
 Dynamically Evolving Fuzzy Classifier for Real-time
Classification of Data Streams

Rashmi Dutta Baruah
Department of Computer Science &

Engineering
Sikkim Manipal Institute of

Technology
Majitar - 737136, Sikkim, India

rashmi.dbaruah@gmail.com

Plamen Angelov
School of Computing &

Communications
Lancaster University

Lancaster LA1 4WA, UK
p.angelov@lancaster.ac.uk

Diganta Baruah
Department of Information Technology

Sikkim Manipal Institute of
Technology

Majitar - 737136, Sikkim, India
baruah.diganta@gmail.com

Abstract—In this paper, a novel evolving fuzzy rule-based

classifier is presented. The proposed classifier addresses the three

fundamental issues of data stream learning, viz., computational

efficiency in terms of processing time and memory requirements,

adaptive to changes, and robustness to noise. Though, there are

several online classifiers available, most of them do not take into

account all the three issues simultaneously. The newly proposed

classifier is inherently adaptive and can attend to any minute

changes as it learns the rules in online manner by considering

each incoming example. However, it should be emphasized that it

can easily distinguish noise from new concepts and automatically

handles noise. The performance of the classifier is evaluated

using real-life data with evolving characteristic and compared

with state-of-the-art adaptive classifiers. The experimental

results show that the classifier attains a simple model in terms of

number of rules. Further, the memory requirements and

processing time per sample does not increase linearly with the

progress of the stream. Thus, the classifier is capable of

performing both prediction and model update in real-time in a

streaming environment.

Keywords—data streams; evolving fuzzy classifier; online

classifier; real-time classification

I. INTRODUCTION

Traditionally, classifiers (or predictive models) are trained
using historical input-output data and afterwards the resulting
models are applied to predict the class (or output) for new
unseen input data. This model learning approach using past
data is often referred to as batch or offline learning. However,
applications that generate streams of data pose new challenges
to such learning methods due to the reasons that streams arrive
continuously in high speed and the data pattern often changes
dynamically. The change in the statistical properties of the
target concept or target variable over time is referred to as
concept drift [1]. The term concept drift is more often
associated to gradual changes, while the abrupt changes are
referred to as concept shift [2]. Further, the ever growing
amount of data would increase the processing requirements
such that there may be situations where the entire data would
not fit in the memory or the computation time would become
prohibitively long for offline training. In such scenarios, the
model that is trained offline may initially perform well but the
performance would start to degrade with the progress of the

stream due to the evolving nature of the data. Thus, the key
challenges to any data stream learning approach can be
summarized as [3, 4] :

(i) Fast and memory efficient- for on-line and real-time
prediction, the processing of each data sample should be done
in small constant amount of time to keep up with their speed
of arrival, and the memory requirements should not increase
appreciably with the progress of the data stream.

(ii) Adaptive- Adapts (evolves) the model structure and
parameters in the presence of concept drift or concept shift
and should be able to present up-to-date model.

(iii) Robust to noise - in a streaming environment, it is
difficult to detect noise from data shift. Noisy data can
interfere with the learning process, for example, a greedy
algorithm that adapts itself as soon as it sees a change in the
data pattern may overfit noise by mistakenly interpreting it as
data from a new concept. On the other hand, if it is too
conservative and slow to adapt, it may overlook important
changes.

To meet such requirements, the area of evolving fuzzy

systems emerged that focuses on online learning of predictive
fuzzy models that are capable of adapting autonomously to
concept drift and shift [5-7]. Very often, the learning
algorithms that are related with continuously arriving data or
data streams are referred interchangeably as streaming

algorithms or online algorithms. Both streaming and online
algorithms are very similar as they need decisions to be made
before all data are available and can use only limited memory.
However, there is a subtle difference; the streaming
algorithms can defer action until a group of samples (data
chunk) arrive while online algorithms take irrevocable action
as soon as each data sample arrives [8].

To build a fuzzy rule-based (FRB) classifier from input-
output data (also known as data-driven fuzzy modelling), a
common approach is to apply clustering to partition the input
or input-output data to get the rules and their antecedent
parameters. Each of the cluster and its centre defines a rule,
and the number of clusters determines the number of rules.
For example, in case of a Gaussian membership function, the

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 383

centre of a cluster represents the centre of the corresponding
membership function, and the width of the Gaussian is same
as the cluster spread. For first-order Takagi-Sugeno type of
rules, consequence parameters of the rules are estimated
separately using methods like least square estimates [9, 10].
In this paper, we focus on the problem of online learning of
FRB classifier and describe an approach to incrementally learn
the rules of the classifier from streaming data. The resulting
classifier, named Dynamically Evolving Fuzzy Classifier

(DEFC), is simple in structure in terms of number of rules.
This in turn reduces the memory requirements and
computational time. Due to the incremental nature, the
classifier is inherently adaptive both in terms of model
structure and parameters, and is capable of detecting and
reacting to concept drifts and shifts in time. At the same time,
it can distinguish data shift from noise and appropriately
handles noise. Moreover, the classifier performs both
prediction and model update in real-time.

The rest of the paper is organized as follows: section II
presents the related work, section III describes the design of
DEFC, section IV discusses the experimental results, and
finally section V concludes the paper with a direction to future
work.

II. RELATED WORK

In recent years, several approaches have been proposed for
learning predictive models from streaming data [2, 7]. In this
section, we focus on incremental learning approaches for
fuzzy classifiers. In [11], the design and development of a
family of evolving FRB classifiers is described. The family
consists of two classifiers, eClass0 and eClass1 which are
based on zero-order and first order multi-input multi-output
(MIMO) Takagi-Sugeno type of rules, respectively. The
incremental learning of rules is based on the evolving Takagi-

Sugeno approach [10]. A rule is created around a new data
sample in two conditions: (i) if the associated class label of the
data sample has not been previously seen by the classifier, (ii)
if the potential of the new data sample is higher compared to
all the existing rules (or cluster centres). The potential value is
the measure of data density. The second condition makes the
classifier robust to noise but slower in adaptation. Along with
addition of new rules, the eClass classifiers remove outdated
rules based on Age measure. However, the age measure is
required to be computed after arrival of every sample which
increases the computational overhead by O(N) times the
number of samples, where N is the number of rules. In [12],
simplified versions of eClass classifiers are presented. The
two classfiers, viz., simpl_eClass0 and simpl_eClass1, retain
all the advantages of the family of eClass while simplifying
the structure adjustment phase significantly that in turn
reduces the computational overhead. In [13, 14], FLEXFIS-

class is presented which is based on FLEXFIS and the rule
learning is performed using evolving vector quantization [15,
16]. A new data sample is considered to be a candidate for
forming a new rule if it is not within the zone of influence of
any existing rules. The problem with FLEXFIS-class is that it
is unable to handle noise and does not incorporate any strategy

to remove outdated rules over time. In [17], a hybrid evolving
classifier has been proposed that is a combination of two
incremental learning approaches, viz., growing Gaussian
mixture model (GGMM) and minimal resource allocating
neural network (MRAN). The classifier is semi-supervised as
it considers partially labelled data for learning. The idea is that
GGMM model is used for clustering unlabeled data so that the
generated label (group) can be provided at a later stage to
MRAN classifier to update its structure. The accuracy of this
classifier is sensitive to two factors: the number of initial
Gaussians in GGMM model, and the amount of labelled data
used for learning. In [18], some improvements over eClass for
structure adaptation phase have been suggested. The focus is
on the adjustment of the parameters of premise part, mainly
prototype centres, of fuzzy rules that constitutes the classifier.
This classifier uses Mahalanobis distance to determine the
membership degree of a sample. It follows the same principle
as eClass that is based on calculation of potential value for
creation and replacement of rules. In eClass , rules are created
or replaced only if the new sample bears the highest potential
compared to all the existing cluster centres, otherwise the
sample is considered to belong to the nearest cluster (or class)
and only the radius (not the centre) of that cluster is updated.
However, in [18], for each new sample the classifier updates
the centre of the cluster and the covariance matrix with highest
membership degree using two approaches: statistical

adaptation and classification error based adaptation. The
results show performance improvement over eClass (with
statistical adaptation). However, adjustment of the existing
model after every new sample increases the computational
overhead and consequent parameter learning convergence is
affected. In [19], an evolving Fuzzy Pattern Tree (eFPT) for
binary classification has been proposed, where an ensemble of
pattern trees is maintained. It consists of a current (active)
model and a set of neighbour models. The current pattern tree
is used to make predictions, while the neighbouring trees can
be considered as anticipated adaptations. When the
performance of the current model is significantly low due to
concept drift, the current model is replaced by one of the
neighbours. The first pattern tree is learned in batch mode
using a small set of training samples, which represents the
current model. The neighbouring trees are derived from the
current model either by expanding or by pruning the tree.
Upon arrival of a new data sample, the error rate of the current
model and neighbours is determined and if the current model
is worse than the neighbours, then the former is replaced by
the best performing neighbor. After replacement, the set of
neighbouring trees are recomputed. Apparently, the processing
requirements increase with the increase in ensemble size and
re-computation of the neighbouring models is an overhead.
Though, the authors provide some measurements to reduce
these computational overheads, the proposed classifier would
not be able to perform in real-time.

The learning approaches discussed above do not address all
the three key issues (discussed in section I) of data streams
together. The proposed classifier incorporates features that

384

allow it to meet the given fundamental requirements of a
stream learning approach.

III. DYNAMCALLY EVOLVING FUZZY CLASSIFIER

The Dynamically Evolving Fuzzy Classifier (DEFC) is a
fuzzy rule-based classifier that is built upon a regression
model. The classifier consists of first-order MIMO Takagi-
Sugeno rules of the following form [10, 20]:

����� = ��	
��~���∗�	���⋯���	���~���∗�
 ����		�� = ��� (1)

where �� = [��	� � � 	⋯	�!�] is the m-dimensional output of i
th

rule, �# = [1	��	⋯		��] is the extended input vector, ��∗ is the
focal point of the ith rule, ��is the matrix of local sub-system
parameters given as:

�� =	
%
&
&
'()�

� 	
(���

	
⋮

(��� 	

() 	�

(� � 	
⋮
(� �

…
……
	…	

		()!
�

(�!�
⋮

(�!� ,
-
-
.
 (2)

Thus, each element ��� , � � , ⋯ 	�!� of m-dimensional output ��
can be represented as:

��� = ()�� + ��(��� +	⋯+ ��(���
 	

� � = () � + ��(� � +	⋯+ ��(� �
⋮

�!� = ()!� + ��(�!� +	⋯+ ��(�!�

 In DEFC, before the rule learning phase, the class label of
a given sample is converted to numeric form so that the
consequent of a rule can be represented as in (1). For example,
for binary classification class 1 could be represented as
�1#23 = [0 1], and class 2 as	�1#23 = [1 0]. Similarly, for a
three class problem, class 1 can be represented as �1#23 =
[1 0 0] , class 2 as �1#23 = [0 1 0] , and class 3
as 	�1#23 = [0 0 1] . Here, the dimension, m of �1#23 is
equivalent to the number of classes.

DEFC classifies each incoming sample on-line using the
existing rules and when the sample’s actual class is available
at a later stage it updates the rule-base automatically. Thus, it
performs a sequence of classification and model update phases
consecutively. Like eClass [11], DEFC can learn rules from
scratch. If no rules are available initially, then during
classification phase all incoming data samples are assigned a
dummy class label. When the real class labels of such samples
are available then new rules are incorporated to the model.
The classification and model update phases are summarized
below:

Classification:
For a given input �, the firing strength �5�� of each rule is
determined using a Gaussian type membership function �6��
as given below:

5� = ∏ 68� ��8��
89� , : = [1, �] (3)

68�
�8� = �
;
<=>?=>

@∗A
B

B<C>
@ A
B

 (4)

where D8� , �	: = [1, �], E = [1, F]� is the spread of the
membership function and represents the zone of influence of
the fuzzy rule. The membership function represents the degree
of closeness of � to a specific focal point ���∗, [: = 1,�]�.

To determine the class label of input �, the overall output �G
is estimated by weighted sum of outputs of all the rules using
(5), and the index corresponding to the highest value element
of �G is designated as the class label of the sample.

�G = ∑ I���J
�9� ; 	I� = L@

∑ L>M
>NO

 (5)

For example, suppose for a given sample, if the overall
estimated output is �G = [0.38 0.46 0.29] in a 3 class
problem then the sample is assigned class label 2 because the
highest value element is 0.46 and its index is 2.

Model update:

Similar to on-line data driven fuzzy model identification, the
rules are formed around focal points [10], where a focal point
is the data sample that represents most appropriately all other
samples within its zone of influence. The focal points and the
respective zones of influence in DEFC are identified using an
online clustering method, viz., Dynamically Evolving

Clustering (DEC) [21, 22]. A focal point and the associated
zone of influence are the cluster centre and the cluster radius
respectively. In DEFC the clustering is applied to input-output
data space.

In DEC each data sample W = [�	�1#23] in the data
stream is assigned a weight that decreases exponentially with
time. If W	arrives at time	XY, then its weight	Z�W, X� at time t is
given as:

Z�W, X� = [\;\] ,	 (6)

where	[∈ �0,1�	is the decay constant	.

The data sample W is considered to be bounded by a
hyper-sphere with a predefined radius (initial radius) or
bandwidth �_�. The neighbourhood of a sample is defined in
terms of bandwidth. Two data samples are considered direct
neighbours if the distance between them is less than or equal
to the bandwidth. Also, two data samples are neighbours if
there is a chain of data samples in-between and these
intermediate samples are direct neighbours of one another. A
cluster ` is formed by a group of close data samples where
each sample is the neighbour of the other. The cluster ` is also
assigned a weight which is the sum of weights of all the data
samples in ` at or before a given time and is given as:

a�`, X� = ∑ Z�W, X�	Wbc�d,\� 	 (7)

where 	a�`, X�	is the cluster weight at time X and e�`, X� is the
set of data samples that constitute the cluster ` at time t.

385

Thus, the weight of a cluster also reduces exponentially
with time. The DEC approach uses a notion of core and non-

core cluster. A cluster is considered to be core if its weight is
greater than or equal to a pre-specified weight-threshold value
�δ ≥ 	β� , otherwise the cluster is designated as non-core
�δ < 	β�. With the progress of time, a core cluster may turn
into a non-core, and a non-core may be declared as outliers
depending on their weights. A cluster is represented with a
compact structure referred to as cluster feature vector (CFV)
[23] consisting of six components such as cluster centre,
radius, weight, time of arrival of last data sample. All the
components of the CFV can be computed incrementally.

At each time step, a data sample W is read and merged or
associated to an appropriate cluster and the corresponding
feature vector is updated. First, the distance from W to all the
existing core clusters is determined. If W	 is within the
neighbourhood (or cluster radius) of nearest core cluster then
W is associated to this core cluster. If no such core cluster
exists, then the same steps are repeated considering non-core
clusters. If no such non-core cluster exists, then W	is declared
as a new non-core cluster. Note that at this stage, this new
non-core cluster’s radius is equal to the bandwidth �D =
	_�.	As more and more samples are merged to this cluster the
radius is updated and it grows over time.

When W is merged with an existing core or non-core cluster
and if W ’s associated neighbourhood (hyper-sphere with
bandwidth _) is not completely within the radius of the
cluster then, the CFV is updated (see step2 of Algorithm 1,
explained in next paragraph). This involves update of cluster
centre, radius, and weight. If the cluster is core then the

update of cluster centre and radius in turn updates the

antecedent parameters of the corresponding fuzzy rule. If the
cluster is non-core, and after update the corresponding weight
becomes greater than the weight-threshold, then the cluster’s
status is changed to core. For every such core cluster a rule is

created.

Algorithm 1 describes the process of computing the
centroid (cluster centre) and updating the radius after a new
data point is merged or associated to an existing core/non-core
cluster. Consider a data point W which is required to be
merged with a cluster with centroid j. Let Dk be the radius of
j. Let l be a point such that ‖W − l‖ = _	and l is on the line
joining j and W (Fig. 1). So, l is a boundary point which is at
the boundary of a hyper-sphere bounding W, such that W is the
centre and _ is the radius. Any point inside the hyper-sphere
is neighbour of W and will also be neighbour of j, and thus
will be merged with j. After processing we need to discard
point W, but we need to keep its neighbourhood information in
order to associate any future point inside the hyper-sphere to
the same cluster to which W was associated. To attain this, a
bounding sphere is computed in DEC using the algorithm
presented in [24] (Algorithm 1). If the point l is outside the
current sphere i.e. the hyper-sphere with centre j and radius Dk
then the current sphere is updated to a larger sphere that
passes through l on one side and the back side of old sphere
on the other side. Each new sphere will contain the old sphere
and the point l as shown in Fig. 2.

Algorithm 1 update_centre_radius

1. Compute distance between j and l,
o:pXqr =	‖j − l‖ ;

2. if o:pXqr > Dk 	then

a. point l	is outside the current sphere;
b. update radius and centre;
c. o:pX = to:pXqr ;
d. Dk =	�Dk + o:pX�/2 ;
e. o:pX�#v = o:pX − Dk ;
f. j = �Dk	 × j + o:pX�#v × l	�/o:pX ;

3. end if

After every �x time interval (where �x is the cluster

inspection time), the status of the clusters is changed based on
their weight. If any core cluster does not receive new data for
a long time, its weight will gradually decrease. When its
weight becomes less than the given weight-threshold then its
status is changed to non-core. In such a situation, the

corresponding fuzzy rule is also disregarded and is further not

involved in classification process. Similarly, if the weight of

Fig 1. A point x within a cluster with centre c.

Fig 2. Updated cluster centre and radius.

z

z

386

any non-core cluster becomes less than a given minimum-

weight-threshold then such clusters are considered as outliers.
The cluster inspection time (8) is a function of weight-
threshold, and the minimum-weight-threshold (9) is a function
of the current time and the time when the cluster received the
last data sample.

�x = log| <}?O} A (8)

~�X, X#� = �;|�?�����
�;|�� (9)

where �x is the cluster inspection time, ~ is minimum-
weight-threshold, X is the current time, and X#	 is the time
when the cluster received the last data point.

It is to be noted that the weight of a non-core cluster can be
low if either the clusters are in the initial stage or they are the
clusters that have not received sufficient data samples for long
time. So, the former non-core clusters should be given enough
time before declaring them as outliers and removing them, as
they may turn into core clusters later on. Also, one should not
wait indefinitely to identify a non-core cluster as outliers. The
cluster inspection time and minimum-weight-threshold
functions are defined in such a way that non-core clusters are
removed at appropriate time and are not removed pre-maturely
[21, 22].

The consequent parameters of rules are estimated locally
using weighted recursive least squares (wRLS) approach using
(10) and (11) [10].

)(11111
i

kekk

i

k

T

ek

i

k

i

k

i

k −−−−−
−+= θxyxVθθ λ (10)

T

ek

i

kek

i

i

kek

T

ek

i

k

i

i

k

i

k

k

k

111

1111
1

1

1

1
−−−

−−−−

−

−

−

+

−=

xVx

VxxV
VV

λ

λ

 (11)

where iV is the covariance matrix of the i
th rule with

(n+1)×(n+1) dimension, and 01 =
i
θ , IV Ω=

i

1 , i=[1,N], and

Ω is set to a large value.
As described in [10], when a new rule is added, its

parameters are set to the weighted average of the parameters
of already existing N rules (12), and the covariance matrix is
given by (13). When a new rule replaces an existing rule, then
the former inherits the parameters from the latter. In this case
also, the covariance matrix is initialized as given by (13).

∑
=

−

+

=

N

i

i

k

iN

k

1
1

1
θθ λ (12)

IV Ω=
+1N

k (13)

The flowchart in Fig. 1 summarises the classification and the
model update phases of DEFC using DEC approach.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of DEFC, experiments were
conducted using two evolving real-datasets. The first dataset is
the Electricity dataset (Dataset-1) [25] that is a widely used
benchmark for testing adaptive classifiers. We have used the
normalized version available from [26]. The dataset covers a

period of two years consisting of 45312 instances and 8 input
variables. The task is to predict a rise (UP) or a fall (DOWN)
in the electricity price in New South Wales (Australia). The
data is subject to concept drift and shift as the electricity
prices are affected by changing demands of the consumers
depending on seasons, events etc. The second dataset is on
heating system choice in California houses (Dataset-2) [27].
The task is to predict the choice of a user among the types of
heating systems: gas central, gas room, electric central,
electric room, heat pump. The choice depends on installation
cost for heating systems (defined for the 5 heating systems),
annual operating cost for heating systems (defined for the 5
heating systems), ratio of these two costs, age of the
household head, number of rooms in the house, and region.
The dataset consists of 900 instances and 14 input variables.

The datasets are considered as pseudo data streams and
processing is done on a per-sample basis. The performance
was evaluated on a PC with processor speed of 1.20 GHz and
4.0 GB memory. The models were evaluated considering
interleaved test-then-train method, where first estimation is
performed on the current sample ��Y� and then model is
updated using the same sample.

DEFC is compared with two state-of-the-art adaptive
classifiers, one is a fuzzy rule-based classifier (eClass) [11]
and the other is tree-based adaptive classifier (Hoeffding
Adaptive trees) [28]. Table I shows a comparison of results
obtained from the three classifiers. Both DEFC and eClass1
were developed using MATLAB 7.1 in Windows 7
environment. The input parameters for DEFC, which are
actually required for DEC are initialized as, bandwidth
_ = 0.05,			 decay constant [� 0.99,	 and weight threshold
� � 1.0001	[21, 22]. The initial parameters of eClass1 and
Hoeffding Adaptive trees are set to default values [10, 11].
The performance of Hoeffding Adaptive trees is evaluated
using the MOA framework [29]. It is apparent from the values
in the table that for the given evolving datasets, the number of

Fig. 3 Classification and Model update in DEFC.

387

correctly classified instances by DEFC is more compared to
other two classifiers. The resulting model is also very compact
in case of DEFC which makes it memory efficient. Further, a
compact model with few rules can be easily interpreted by the
users. With the given initial parameters, the inspection time
interval for DEFC is after every 917 samples [21, 22]. In case
of Dataset-2, no rules are removed during the processing as
the total number of samples is only 900. On the other hand, in
case of Dataset-1, after every 917 samples the outdated rules
are disregarded and the outliers (non-core clusters) are
removed. Therefore, after processing of 45312 instances, the
final set of rules consists of only 14 rules.

Fig. 4(a) shows the evolution in number of rules with the
progress of the stream considering Dataset-1. The
corresponding processing time per sample is shown in Fig.
4(b). It is clear from Fig. 4(a) and 4(b) that the processing
time varies from 0.0041 s to 0.0072 s and depends on the
number of rules. However, the difference in processing times
at various time steps (stream length) is very less and can be
neglected. Therefore, we can consider that the processing time
per sample in DEFC is constant. The number of rules for
Dataset-1 varies from 45 to 14. At the beginning of the
stream, the rules were not disregarded, but as the stream
progresses some of the rules become outdated and are
disregarded. It can be observed from Fig. 4(a) that there is a
major change in number of rules from 17 to 36 during the
processing of data samples 27000 to 30000. After analyzing
the dataset during this period, it is found that the classifier
experiences a change in data pattern that led to formation of
new rules. For clarity, one of the features of the dataset for the
period of 27000 to 30000 is shown in Fig. 5 where the data
shift is indicated by a red dotted rectangle. Thus, it can be seen
that DEFC adapts with data stream maintaining a compact
structure and constant processing time per sample.

V. CONCLUSIONS

The DEFC addresses the key issues of data stream learning in
the following way:

The memory requirement is low as DEFC mainly
requires the current sample, the covariance matrix (for
consequent parameters), and CFVs to be maintained in
memory. For each cluster (or rule) a (n+1)×(n+1) covariance
matrix, and a CFV are required. Therefore, the memory is
dependent on the number of clusters generated by DEC. In

DEC, the creation of too many clusters is avoided by timely
removing non-core clusters with very low weight (it can be
shown that the number of clusters increase logarithmically
with the progress of the stream). The processing time also
depends on the number of rules. As DEFC maintains a

Fig. 4(a) Number of rules vs. stream length

Fig. 4(b) Processing time per sample vs. Stream length

TABLE I. COMPARISON OF VARIOUS CLASSIFIERS

Classifier

Dataset-1 Dataset-2

Accuracy

(%)

#Rule /

#Nodes
(tree-size)

Accuracy

(%)

#Rules /

#Nodes
(tree-size)

DEFC 82 14 71.6 8

eClass1 78.6 29 62.18 10

Hoeffding
Adaptive

Trees
72.90 146 63.33 2

Fig. 5 Input feature 7 of Dataset -1 (stream length 27000 to 300000)

388

compact model, the processing time required per sample is
low and constant. This has been validated by the experimental
results.

The incremental nature allows DEFC to learn example
by example and update its model whenever required. It creates
new rules, updates existing rules, and disregards outdated
rules as the data stream progresses. Each of the clusters in
DEC is assigned a weight. A rule is formed corresponding to a
cluster only when its weight is more than a threshold value.
This ascertains that only the clusters that have sufficient data
samples associated to it are eligible for forming new rules.
Thus, DEFC can effectively distinguish between outliers and a
data shift. A data shift is captured only when considerable
examples have been seen by the classifier. A rule becomes
outdated due to the gradual decrease in the associated weight.
This occurs when the core cluster associated with the rule does
not receive data sample for a long time. Therefore, the
outdated concepts are forgotten over time. These features
allow DEFC to dynamically adapt to evolving nature of the
data streams and at the same time robust to noise.

The initial experimental results attest that the DEFC
performs satisfactorily when data streams are evolving over
time. However, in future we intend to perform more
experiments to bolster our findings. In DEFC, the user needs
to provide three initial parameters, which are actually required
by the DEC method to form rules. The most sensitive
parameter is the bandwidth parameter that is difficult to set in
a streaming environment. At present, we are working on an
improved version of DEC that allows for adaptation of the
bandwidth parameter.

REFERENCES

[1] G. Widmer and M. Kubat, "Learning in the presence of concept drift
and hidden contexts," Machine Learning, vol. 23, pp. 69-101, 1996.

[2] J. Gama, Knowledge Discovery from Data Streams, First ed. U.S.:
Chapman & Hall/CRC., 2010.

[3] C. Fang, W. Yizhou, and C. Zaniolo, "An adaptive learning approach
for noisy data streams," in IEEE International Conference on Data

Mining Brighton, UK, 2004, pp. 351-354.
[4] J. Gama, I. Žliobaité, A. Bifet, M. Pechenizkiy, and A. Bouchachia, "A

Survey on Concept Drift Adaptation," ACM Computing Surveys, vol.
1, p. 35, 2013.

[5] E. Lughofer, Evolving Fuzzy Systems-Methodologies, Advanced

Concepts and Applications vol. 266. Berlin, Heidelberg: Springer,
2011.

[6] P. Angelov, D. Filev, and N. Kasabov Eds., Evolving Intelligent

Systems: Methodology and Applications. John Willey and Sons, IEEE
Press Series on Computational Intelligence, April 2010.

[7] P. Angelov, Autonomous Learning Systems from Data Streams to

Knowledge inReal Time. West Sussex, United Kingdom: John Wiley
and Sons, Ltd., 2012.

[8] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan,
"Clustering data streams: Theory and practice," IEEE Transactions on

Knowledge and Data Engineering, vol. 15, pp. 515-528, 2003.

[9] R. Babuška and H. B. Verbruggen, "An overview of fuzzy modeling
for control," Control Engineering Practice, vol. 4, pp. 1593-1606,
1996.

[10] P. P. Angelov and D. P. Filev, "An approach to online identification of
Takagi-Sugeno fuzzy models," IEEE Transactions on Systems Man and

Cybernetics Part B-Cybernetics, vol. 34, pp. 484-498, Feb 2004.
[11] P. Angelov and X. Zhou, "Evolving fuzzy-rule-based classifiers from

data streams," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1462-
1475, 2008.

[12] R. Dutta Baruah, P. Angelov, and J. Andreu, "Simpl_eClass: Simplified
potential-free evolving fuzzy rule-based classifiers," in IEEE

International Conference on Systems, Man, and Cybernetics Alaska,
2011, pp. 2249-2254.

[13] E. Lughofer, "On-line evolving image classifiers and their appliction to
surface inspection," Image and Vision Computing, vol. 28, pp. 1065-
1079, 2010.

[14] E. Lughofer, P. Angelov, and X. Zhou, "Evolving single-and multi-
modal fuzzy classifiers with FLEXFIS-Class," in IEEE International

Fuzzy Systems Conference London, 2007, pp. 1-6.
[15] E. D. Lughofer, "FLEXFIS: A robust incremental learning approach for

evolving Takagi-Sugeno fuzzy models," IEEE Transactions on Fuzzy

Systems, vol. 16, pp. 1393-1410, 2008.
[16] E. D. Lughofer, "Extensions of vector quantization for incremental

clustering," Pattern Recognition vol. 41, pp. 995-1011, 2008.
[17] A. Bouchachia, "An evolving classification cascade with self-learning,"

Evolving Systems, vol. 1, pp. 143-160, 2010.
[18] A. Almaksour and E. Anquetìl, "Improving premise structure in

evolving Takagi-Sugeno neuro-fuzzy classifiers," Evolving Systems,

vol. 2, pp. 25–33, 2011.
[19] A. Shaker, R. Senge, and E. HüLlermeier, "Evolving fuzzy pattern trees

for binary classification on data streams," Information Sciences, vol.
220, pp. 34-45, 2013.

[20] P. Angelov and X. W. Zhou, "Evolving fuzzy systems from data
streams in real-time," in International Symposium on Evolving Fuzzy

Systems, Ambelside, United Kingdom, 2006, pp. 29-35.
[21] R. Dutta Baruah and P. Angelov, "Online learning and prediction of

data streams using dynamically evolving fuzzy approach," in IEEE

International Conference on Fuzzy Systems, Hyderabad, India, 2013,
pp. 1-8.

[22] R. Dutta Baruah and P. Angelov, "DEC: Dynamically Evolving
Clustering and its application to structure identification of evolving

fuzzy models," IEEE Transactions on Cybernetics, Issue 9 (IEEE early
access article DOI:10.1109/TCYB.2013.2291234), 2013.

[23] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for
clustering evolving data streams," in International conference on Very

large data bases - Volume 29, Berlin, Germany, 2003, pp. 81-92.
[24] J. Ritter, "An efficient bounding sphere," in Graphics gems, S. G.

Andrew, Ed., ed: Academic Press Professional, Inc., 1990, pp. 301-303.
[25] J. Gama. (2004). Datasets for concpet drift. Available:

http://www.inescporto.pt/~jgama/ales/ales_5.html
[26] Stream Datasets. Available: http://moa.cms.waikato.ac.nz/datasets/
[27] R Dataset. Available:

http://vincentarelbundock.github.io/Rdatasets/datasets.html
[28] A. Bifet and R. Gavaldà, "Adaptive learning from evolving data

streams," in Advances in Intelligent Data Analysis VIII. vol. 5772, N.
Adams, C. Robardet, A. Siebes, and J.-F. Boulicaut, Eds., ed: Springer
Berlin Heidelberg, 2009, pp. 249-260.

[29] MOA Massive Online Analysis. Available:
http://moa.cms.waikato.ac.nz/

389

