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Abstract—In this paper, a novel evolving fuzzy rule-based 

classifier is presented. The proposed classifier addresses the three 

fundamental issues of data stream learning, viz., computational 

efficiency in terms of processing time and memory requirements, 

adaptive to changes, and robustness to noise. Though, there are 

several online classifiers available, most of them do not take into 

account all the three issues simultaneously. The newly proposed 

classifier is inherently adaptive and can attend to any minute 

changes as it learns the rules in online manner by considering 

each incoming example. However, it should be emphasized that it 

can easily distinguish noise from new concepts and automatically 

handles noise. The performance of the classifier is evaluated 

using real-life data with evolving characteristic and compared 

with state-of-the-art adaptive classifiers. The experimental 

results show that the classifier attains a simple model in terms of 

number of rules. Further, the memory requirements and 

processing time per sample does not increase linearly with the 

progress of the stream. Thus, the classifier is capable of 

performing both prediction and model update in real-time in a 

streaming environment. 

Keywords—data streams; evolving fuzzy classifier; online 

classifier; real-time classification 

I. INTRODUCTION  

Traditionally, classifiers (or predictive models) are trained 
using historical input-output data and afterwards the resulting 
models are applied to predict the class (or output) for new 
unseen input data. This model learning approach using past 
data is often referred to as batch or offline learning.  However, 
applications that generate streams of data pose new challenges 
to such learning methods due to the reasons that streams arrive 
continuously in high speed and the data pattern often changes 
dynamically. The change in the statistical properties of the 
target concept or target variable over time is referred to as 
concept drift [1]. The term concept drift is more often 
associated to gradual changes, while the abrupt changes are 
referred to as concept shift [2]. Further, the ever growing 
amount of data would increase the processing requirements 
such that there may be situations where the entire data would 
not fit in the memory or the computation time would become 
prohibitively long for offline training. In such scenarios, the 
model that is trained offline may initially perform well but the 
performance would start to degrade with the progress of the 

stream due to the evolving nature of the data. Thus, the key 
challenges to any data stream learning approach can be 
summarized as [3, 4] : 
 
(i) Fast and memory efficient- for on-line and real-time 
prediction, the processing of each data sample should be done 
in small constant amount of time to keep up with their speed 
of arrival, and the memory requirements should not increase 
appreciably with the progress of the data stream.  
 
(ii) Adaptive- Adapts (evolves) the model structure and 
parameters in the presence of concept drift or concept shift 
and should be able to present up-to-date model. 

 

(iii) Robust to noise - in a streaming environment, it is 
difficult to detect noise from data shift. Noisy data can 
interfere with the learning process, for example, a greedy 
algorithm that adapts itself as soon as it sees a change in the 
data pattern may overfit noise by mistakenly interpreting it as 
data from a new concept. On the other hand, if it is too 
conservative and slow to adapt, it may overlook important 
changes. 

To meet such requirements, the area of evolving fuzzy 

systems emerged that focuses on online learning of predictive 
fuzzy models that are capable of adapting autonomously to 
concept drift and shift [5-7]. Very often, the learning 
algorithms that are related with continuously arriving data or 
data streams are referred interchangeably as streaming 

algorithms or online algorithms. Both streaming and online 
algorithms are very similar as they need decisions to be made 
before all data are available and can use only limited memory. 
However, there is a subtle difference; the streaming 
algorithms can defer action until a group of samples (data 
chunk) arrive while online algorithms take irrevocable action 
as soon as each data sample arrives [8].  

To build a fuzzy rule-based (FRB) classifier from input-
output data (also known as data-driven fuzzy modelling), a 
common approach is to apply clustering to partition the input 
or input-output data to get the rules and their antecedent 
parameters. Each of the cluster and its centre defines a rule, 
and the number of clusters determines the number of rules. 
For example, in case of a Gaussian membership function, the 
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centre of a cluster represents the centre of the corresponding 
membership function, and the width of the Gaussian is same 
as the cluster spread. For first-order Takagi-Sugeno type of 
rules, consequence parameters of the rules are estimated 
separately using methods like least square estimates [9, 10].  
In this paper, we focus on the problem of online learning of 
FRB classifier and describe an approach to incrementally learn 
the rules of the classifier from streaming data. The resulting 
classifier, named Dynamically Evolving Fuzzy Classifier 

(DEFC), is simple in structure in terms of number of rules.  
This in turn reduces the memory requirements and 
computational time. Due to the incremental nature, the 
classifier is inherently adaptive both in terms of model 
structure and parameters, and is capable of detecting and 
reacting to concept drifts and shifts in time. At the same time, 
it can distinguish data shift from noise and appropriately 
handles noise. Moreover, the classifier performs both 
prediction and model update in real-time.  

The rest of the paper is organized as follows: section II 
presents the related work, section III describes the design of 
DEFC, section IV discusses the experimental results, and 
finally section V concludes the paper with a direction to future 
work.  

II. RELATED WORK   

In recent years, several approaches have been proposed for 
learning predictive models from streaming data [2, 7].  In this 
section, we focus on incremental learning approaches for 
fuzzy classifiers. In [11], the design and development of a 
family of evolving FRB classifiers is described. The family 
consists of two classifiers, eClass0 and eClass1 which are 
based on zero-order and first order multi-input multi-output 
(MIMO) Takagi-Sugeno type of rules, respectively. The 
incremental learning of rules is based on the evolving Takagi-

Sugeno approach [10]. A rule is created around a new data 
sample in two conditions: (i) if the associated class label of the 
data sample has not been previously seen by the classifier, (ii) 
if the potential of the new data sample is higher compared to 
all the existing rules (or cluster centres). The potential value is 
the measure of data density.  The second condition makes the 
classifier robust to noise but slower in adaptation. Along with 
addition of new rules, the eClass classifiers remove outdated 
rules based on Age measure. However, the age measure is 
required to be computed after arrival of every sample which 
increases the computational overhead by O(N) times the 
number of samples, where N is the number of rules. In [12], 
simplified versions of eClass classifiers are presented.  The 
two classfiers, viz., simpl_eClass0 and simpl_eClass1, retain 
all the advantages of the family of eClass while simplifying 
the structure adjustment phase significantly that in turn 
reduces the computational overhead. In [13, 14], FLEXFIS-

class is presented which is based on FLEXFIS and the rule 
learning is performed using evolving vector quantization [15, 
16].   A new data sample is considered to be a candidate for 
forming a new rule if it is not within the zone of influence of 
any existing rules. The problem with FLEXFIS-class is that it 
is unable to handle noise and does not incorporate any strategy 

to remove outdated rules over time.  In [17], a hybrid evolving 
classifier has been proposed that is a combination of two 
incremental learning approaches, viz., growing Gaussian 
mixture model (GGMM) and minimal resource allocating 
neural network (MRAN). The classifier is semi-supervised as 
it considers partially labelled data for learning. The idea is that 
GGMM model is used for clustering unlabeled data so that the 
generated label (group) can be provided at a later stage to 
MRAN classifier to update its structure. The accuracy of this 
classifier is sensitive to two factors: the number of initial 
Gaussians in GGMM model, and the amount of labelled data 
used for learning. In [18], some improvements over eClass for 
structure adaptation phase have been suggested. The focus is 
on the adjustment of the parameters of premise part, mainly 
prototype centres, of fuzzy rules that constitutes the classifier. 
This classifier uses Mahalanobis distance to determine the 
membership degree of a sample.  It follows the same principle 
as eClass that is based on calculation of potential value for 
creation and replacement of rules. In eClass , rules are created 
or replaced only if the new sample bears the highest potential 
compared to all the existing cluster centres, otherwise the 
sample is considered to belong to the nearest cluster (or class) 
and only the radius (not the centre) of that cluster is updated. 
However, in [18], for each new sample the classifier updates 
the centre of the cluster and the covariance matrix with highest 
membership degree using two approaches: statistical 

adaptation and classification error based adaptation. The 
results show performance improvement over eClass (with 
statistical adaptation). However, adjustment of the existing 
model after every new sample increases the computational 
overhead and consequent parameter learning convergence is 
affected. In [19], an evolving Fuzzy Pattern Tree (eFPT) for 
binary classification has been proposed, where an ensemble of 
pattern trees is maintained. It consists of a current (active) 
model and a set of neighbour models. The current pattern tree 
is used to make predictions, while the neighbouring trees can 
be considered as anticipated adaptations. When the 
performance of the current model is significantly low due to 
concept drift, the current model is replaced by one of the 
neighbours.  The first pattern tree is learned in batch mode 
using a small set of training samples, which represents the 
current model. The neighbouring trees are derived from the 
current model either by expanding or by pruning the tree. 
Upon arrival of a new data sample, the error rate of the current 
model and neighbours is determined and if the current model 
is worse than the neighbours, then the former is replaced by 
the best performing neighbor. After replacement, the set of 
neighbouring trees are recomputed. Apparently, the processing 
requirements increase with the increase in ensemble size and 
re-computation of the neighbouring models is an overhead. 
Though, the authors provide some measurements to reduce 
these computational overheads, the proposed classifier would 
not be able to perform in real-time.  

The learning approaches discussed above do not address all 
the three key issues (discussed in section I) of data streams 
together. The proposed classifier incorporates features that 
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allow it to meet the given fundamental requirements of a 
stream learning approach.  

III. DYNAMCALLY EVOLVING FUZZY CLASSIFIER 

The Dynamically Evolving Fuzzy Classifier (DEFC) is a 
fuzzy rule-based classifier that is built upon a regression 
model. The classifier consists of first-order MIMO Takagi-
Sugeno rules of the following form [10, 20]:  
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Thus, each element ��� , � � , ⋯ 	�!� of m-dimensional output ��  
can be represented as:  

��� = ()�� + ��(��� +	⋯+ ��(���  
 	

� � = () � + ��(� � +	⋯+ ��(� �  
⋮ 

�!� = ()!� + ��(�!� +	⋯+ ��(�!�  
 

 In DEFC, before the rule learning phase, the class label of 
a given sample is converted to numeric form so that the 
consequent of a rule can be represented as in (1). For example, 
for binary classification class 1 could be represented as 
�1#23 = [0 1], and class 2 as	�1#23 = [1 0]. Similarly, for a 
three class problem, class 1 can be represented as �1#23 =
[1 0 0] , class 2 as �1#23 = [0 1 0] , and class 3 
as 	�1#23 = [0 0 1] . Here, the dimension, m of �1#23  is 
equivalent to the number of classes.   

DEFC classifies each incoming sample on-line using the 
existing rules and when the sample’s actual class is available 
at a later stage it updates the rule-base automatically. Thus, it 
performs a sequence of classification and model update phases 
consecutively. Like eClass [11], DEFC can learn rules from 
scratch. If no rules are available initially, then during 
classification phase all incoming data samples are assigned a 
dummy class label. When the real class labels of such samples 
are available then new rules are incorporated to the model. 
The classification and model update phases are summarized 
below: 
 

Classification:  
For a given input �, the firing strength �5�� of each rule is 
determined using a Gaussian type membership function �6�� 
as given below: 

5� = ∏ 68� ��8��
89� , : = [1, �] (3) 

68� 
�8� = �
;
<=>?=>
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B
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               (4) 
 
where D8� , �	: = [1, �], E = [1, F]�  is the spread of the 
membership function and represents the zone of influence of 
the fuzzy rule. The membership function represents the degree 
of closeness of � to a specific focal point ���∗, [: = 1,�]�. 

To determine the class label of input �, the overall output �G 
is estimated by weighted sum of outputs of all the rules using 
(5), and the index corresponding to the highest value element 
of    �G is designated as the class label of the sample. 

�G = ∑ I���J
�9� ; 	I� = L@

∑ L>M
>NO

    (5) 

 
For example, suppose for a given sample, if the overall 
estimated output is �G = [0.38 0.46 0.29]  in a 3 class 
problem then the sample is assigned class label 2 because the 
highest value element is 0.46 and its index is 2.   
 
Model update:      

Similar to on-line data driven fuzzy model identification, the 
rules are formed around focal points [10], where a focal point 
is the data sample that represents most appropriately all other 
samples within its zone of influence. The focal points and the 
respective zones of influence in DEFC are identified using an 
online clustering method, viz., Dynamically Evolving 

Clustering (DEC) [21, 22]. A focal point and the associated 
zone of influence are the cluster centre and the cluster radius 
respectively. In DEFC the clustering is applied to input-output 
data space. 

In DEC each data sample W = [�	�1#23]  in the data 
stream is assigned a weight that decreases exponentially with 
time. If W	arrives at time	XY, then its weight	Z�W, X� at time t is 
given as: 

 
Z�W, X� = [\;\] ,	     (6) 
 
where	[	 ∈ �0,1�	is the decay constant	. 

The data sample W  is considered to be bounded by a 
hyper-sphere with a predefined radius (initial radius) or 
bandwidth �_�. The neighbourhood of a sample is defined in 
terms of bandwidth. Two data samples are considered direct 
neighbours if the distance between them is less than or equal 
to the bandwidth. Also, two data samples are neighbours if 
there is a chain of data samples in-between and these 
intermediate samples are direct neighbours of one another.  A 
cluster ` is formed by a group of close data samples where 
each sample is the neighbour of the other. The cluster ` is also 
assigned a weight which is the sum of weights of all the data 
samples in ` at or before a given time and is given as: 

 
a�`, X� = ∑ Z�W, X�	Wbc�d,\� 	        (7) 
 
where 	a�`, X�	is the cluster weight at time X and e�`, X� is the 
set of data samples that constitute the cluster  ` at time t. 
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Thus, the weight of a cluster also reduces exponentially 
with time. The DEC approach uses a notion of core and non-

core cluster. A cluster is considered to be core if its weight is 
greater than or equal to a pre-specified weight-threshold value 
�δ ≥ 	β� , otherwise the cluster is designated as non-core 
�δ < 	β�. With the progress of time, a core cluster may turn 
into a non-core, and a non-core may be declared as outliers 
depending on their weights. A cluster is represented with a 
compact structure referred to as cluster feature vector (CFV) 
[23] consisting of six components such as cluster centre, 
radius, weight, time of arrival of last data sample. All the 
components of the CFV can be computed incrementally.  

At each time step, a data sample W is read and merged or 
associated to an appropriate cluster and the corresponding 
feature vector is updated.  First, the distance from W to all the 
existing core clusters is determined. If W	 is within the 
neighbourhood (or cluster radius) of nearest core cluster then 
W  is associated to this core cluster. If no such core cluster 
exists, then the same steps are repeated considering non-core 
clusters. If no such non-core cluster exists, then W	is declared 
as a new non-core cluster. Note that at this stage, this new 
non-core cluster’s radius is equal to the bandwidth �D =
	_�.	As more and more samples are merged to this cluster the 
radius is updated and it grows over time.  

When W is merged with an existing core or non-core cluster 
and if W ’s associated neighbourhood (hyper-sphere with 
bandwidth _  ) is not completely within the radius of the 
cluster then, the CFV is updated (see step2 of Algorithm 1, 
explained in next paragraph). This involves update of cluster 
centre, radius, and weight. If the cluster is core then the 

update of cluster centre and radius in turn updates the 

antecedent parameters of the corresponding fuzzy rule. If the 
cluster is non-core, and after update the corresponding weight 
becomes greater than the weight-threshold, then the cluster’s 
status is changed to core. For every such core cluster a rule is 

created.  

Algorithm 1 describes the process of computing the 
centroid (cluster centre) and updating the radius after a new 
data point is merged or associated to an existing core/non-core 
cluster. Consider a data point W  which is required to be 
merged with a cluster with centroid j. Let Dk be the radius of 
j. Let l be a point such that ‖W − l‖ = _	and l is on the line 
joining j and W (Fig. 1). So, l is a boundary point which is at 
the boundary of a hyper-sphere bounding W, such that W is the 
centre and _ is the radius. Any point inside the hyper-sphere 
is neighbour of W  and will also be neighbour of j, and thus 
will be merged with j. After processing we need to discard 
point W, but we need to keep its neighbourhood information in 
order to associate any future point inside the hyper-sphere to 
the same cluster to which W  was associated. To attain this, a 
bounding sphere is computed in DEC using the algorithm 
presented in [24] (Algorithm 1).  If the point l is outside the 
current sphere i.e. the hyper-sphere with centre j and radius Dk 
then the current sphere is updated to a larger sphere that 
passes through  l on one side and the back side of old sphere 
on the other side. Each new sphere will contain the old sphere 
and the point l as shown in Fig. 2. 

 
Algorithm 1 update_centre_radius 

1. Compute distance between j and l,  
o:pXqr =	‖j − l‖  ; 

2. if o:pXqr > Dk 	then  

a. point l	is outside the current sphere; 
b. update radius and centre; 
c. o:pX = to:pXqr ; 
d. Dk =	�Dk + o:pX�/2 ; 
e. o:pX�#v = o:pX − Dk ; 
f. j = �Dk	 × j + o:pX�#v × l	�/o:pX ; 

3. end if 
 
After every �x  time interval (where �x  is the cluster 

inspection time), the status of the clusters is changed based on 
their weight. If any core cluster does not receive new data for 
a long time, its weight will gradually decrease. When its 
weight becomes less than the given weight-threshold then its 
status is changed to non-core. In such a situation, the 

corresponding fuzzy rule is also disregarded and is further not 

involved in classification process.  Similarly, if the weight of 

Fig 1. A point x within a cluster with centre c. 
 

 
Fig 2. Updated cluster centre and radius. 
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z 
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any non-core cluster becomes less than a given minimum-

weight-threshold then such clusters are considered as outliers.  
The cluster inspection time (8) is a function of weight-
threshold, and the minimum-weight-threshold (9) is a function 
of the current time and the time when the cluster received the 
last data sample. 

�x = log| <}?O} A    (8) 

  

~�X, X#� = �;|�?�����
�;|��     (9) 

where  �x  is the cluster inspection time, ~  is minimum-
weight-threshold, X  is the current time, and  X#	 is the time 
when the cluster received the last data point. 

It is to be noted that the weight of a non-core cluster can be 
low if either the clusters are in the initial stage or they are the 
clusters that have not received sufficient data samples for long 
time. So, the former non-core clusters should be given enough 
time before declaring them as outliers and removing them, as 
they may turn into core clusters later on. Also, one should not 
wait indefinitely to identify a non-core cluster as outliers. The 
cluster inspection time and minimum-weight-threshold 
functions are defined in such a way that non-core clusters are 
removed at appropriate time and are not removed pre-maturely 
[21, 22].  

The consequent parameters of rules are estimated locally 
using weighted recursive least squares (wRLS) approach using 
(10) and (11) [10]. 
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where iV is the covariance matrix of the i
th rule with 

(n+1)×(n+1) dimension, and 01 =
i
θ , IV Ω=

i

1 , i=[1,N], and 

Ω is set to a large value.  
As described in [10], when a new rule is added, its 

parameters are set to the weighted average of the parameters 
of already existing N rules (12), and the covariance matrix is 
given by  (13). When a new rule replaces an existing rule, then 
the former inherits the parameters from the latter. In this case 
also, the covariance matrix is initialized as given by (13).   

∑
=

−

+

=

N

i

i

k

iN

k

1
1

1
θθ λ       (12) 

IV Ω=
+1N

k      (13) 

The flowchart in Fig. 1 summarises the classification and the 
model update phases of DEFC using DEC approach.   
   

IV. EXPERIMENTAL RESULTS 

To evaluate the performance of DEFC, experiments were 
conducted using two evolving real-datasets. The first dataset is 
the Electricity dataset (Dataset-1) [25] that is a widely used 
benchmark for testing adaptive classifiers. We have used the 
normalized version available from [26]. The dataset covers a 

period of two years consisting of 45312 instances and 8 input 
variables. The task is to predict a rise (UP) or a fall (DOWN) 
in the electricity price in New South Wales (Australia). The 
data is subject to concept drift and shift as the electricity 
prices are affected by changing demands of the consumers 
depending on seasons, events etc. The second dataset is on 
heating system choice in California houses (Dataset-2) [27]. 
The task is to predict the choice of a user among the types of 
heating systems: gas central, gas room, electric central, 
electric room, heat pump. The choice depends on installation 
cost for heating systems (defined for the 5 heating systems), 
annual operating cost for heating systems (defined for the 5 
heating systems), ratio of these two costs, age of the 
household head, number of rooms in the house, and region. 
The dataset consists of 900 instances and 14 input variables.  

The datasets are considered as pseudo data streams and 
processing is done on a per-sample basis. The performance 
was evaluated on a PC with processor speed of 1.20 GHz and 
4.0 GB memory. The models were evaluated considering 
interleaved test-then-train method, where first estimation is 
performed on the current sample ��Y�  and then model is 
updated using the same sample.  

DEFC is compared with two state-of-the-art adaptive 
classifiers, one is a fuzzy rule-based classifier (eClass) [11] 
and the other is tree-based adaptive classifier (Hoeffding 
Adaptive trees) [28]. Table I shows a comparison of results 
obtained from the three classifiers. Both DEFC and eClass1 
were developed using MATLAB 7.1 in Windows 7 
environment.  The input parameters for DEFC, which are 
actually required for DEC are initialized as, bandwidth  
_ = 0.05,			 decay constant [ � 0.99,	 and weight threshold 
� � 1.0001	[21, 22]. The initial parameters of eClass1 and 
Hoeffding Adaptive trees are set to default values [10, 11]. 
The performance of Hoeffding Adaptive trees is evaluated 
using the MOA framework [29]. It is apparent from the values 
in the table that for the given evolving datasets, the number of 

Fig. 3 Classification and Model update in DEFC. 
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correctly classified instances by DEFC is more compared to 
other two classifiers. The resulting model is also very compact 
in case of DEFC which makes it memory efficient. Further, a 
compact model with few rules can be easily interpreted by the 
users. With the given initial parameters, the inspection time 
interval for DEFC is after every 917 samples [21, 22]. In case 
of Dataset-2, no rules are removed during the processing as 
the total number of samples is only 900. On the other hand, in 
case of Dataset-1, after every 917 samples the outdated rules 
are disregarded and the outliers (non-core clusters) are 
removed. Therefore, after processing of 45312 instances, the 
final set of rules consists of only 14 rules.  

Fig. 4(a) shows the evolution in number of rules with the 
progress of the stream considering Dataset-1. The 
corresponding processing time per sample is shown in Fig. 
4(b). It is clear from Fig. 4(a) and 4(b) that the processing 
time varies from 0.0041 s to 0.0072 s and depends on the 
number of rules. However, the difference in processing times 
at various time steps (stream length) is very less and can be 
neglected. Therefore, we can consider that the processing time 
per sample in DEFC is constant. The number of rules for 
Dataset-1 varies from 45 to 14. At the beginning of the 
stream, the rules were not disregarded, but as the stream 
progresses some of the rules become outdated and are 
disregarded. It can be observed from Fig. 4(a) that there is a 
major change in number of rules from 17 to 36 during the 
processing of data samples 27000 to 30000. After analyzing 
the dataset during this period, it is found that the classifier 
experiences a change in data pattern that led to formation of 
new rules. For clarity, one of the features of the dataset for the 
period of 27000 to 30000 is shown in Fig. 5 where the data 
shift is indicated by a red dotted rectangle. Thus, it can be seen 
that DEFC adapts with data stream maintaining a compact 
structure and constant processing time per sample.  
  

V. CONCLUSIONS 

The DEFC addresses the key issues of data stream learning in 
the following way:  

The memory requirement is low as DEFC mainly 
requires the current sample, the covariance matrix (for 
consequent parameters), and CFVs to be maintained in 
memory. For each cluster (or rule) a (n+1)×(n+1) covariance 
matrix, and a CFV are required.  Therefore, the memory is 
dependent on the number of clusters generated by DEC. In 

DEC, the creation of too many clusters is avoided by timely 
removing non-core clusters with very low weight (it can be 
shown that the number of clusters increase logarithmically 
with the progress of the stream).  The processing time also 
depends on the number of rules. As DEFC maintains a 

Fig. 4(a) Number of rules vs. stream length 
 

Fig. 4(b) Processing time per sample vs. Stream length 
 

TABLE I. COMPARISON OF VARIOUS CLASSIFIERS  

Classifier 

Dataset-1 Dataset-2 

Accuracy 

(%) 

#Rule / 

#Nodes 
(tree-size) 

Accuracy 

(%) 

#Rules / 

#Nodes 
(tree-size) 

DEFC 82 14 71.6 8 

eClass1 78.6 29 62.18 10 

Hoeffding 
Adaptive 

Trees 
72.90 146 63.33 2 

 

 

 
Fig. 5 Input feature 7 of Dataset -1 (stream length 27000 to 300000) 
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compact model, the processing time required per sample is 
low and constant. This has been validated by the experimental 
results.   

The incremental nature allows DEFC to learn example 
by example and update its model whenever required. It creates 
new rules, updates existing rules, and disregards outdated 
rules as the data stream progresses. Each of the clusters in 
DEC is assigned a weight. A rule is formed corresponding to a 
cluster only when its weight is more than a threshold value. 
This ascertains that only the clusters that have sufficient data 
samples associated to it are eligible for forming new rules. 
Thus, DEFC can effectively distinguish between outliers and a 
data shift. A data shift is captured only when considerable 
examples have been seen by the classifier. A rule becomes 
outdated due to the gradual decrease in the associated weight. 
This occurs when the core cluster associated with the rule does 
not receive data sample for a long time. Therefore, the 
outdated concepts are forgotten over time. These features 
allow DEFC to dynamically adapt to evolving nature of the 
data streams and at the same time robust to noise. 

The initial experimental results attest that the DEFC 
performs satisfactorily when data streams are evolving over 
time. However, in future we intend to perform more 
experiments to bolster our findings. In DEFC, the user needs 
to provide three initial parameters, which are actually required 
by the DEC method to form rules. The most sensitive 
parameter is the bandwidth parameter that is difficult to set in 
a streaming environment. At present, we are working on an 
improved version of DEC that allows for adaptation of the 
bandwidth parameter.  

REFERENCES 

[1] G. Widmer and M. Kubat, "Learning in the presence of concept drift 
and hidden contexts," Machine Learning, vol. 23, pp. 69-101, 1996. 

[2] J. Gama, Knowledge Discovery from Data Streams, First ed. U.S.: 
Chapman & Hall/CRC., 2010. 

[3] C. Fang, W. Yizhou, and C. Zaniolo, "An adaptive learning approach 
for noisy data streams," in IEEE International Conference on Data 

Mining Brighton, UK, 2004, pp. 351-354. 
[4] J. Gama, I. Žliobaité, A. Bifet, M. Pechenizkiy, and A. Bouchachia, "A 

Survey on Concept Drift Adaptation," ACM Computing  Surveys, vol. 
1, p. 35, 2013. 

[5] E. Lughofer, Evolving Fuzzy Systems-Methodologies, Advanced 

Concepts and Applications vol. 266. Berlin, Heidelberg: Springer, 
2011. 

[6] P. Angelov, D. Filev, and N. Kasabov Eds., Evolving Intelligent 

Systems: Methodology and Applications. John Willey and Sons, IEEE 
Press Series on Computational Intelligence, April 2010. 

[7] P. Angelov, Autonomous Learning Systems from Data Streams to 

Knowledge inReal Time. West Sussex, United Kingdom: John Wiley 
and Sons, Ltd., 2012. 

[8] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan, 
"Clustering data streams: Theory and practice," IEEE Transactions on 

Knowledge and Data Engineering, vol. 15, pp. 515-528, 2003. 

[9] R. Babuška and H. B. Verbruggen, "An overview of fuzzy modeling 
for control," Control Engineering Practice, vol. 4, pp. 1593-1606, 
1996. 

[10] P. P. Angelov and D. P. Filev, "An approach to online identification of 
Takagi-Sugeno fuzzy models," IEEE Transactions on Systems Man and 

Cybernetics Part B-Cybernetics, vol. 34, pp. 484-498, Feb 2004. 
[11] P. Angelov and X. Zhou, "Evolving fuzzy-rule-based classifiers from 

data streams," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1462-
1475, 2008. 

[12] R. Dutta Baruah, P. Angelov, and J. Andreu, "Simpl_eClass: Simplified 
potential-free evolving fuzzy rule-based classifiers," in IEEE 

International Conference on Systems, Man, and Cybernetics Alaska, 
2011, pp. 2249-2254. 

[13] E. Lughofer, "On-line evolving image classifiers and their appliction to 
surface inspection," Image and Vision Computing, vol. 28, pp. 1065-
1079, 2010. 

[14] E. Lughofer, P. Angelov, and X. Zhou, "Evolving single-and multi-
modal fuzzy classifiers with FLEXFIS-Class," in IEEE International 

Fuzzy Systems Conference London, 2007, pp. 1-6. 
[15] E. D. Lughofer, "FLEXFIS: A robust incremental learning approach for 

evolving Takagi-Sugeno fuzzy models," IEEE Transactions on Fuzzy 

Systems, vol. 16, pp. 1393-1410, 2008. 
[16] E. D. Lughofer, "Extensions of vector quantization for incremental 

clustering," Pattern Recognition vol. 41, pp. 995-1011, 2008. 
[17] A. Bouchachia, "An evolving classification cascade with self-learning," 

Evolving Systems, vol. 1, pp. 143-160, 2010. 
[18] A. Almaksour and E. Anquetìl, "Improving premise structure in 

evolving Takagi-Sugeno neuro-fuzzy classifiers," Evolving Systems, 

vol. 2, pp. 25–33, 2011. 
[19] A. Shaker, R. Senge, and E. HüLlermeier, "Evolving fuzzy pattern trees 

for binary classification on data streams," Information Sciences, vol. 
220, pp. 34-45, 2013. 

[20] P. Angelov and X. W. Zhou, "Evolving fuzzy systems from data 
streams in real-time," in International Symposium on Evolving Fuzzy 

Systems, Ambelside, United Kingdom, 2006, pp. 29-35. 
[21] R. Dutta Baruah and P. Angelov, "Online learning and prediction of 

data streams using dynamically evolving fuzzy approach," in IEEE 

International Conference on Fuzzy Systems, Hyderabad, India, 2013, 
pp. 1-8. 

[22] R. Dutta Baruah and P. Angelov, "DEC: Dynamically Evolving 
Clustering and its application to structure identification of evolving 

fuzzy models," IEEE Transactions on Cybernetics, Issue 9 (IEEE early 
access article DOI:10.1109/TCYB.2013.2291234),  2013. 

[23] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for 
clustering evolving data streams," in International conference on Very 

large data bases - Volume 29, Berlin, Germany, 2003, pp. 81-92. 
[24] J. Ritter, "An efficient bounding sphere," in Graphics gems, S. G. 

Andrew, Ed., ed: Academic Press Professional, Inc., 1990, pp. 301-303. 
[25] J. Gama. (2004). Datasets for concpet drift. Available: 

http://www.inescporto.pt/~jgama/ales/ales_5.html 
[26] Stream Datasets. Available: http://moa.cms.waikato.ac.nz/datasets/ 
[27] R Dataset. Available: 

http://vincentarelbundock.github.io/Rdatasets/datasets.html 
[28] A. Bifet and R. Gavaldà, "Adaptive learning from evolving data 

streams," in Advances in Intelligent Data Analysis VIII. vol. 5772, N. 
Adams, C. Robardet, A. Siebes, and J.-F. Boulicaut, Eds., ed: Springer 
Berlin Heidelberg, 2009, pp. 249-260. 

[29] MOA Massive Online Analysis. Available: 
http://moa.cms.waikato.ac.nz/ 

 
 

 
 

 
 

389




