PlainQ, ASFQ
and FFQ simulation results. The confidence interval grey area is zero for
both SARSA and FFQ (due to 5, 000 steps per trial limitation).

VI. RESULT ANALYSIS

The experiment observation for the reduced trial setting
(Fig. 7) clearly indicates SBMRP is the overall best per-
formance solution step convergence approach (the least step
needed for each trial). Therefore, other approaches which
are not suitable for non-stationary (stress-conditioned) envi-
ronment because of the additional stress mitigation actions
that will cause solution step convergence performance to
depreciate. Next refer to Fig. 8, SBMRP had achieves overall
performance stability after the 100 trials experiment execu-
tion with minimum variations on confidence interval (See
Fig. 8) and its maintenance in horizontal slope steps per trial
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Fig. 8. The 100 trials and 100, 000 maximum steps experiments results
for SARSA, PlainQ and SBMRP model simulation comparison for robot
restaurant world. The line indicates the mean number of steps for the 5
sample experiment executions. The grey, red and green areas are the 95%
confidence interval for the SARSA, PlainQ and SBMRP simulation results.

performance. PlainQ approach performs poorly in term of
stability because of its high variations in 95% confidence
interval. Although the SARSA’s 95% confidence interval
variations did not shows much different with SBMRP (due
to the maximum cap of 100, 000 steps per trial), however
SARSA’s (same behavior as PlainQ) number of steps per
trial increases over the trials (positive slope). On the other
hand, SBMRP number of steps per trial maintained its hori-
zontal slope throughout the trials which is much more stable
compared to SARSA. The PlainQ and SARSA positive slope
phenomena occurred may due to their limited adaptability in
non-stationary environment.

VII. CONCLUSION AND FUTURE DIRECTIONS

We have proposed a novel intrinsically motivated re-
enforcement learning approach which is based upon bio-
logical principles of stress following the Yerkes Dodson
biological stress model. We have shown our model per-
forms favourably against four state-of-the-art models in non-
stationary environments, leading to faster optimal policy
convergence and policy stability once convergence has been
achieved. Furthermore, our model can deal with larger prob-
lem domains. Our future work will explore adapting our
model for enable distributed learning and knowledge transfer
between multiple agents.
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