
A Method of Remote Sensing Image Auto Classification Based on
Interval Type-2 Fuzzy C-Means

Xianchuan Yu, Senior Member, IEEE, Wei Zhou, and Hui He

Abstract—The pattern set of a remote sensing image contains
many kinds of uncertainties. Uncertain information can create
imperfect expressions for pattern sets in various pattern recogni-
tion algorithms, such as clustering algorithms. Methods based
the fuzzy c-means algorithm can manage some uncertainties.
As soft clustering methods, They are known to perform better
on auto classification of remote sensing images than hard
clustering methods. However, if the clusters in a pattern set are
of different density and high order uncertainty, performance
of FCM may significantly vary depending on the choice of
fuzzifiers. Thus, we cannot obtain satisfactory results by using
type-1 fuzzy set. Type-2 fuzzy sets permit us to model various
uncertainties which cannot be appropriately managed by type-
1 fuzzy sets. This paper introduces the theory of interval
type-2 fuzzy set into the unsupervised classification of remote
sensing images and proposes the automatic remote sensing
image classification method based on the interval type-2 fuzzy
c-means. Experimental results indicate that our method can
obtain more coherent clusters and more accurate boundaries
from the data with density difference. Our type-2 fuzzy model
can manage the uncertainties of remote sensing images more
appropriately and get a more desirable result.

Index Terms—Type-2 fuzzy sets; Uncertainty; Fuzzy c-means;
Fuzzy clustering; IT2FCM; Remote sensing classification

I. INTRODUCTION

AUTOMATIC classification of remote sensing images is
a classic study project. It has been widely used and

plays an important role in map update, target recognition,
disaster monitoring, resource application etc. [1]

At present, the automatic classification mainly utilize
the traditional unsupervised classification methods such as
ISODATA, K-Means and Fuzzy C-Means (FCM) [2]. These
methods can realize conveniently and rapidly the spectral
classification of remote sensing images without any prior
knowledge [3], [4]. But due to the uncertainties contained
by the characteristics of remote sensing images, the ISODA-
TA and K-Means, as the hard clustering methods, produce
unsatisfying processing results, while the Fuzzy C-Means
as a soft clustering method could often get better results
[1], [5]–[7]. When the pattern set has clusters of similar
size and density with the hypersphere shape, the methods
based on FCM are good. But if the clusters of the pattern set
have significant different densities, the FCM will show quite
different effects depending on the different fuzzifiers [8].
Therefore if we process the remote sensing images with great
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different densities and high order uncertainties by methods
based on FCM, it is difficult to obtain satisfactory results.

The type-2 fuzzy sets can deal with various uncertainties
more properly than type-1 [9]–[11]. Type-2 fuzzy set needs
to calculate the secondary membership for each primary
membership, so type-2 fuzzy set usually increases the com-
putational complexity than type-1. Because the secondary
memberships of the interval type-2 fuzzy set are all equal to
1, so its computation complexity gets significantly reduced
[12], [13].

Based on the type-2 fuzzy set theory, Rhee and Hwang
proposed a type-2 fuzzy c-means clustering algorithm in
2001 [14], which shows a good noise resistance, but needs
improvement in its computational complexity and the con-
structor of secondary membership. In 2007, on the basis of
their research in 2001, under the theoretical framework of
interval type-2 fuzzy set, Hwang and Rhee put forward the in-
terval type-2 fuzzy c-means clustering method. This method
uses two different fuzzifiers to construct the membership, and
carries on the classification experiment on a variety of simple
data sets, but the hard partition method is too complex and
the fuzzifier is too arbitrary [8]. In 2009, Choi and Rhee
proposed various construction methods of interval type-2
fuzzy membership function in the field of pattern recognition
[15]. In 2013, Linda and Manic extended the interval type-2
fuzzy c-means clustering algorithm to general type-2 fuzzy c-
means clustering algorithm [16]. The theory of type-2 fuzzy
set is a new hotspot in the research of the fuzzy set theory,
but has not yet been applied to the automatic classification
of remote sensing images.

This paper introduces the theory of interval type-2 fuzzy
set into the unsupervised classification of remote sensing
images and proposes the automatic classification method
of remote sensing images based on interval type-2 fuzzy
c-means. The rest of this paper is arranged as follows:
The second part introduces the theoretical method, including
the uncertainty of fuzzifier m, and the basic knowledge
of the interval type-2 fuzzy set theory and the method of
extending fuzzy c-means (FCM) to interval type-2 fuzzy c-
means (IT2FCM). The third part is the experimental analysis.
The fourth part is the conclusion.

II. INTERVAL TYPE-2 FUZZY C-MEANS METHOD

This section first introduces fuzzy c-means clustering al-
gorithm and the uncertainty of the fuzzifier m, then intro-
duces the basic knowledge of the interval type-2 fuzzy set
theory, and finally introduces the method of extending the
fuzzy c-means (FCM) to the interval type-2 fuzzy c-means
(IT2FCM).
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A. Type-1 Fuzzy C-Means

Sample space

X = {x1, x2, ..., xn}, xk = (xk1, xk2, ..., xkp), 1 ≤ k ≤ n

A matrix U of c× n defines a fuzzy C partition of the data
set X , if

∑c
i=1 uij = 1, 0 ≤

∑n
j=1 uij ≤ n. Each row of the

matrix U defines a fuzzy clustering of X .

uij = ui(xj) =
1∑c

k=1(dij/dkj)
2/(m−1)

(1)

Eq. (1) shows the membership of sample xj to center vi,
dij(dki) means the distance between the center vi(vk) and
the pattern xj , m > 1 is a fuzzifier.

vi =

∑n
j=1 ui(xj)

mxj∑n
j=1 ui(xj)

m
(2)

Eq. (2) is the clustering center of the cluster i, and note
functional

J(U, V ) =

c∑
i=1

n∑
j=1

umijd
2
ij (3)

is the objective function of the fuzzy clustering. The most
optimal fuzzy partition is to obtain the minimum value of
the functional J(U, V ).

Bezdek presented the iterative algorithm for solving the
optimal fuzzy partition, namely the FCM algorithm. Ref-
erences [5]–[7] and a lot of other literature have put it
into application or made improvements based on it, which
won’t be elaborated on here. Discussions below focus on the
uncertainty of fuzzifier m and the method of constructing
interval type-2 fuzzy set.

B. Uncertainty of Fuzzifier

FCM clustering algorithm is an iterative algorithm, that
mainly uses Eq. (1) and Eq. (2) to update the center iteratively
after the initialization. The membership depends on the
pattern, the centers and the fuzzifier. When the pattern set
has been given, usually the clustering center will converge
in the process of iteration, therefore m is a very important
parameter. It directly affects the fuzzy degree of clustering.

As shown in Fig. 1, there is an uncertainty in the parameter
m. Fig. 1a means the curve of the relative distance and
membership corresponding to different fuzzifiers, when the
pattern moves along the ligature between two centers with
a relative distance of 1. Obviously the curve of membership
is significantly impacted by m. When m → 1, the fuzzy
clustering degenerates into hard clustering. When m → ∞,
the fuzzy clustering is in the maximum fuzzification and loses
the ability to partition. Experts provide experience value of
the fuzzifier m = 2 [17]. When clusters of pattern set have
difference on density, the effects of FCM significantly vary
with m [8].

A single fuzzifier makes it difficult to achieve satisfactory
results when the algorithm processes the remote sensing
images with a large density difference and uncertainty. So it
is necessary to utilize multiple fuzzifiers to build new FCM
algorithm. As shown in Fig. 1b, m1 = 1.1,m2 = 5 constitute

the uncertainty region, showing that every relative distance
corresponds to a fuzzy membership interval. we can use this
interval to define the uncertainty of membership and build
the interval type-2 fuzzy set as in [13].

C. Interval Type-2 Fuzzy Set

An interval type-2 fuzzy set Ã is defined as follows:

Ã = {((x, u), uÃ)|∀x ∈ X, ∀u ∈ Jx ⊂ [0, 1], uÃ(x, u) = 1}
(4)

u is called primary membership of x, uÃ(x, u) = 1 is called
the secondary membership, and interval type-2 fuzzy set’s
secondary membership is identically equal to 1.

As shown in figure Fig. 1b, for a pattern x, membership
can be expressed by lower bound u(x) and upper bound u(x)
respectively, that is to say, every x corresponds to a primary
membership interval

Jx = [u(x), u(x)] (5)

The calculation of fuzzy membership in FCM algorithm
follows Eq. (1). With two fuzzifiers, the type-1 fuzzy set
is extended to interval type-2 fuzzy set. Naturally Eq. (6)
can be used to determine the upper and lower bounds of
fuzzy membership to build Jx. Each corresponding line of
the membership matrix U and U defines an interval type-2
fuzzy clustering of X . Here we consider the clustering center
calculation method of this fuzzy clustering.

uj(xi) = max( 1∑c
k=1(

dji
dki

)
2

m1−1
, 1∑c

k=1(
dji
dki

)
2

m2−1
)

uj(xi) = min( 1∑c
k=1(

dji
dki

)
2

m1−1
, 1∑c

k=1(
dji
dki

)
2

m2−1
)

(6)

Eq. (2) is the calculation formula of center of the type-1
fuzzy set. We extend Eq. (2) to the center of the interval
type-2 fuzzy set [18], as shown in Eq. (7):

vx̃ = [vl, vr] =
∑

u(x1)∈Jx1

· · ·
∑

u(xn)∈Jxn

1
/∑n

i=1 u(xi)
mxi∑n

i=1 u(xi)
m

(7)
m is the fuzzifier, u(xi) = [u(xi), u(xi)] is the primary
membership of xi. To solve Eq. (7), if we replace u(xi)m

with wi, we get the following problems:

vlq = min
∀wi∈[wi,wi]

∑N
i=1 xiqwi∑N
i=1 wi

(8)

vrq = max
∀wi∈[wi,wi]

∑N
i=1 xiqwi∑N
i=1 wi

(9)

1 ≤ q ≤ p,vl = (vl1, ..., vlp),vr = (vr1, ..., vrp). Make

f(w1, ..., wN ) =

∑N
i=1 xiwi∑N
i=1 wi

(10)

The above question is converted to the solution the extreme
problem of multivariate function f of w1, ..., wN , then we
can calculate the partial derivative of f for wk.

∂f(w1, ..., wN )

∂wk
=
xk − f(w1, ..., wN )∑N

i=1 wi

(11)
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(a) (b)

Fig. 1: Uncertainty of fuzzifier m. (a)Curve of the relative distance and membership corresponding to the different values
of m (b) Uncertainty areas constructed by m1 = 1.1,m2 = 5

Since
∑N

i=1 wi > 0, then

xk > f,wk ↑⇒ f ↑ ∧wk ↓⇒ f ↓

xk < f,wk ↑⇒ f ↓ ∧wk ↓⇒ f ↑

Among them, symbol ↑ means increase, ↓ means decrease,
⇒ means contains, and ∧ means logical AND. Therefore,
we can use the iterative algorithm to solve Eq. (7), but only
need to choose the upper and lower bounds of the interval
membership for calculation according to the relationship of
the pattern and center, i.e., the Karnik Mendel algorithm [19],
[20] can be used to calculate the vl, vr.

The center of the interval type-2 fuzzy set obtained through
the Karnik Mendel algorithm is

vj = 1.0/[vlj , vrj ] (12)

This is still a fuzzy set. Mean value method can be used to
defuzzy as follows

vj =
vlj + vrj

2
(13)

And then, We rebuild the interval type-2 fuzzy set for the
pattern set using the new center and repeat the above steps to
get the final cluster center and interval fuzzy partition matrix.

At last, we have to do a hard partition, which is to convert
the fuzzy partition to the ordinary one. For the type-1 fuzzy
partition matrix, the maximum membership principle can be
used to convert it to ordinary partition matrix. However, the
maximum membership principle cannot be directly applied
to the interval fuzzy partition matrix, so the algorithm of
reference [8] builds a type-1 fuzzy partition matrix by three
steps. First, it determines the average value of the upper
and lower boundary of the membership chosen when the
dimensional characteristics compute the center with KM

algorithm, and treat it as the interval membership of the
whole characteristic. Second, it forms a type-1 partition
matrix by using the interval center as a new membership.
Last, it does hard partition with the principle of maximum
membership.

This hard partition method needs to store the interval
membership of each dimension’s characteristics, so it doesn’t
obtain satisfactory time complexity and space complexity.
Actually, from Fig. 1 and Eq. (7) we can figure out that
when the center is determined, using different fuzzifiers to
calculate the membership of all the samples will not change
the ordering of each sample’s membership to the center, and
the average interval memberships calculated by two different
fuzzifiers also have the same order. We can use any m to
calculate a type-1 fuzzy partition matrix and convert it to
an ordinary partition matrix with the maximum membership
principle. Therefore it is not only easy to understand, but
also has simple calculation and low space complexity if we
use the closest to center principle to do the hard partition
directly.

D. Steps of Algorithm

The previous section introduces in detail the establishment,
the calculation method and the hard partition method of the
interval type-2 fuzzy set. Both the interval type-2 fuzzy c-
means and type-1 fuzzy c-means clustering algorithm are
iterative algorithms. The difference is the interval type-2
fuzzy set center uses the Karnik-Mendel algorithm and needs
defuzzification. Fig. 2 is the scheme of classification based
on IT2FCM. Specific steps are as follows:

1) Determine the clustering number c(2 ≤ c ≤ n) and
the parameters m,m1,m2,(1 < m,m1,m2 < ∞),ε >
0, set the initial center matrix V 0, iterate step by step,
L = 0, 1, 2, ...;
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Fig. 2: The scheme of classification based on IT2FCM

2) Calculate the membership matrix U,U by Eq. (6) with
V L as the center;

3) Use Karnik-Mendel algorithm to calculate the center
matrix Vl, Vr, make the V L+1 = Vl+Vr

2 ;
4) If ∥V L+1 − V L∥ < ε, turn to the next step, otherwise

set L = L+ 1 and turn to step 2;
5) Get the final cluster centers and membership matrix, do

hard partition by the principle of the closest to center.

The clustering result of the interval type-2 fuzzy clustering
can be obtained after the hard partition, and the final classi-
fication results are obtained after the clustering discriminant
in the end.

III. EXPERIMENTAL ANALYSIS

We select the TM multi-spectral data acquired on on
November 15, 1999 in Hengqin Island, Zhuhai City, China.
It is an 8-bit data with 30m spatial resolution, 795x452 pixels
size. Features of the image include vegetation (grassland,
forest land), clear water, turbid water, wetland, building land
(housing, roads, airport), and farms (raise oysters, water
flooded rice fields). We extract (4, 3, 2) bands as the
RGB channel to build the standard false color image for
classification as shown in Fig. 3a. The mountain vegetation
data in the figure (red area), presents evident brightness
changes, which means the vegetation data are distributed in
a relatively large hypersphere with a reddish center. While
the water data are mainly represented by cyan areas and
the building data mainly are mainly represented by white
areas. So this kind of data is distributed within a relatively
small hypersphere respectively. In this case, the classification
results will evidently vary with the fuzzifier m. Thus it is
difficult to get a satisfactory result with the model of type-1
fuzzy c-means, while the interval type-2 fuzzy c-means may
lead to a satisfactory result.

We choose K-MEANS, ISODATA and FCM with fuzzifiers
m = 2,m = 3,m = 5,m = 10 to classify the experiment
data by the Euclidean distance. We get the clustering results
of the image, respectively, as shown in Fig. 3b, Fig. 3c and
Fig. 3d, Fig. 3e. Then our IT2FCM method with clustering
number c = 6, fuzzifier m = 3,m1 = 2,m2 = 10, ε = 10−5

classify the experimental data by Euclidean distance. The
classification result is shown in Fig. 3f.

Area 1 is one part of a wetland. The spectral characteristics
are similar to those of the building land. K-MEANS method
and FCM methods with different fuzzifiers all misclassified
this area as building land, while ISODATA method and our
IT2FCM method have successfully identified this part of
wetland, and our IT2FCM method had better boundaries.

Area 2 is one part of vegetation. K-MEANS method and
FCM methods with smaller fuzzifiers misclassified much
water as farms, and ISODATA method got a result of
crossly distributed vegetation and farms, it misclassified a
lot of vegetation and water to farms, while our method only
misclassified a small amount of water to farms.

Area 3 is one part of vegetation on the mountain. ISO-
DATA method misclassify a lot as vegetation and farms.
The results of K-MEANS method and FCM methods with
small fuzzifiers are similar. While we compare FCM methods
with different fuzzifiers, we can find differences between
each result. When fuzzifier m is smaller, the fuzziness of
classification is lower. So when the spectrum of vegetation
obvious vary in brightness, it lead to a lot misclassification.
When fuzzifier m is larger, the fuzziness of classification
is higher. The misclassification of mountain vegetation was
significantly reduced. But it was too fuzziness to got a
clear clustering boundary. The FCM methods are difficult
to obtain satisfactory results. Our interval type-2 fuzzy c-
means(IT2FCM) method not only succeeded in identifying
the main body of the vegetation with brightness changes but
also got a very clear boundary.

Area 4 is Macao airport. our method got significantly
less isolated points, much better classification continuity, and
clearer boundaries than other methods.

In order to verify the results by objective evaluation,
we selected 59 points randomly for ground validation. The
classification accuracy and Kappa coefficient are shown in
Table I. According to objective evaluation results, cluster-
ing accuracy and Kappa coefficient of FCM are greatly
affected by fuzzifier. The clustering accuracy and Kappa
coefficient aren’t monotonic relationship with the fuzzifier.
The results indicate that our interval type-2 fuzzy c-means
method (IT2FCM) increases the classification accuracy and
Kappa coefficient, and can obviously improve the clustering
result. The objective result is also consistent with the visual
interpretation.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3: Region of Hengqin Island, Zhuhai City, China. (a) Combined RGB image (795x452) (b)Resulting image of K-Means
(c)Resulting image of ISODATA (d)Resulting image of FCM(m = 2) (e)Resulting image of FCM(m = 10) (f)Resulting
image of our method (g)Legend.
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TABLE I: Objective evaluation

Methods Overall Kappa coefficient

K-Means 54.24% 0.4381

ISODATA 69.49% 0.6170

FCM(m = 2) 57.63% 0.4760

FCM(m = 3) 57.63% 0.4764

FCM(m = 5) 67.80% 0.6006

FCM(m = 10) 61.02% 0.5166

IT2FCM 81.36% 0.7670

From the analysis above, compared with K-MEANS, ISO-
DATA and type-1 FCM, our IT2FCM method has obvious
improvement in both subjective evaluation and objective eval-
uation. It is more suitable for solving misclassification caused
by same object with the different spectra characteristics. The
method has good anti-interference ability. When the target is
affected by the neighborhood spectrum, our method can get
more continuous areas and more accurate boundaries.

Our method did not distinguish between the data of
grassland and forest, it is difficult to solve the phenomenon
of same spectrum with different objects, but it can be
work out by our hierarchical classification method [21] or
hyperspectral data. In addition, the iteration process is more
complicated than type-1 fuzzy c-means. So for some real time
systems, the efficiency of the algorithm needs to be improved.

IV. CONCLUSIONS

In this paper, we introduce the interval type-2 fuzzy set
theory into the automatic classification of remote sensing
images. It is the first time that the interval type-2 fuzzy
c-means is applied to the unsupervised classification of
remote sensing images whose pattern sets contain many kinds
of uncertainties. Traditional fuzzy c-means method uses a
certain fuzzifier to calculate the membership matrix, so it is
hard to handle the uncertainties of remote sensing images,
especially for the ones with density difference. Type-2 fuzzy
sets permit us to model various uncertainties which cannot
be appropriately managed by type-1 fuzzy sets.

The experimental results showed obvious improvement
in both subjective evaluation and objective evaluation. The
results indicate that our IT2FCM method has the following
advantages over traditional methods such as K-MEANS,
ISODATA and FCM. Our IT2FCM method has a stronger
ability to manage the uncertainties of remote sensing images,
especially those with density difference. It is more suitable
and has a better anti-interference ability when solving the
misclassification caused by the same object with different
spectra characteristics. It can get more coherent clusters and
more accurate boundaries.
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