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Abstract—The contribution describes newly developed tech-
nique used to improve image quality by fusion of information
from the multiple images into one resulting image containing
better information than each of the input ones. The presented
approach is based on the F-Transform, integral transform used to
detect gradients, similarity and image fusion, and noise reduction.

I. INTRODUCTION

Usually image obtained by camera is not in a perfect
quality, especially in the case of low light conditions or in
the case of images taken by mobile phones or web cameras.
There exist several techniques to improve their quality. A
lot of techniques are based on one image modification with
standard algorithms (median filter for noise reduction, Laplace
filter for image sharpening, brightness or contrast modification
etc.), other approaches are based on the composition of several
images. The set of the input images is usually represented by
images capturing the same view with changed conditions as
light or some hardware filter. The most known application of
multiple image composition is called HDR (e.g. see [1], [2]).

The presented approach in this contribution is aimed on
soft-computing method based on Fuzzy transformation (see
[3])(also referred as F-transform) that consists of two steps: di-
rect and inverse transform. The F-transform is based on a sim-
ple idea of covering a domain of a continuous function by finite
number of fuzzy granules whereas the parts affecting every
element are overlapped. The F-transform has been introduced
by Irina Perfilieva and the main theoretical preliminaries were
described in [3] and [4]. Later a lot of practical application of
the F-transform were developed, especially image compression
([5], [6]) is a good example where a user can control strength
of compression and quality by number of used components.
By adjusting level of components the quality (distortion) of
the image can be adjusted. Then F-transform based fusion
([9], [10]) can be used to pick up parts with best image
information representation. Another interesting application of
F-transform is an image reduction and interpolation [7]: the
direct F-transform can reduce (shrink) image and the inverse
F-transform can be used as interpolation method. The F-
transform of higher degree [12] (especially first degree) can
approximate original function even better and can be used for
image gradient computation [11] and following edge detection.

This contribution demonstrates how the F-transform can
be used in multiple image composition: F1-transform is used
for gradient detection in features extraction step; F0-transform
is used for image similarity measurement and final image
fusion. By the composition of these three steps the set of

images should be registered and then fused into one image
with improved quality, especially with a noise reduction.

II. F-TRANSFORM

A. Fuzzy partition with Ruspini condition

The fuzzy partition with the Ruspini condition (1) (simply,
Ruspini partition) was introduced in [3]. This condition implies
normality of the respective fuzzy partition, i.e., the “partition-
of-unity”. It then leads to a simplified version of the inverse
F-transform. In later publications [12], the Ruspini condition
was weakened to obtain an additional degree of freedom and
a better approximation by the inverse F-transform.

Let x1 < . . . < xn be fixed nodes within [a, b] such
that x1 = a, xn = b and n ≥ 2. We say that the fuzzy
sets A1, . . . , An, identified with their membership functions
defined on [a, b], establish a Ruspini partition of [a, b] if they
fulfill the following conditions for k = 1, . . . , n:

1) Ak : [a, b]→ [0, 1], Ak(xk) = 1;
2) Ak(x) = 0 if x 6∈ (xk−1, xk+1), where for uniformity of

notation, we set x0 = a and xn+1 = b;
3) Ak(x) is continuous;
4) Ak(x), for k = 2, . . . , n, strictly increases on [xk−1, xk]

and Ak(x), for k = 1, . . . , n − 1, strictly decreases on
[xk, xk+1];

5) for all x ∈ [a, b],
n∑

k=1

Ak(x) = 1. (1)

The condition (1) is known as the Ruspini condition. The
membership functions A1, . . . , An are called basic functions.
The shape of the basic functions is not predetermined and
therefore, it can be chosen according to additional require-
ments (e.g., smoothness). However, usage of triangular basic
functions is the most common in an image processing.

B. Generalized fuzzy partitions

A generalized fuzzy partition appeared in [12] in con-
nection with the notion of the higher-degree F-transform. Its
even weaker version was implicitly introduced in [5] for the
purpose of meeting the requirements of image compression.
We summarize both these notions and propose the following
definition. Let [a, b] be an interval on the real line R, n > 2,
and let x1, . . . , xn be nodes such that a ≤ x1 < . . . < xn ≤ b.
Let [a, b] be covered by the intervals [xk−h′k, xk+h′′k ] ⊆ [a, b],
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k = 1, . . . , n, such that their left and right margins h′k, h
′′
k ≥ 0

fulfill h′k + h′′k > 0.

We say that fuzzy sets A1, . . . , An : [a, b] → [0, 1]
constitute a generalized fuzzy partition of [a, b] (with nodes
x1, . . . , xn and margins h′k, h

′′
k , k = 1, . . . , n), if for every

k = 1, . . . , n, the following three conditions are fulfilled:

1) (locality) — Ak(x) > 0 if x ∈ (xk − h′k, xk + h′′k), and
Ak(x) = 0 if x ∈ [a, b] \ (xk − h′k, xk + h′′k);

2) (continuity) — Ak is continuous on [xk − h′k, xk + h′′k ];
3) (covering) — for x ∈ [a, b],

∑n
k=1 Ak(x) > 0.

An (h, h′)-uniform generalized fuzzy partition of [a, b] is
defined for equidistant nodes xk = a+h(k−1), k = 1, . . . , n,
where h = (b − a)/(n − 1), h′ > h/2 and two additional
properties are satisfied:

4) Ak(x) = Ak−1(x − h) for all k = 2, . . . , n − 1 and
x ∈ [xk, xk+1], and
Ak+1(x) = Ak(x − h) for all k = 2, . . . , n − 1 and
x ∈ [xk, xk+1].

5) h′1 = h′′n = 0, h′′1 = h′2 = . . . = h′′n−1 = h′n = h′ and for
all k = 2, . . . , n − 1 and all x ∈ [0, h′], Ak(xk − x) =
Ak(xk + x).

An (h, h′)-uniform generalized fuzzy partition of [a, b] can
also be defined using the generating function A0 : [−1, 1] →
[0, 1], which is assumed to be even1, continuous and positive
everywhere except for on boundaries, where it vanishes. Then,
basic functions Ak of an (h, h′)-uniform generalized fuzzy
partition are shifted copies of A0 in the sense that

A1(x) =

{
A0

(
x−x1

h′

)
, x ∈ [x1, x1 + h′],

0, otherwise,

and for k = 2, . . . , n− 1,

Ak(x) =

{
A0

(
x−xk

h′

)
, x ∈ [xk − h′, xk + h′],

0, otherwise.
, (2)

An(x) =

{
A0

(
x−xn

h′

)
, x ∈ [xn − h′, xn],

0, otherwise,

C. F 0 transform

The direct and inverse F-transform as a function of two
(and more) variables is a generalization of the case of one
variable F-transform. We introduce the discrete version only
due to its application in image processing. Let us refer to [4]
for more details.

Suppose that the universe is a rectangle [a, b] × [c, d] ⊆
R × R and that x1 < . . . < xn are fixed nodes of [a, b] and
y1 < . . . < ym are fixed nodes of [c, d] such that x1 = a,
xn = b, y1 = c, ym = d and n,m ≥ 2. Assume that
A1, . . . , An are basic functions that form a generalized fuzzy
partition of [a, b] and B1, . . . , Bm are basic functions that
form a generalized fuzzy partition of [c, d]. Then, the rectangle
[a, b] × [c, d] is partitioned into fuzzy sets Ak × Bl with
the membership functions (Ak × Bl)(x, y) = Ak(x)Bl(y),
k = 1, . . . , n, l = 1, . . . ,m.

1The function A0 : [−1, 1] → R is even if for all x ∈ [0, 1], A0(−x) =
A0(x).

In the discrete case, an original function f is assumed to
be known only at points (pi, qj) ∈ [a, b] × [c, d], where i =
1, . . . , N and j = 1, . . . ,M . In this case, the (discrete) F-
transform of f can be introduced in a manner analogous to
the case of a function of one variable.

Let a function f be given at points (pi, qj) ∈ [a, b]× [c, d],
for which i = 1, . . . , N and j = 1, . . . ,M , and A1, . . . , An

and B1, . . . , Bm, where n < N and m < M , be basic
functions that form generalized fuzzy partitions of [a, b] and
[c, d] respectively. Suppose that sets P and Q of these points
are sufficiently dense. We say that the n × m-matrix of real
numbers F[f ] = (Fkl)nm is the discrete F-transform of f with
respect to A1, . . . , An and B1, . . . , Bm if

Fkl =

∑M
j=1

∑N
i=1 f(pi, qj)Ak(pi)Bl(qj)∑M

j=1

∑N
i=1 Ak(pi)Bl(qj)

(3)

holds for all k = 1, . . . , n, l = 1, . . . ,m.

The inverse F-transform of a discrete function f of
two variables is defined as follows. Let A1, . . . , An and
B1, . . . , Bm be basic functions that form generalized fuzzy
partitions of [a, b] and [c, d], respectively. Let function f
be defined on the set of points (pi, qj) ∈ P × Q where
P = {p1, . . . , pN} ⊆ [a, b], Q = {q1, . . . , qM} ⊆ [c, d]
and both sets P and Q are sufficiently dense with respect to
corresponding partitions. Moreover, let F[f ] = (Fkl)nm be the
discrete F-transform of f w.r.t. A1, . . . , An and B1, . . . , Bm.
Then, the function f̂ : P ×Q→ R represented by

f̂(pi, qj) =

∑n
k=1

∑m
l=1 FklAk(pi)Bl(qj)∑n

k=1

∑m
l=1 Ak(pi)Bl(qj)

(4)

is called the inverse F-transform of f .

D. F1-transform

We can generalize the F -transform with constant compo-
nents to the F 1-transform with linear components. The latter
are orthogonal projections of an original function f onto a
linear subspace of functions with the basis of polynomials
P 0
k = 1, P 1

k = (x− xk). We say that the n-tuple

F 1[f ] = [F 1
1 , . . . , F

1
n ] (5)

is the F 1-transform of f w.r.t. A1, . . . , An where the k−th
component F 1

k is defined by

F 1
k = ck,0P

0
k + ck,1P

1
k , k = 1, . . . , n. (6)

For the h-uniform fuzzy partition and the triangular-shaped
basic functions we can compute the coefficients ck,0, ck,1 for
each k = 1, . . . , n as follows

ck,0 =
1

h

N∑
i=1

f(pi)Ak(pi), (7)

ck,1 =
12

h3

N∑
i=1

f(pi)(pi − xk)Ak(pi). (8)

It can be shown that the coefficient ck,0 is equal to the F -
transform component Fk, k = 1, . . . , n. The next theorem
shows the important property of the coefficient ck,1 which
will be useful for the proposed edge detection technique.
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The theorem is formulated for the continuous version of the
F 1-transform. Let A1, . . . , An, be an h-uniform partition of
[a, b], let functions f and Ak, k = 1, . . . , n be four times
continuously differentiable on [a, b], and let F 1[f ] = (c1,0 +
c1,1(x− x1), . . . , cn,0 + cn,1(x− xn)) be the F 1-transform of
f with respect to A1, . . . , An,. Then, for every k = 1, . . . , n,
the following estimation holds true:

ck,1 = f ′(xk) + O(h). (9)

We refer to [12] for a proof of Theorem II-D and for a detailed
description of the F 1-transform.

III. IMAGE COMPOSITION

This section describes application of the F-transform theory
in image composition. The developed method is divided into
three steps: A. Feature extraction, B. Feature matching, and
C. Image fusion. An example of a result obtained by image
composition algorithm on two input images can be seen at
figure 5.

A. Feature extraction

Let us remark that there exist many algorithms for feature
extraction; the most used are FAST, ORB or SIFT [13]. In this
contribution, we are taking the problem of feature extraction
as a procedure that selects small corner areas in the image.
According to the accepted terminology, we call the latter point
features. Point features extracted from a reference and sensed
images should be detected on the similar places even if the
sensed image is rotated, resized or has different intensity. We
propose an original technique of point features detection using
the first degree F-transform (F 1-transform) adopted from [11].

By Theorem II-D, coefficients ck,1 of the F 1-transform
give us a vector whose components approximate the first
derivative of the original function at certain nodes. We use
these coefficients as components of the inverse F -transform
and we get the approximation of the first derivative of the
original image function in each pixel.

Let triangular fuzzy sets A1, . . . , An establish a fuzzy
partition of [1, N ] and triangular B1, . . . , Bm do the same for
[1,M ]. Let x1, . . . , xn ∈ [1, N ], hx = xk+1−xk, k = 1, . . . , n
and y1, . . . , ym ∈ [1,M ], hy = yl+1 − yl, l = 1, . . . ,m be
nodes on [1, N ], [1,M ] respectively. Then we can determine
the approximation of the first derivative for each (pi, pj) ∈ D
in the horizontal direction

Gx(pi, pj) ≈
n∑

k=1

m∑
l=1

ck,1(yl)Ak(pi)Bl(pj) (10)

and in the vertical direction

Gy(pi, pj) ≈
n∑

k=1

m∑
l=1

cl,1(xk)Ak(pi)Bl(pj) (11)

as the inverse F -transform of the image function u where the
coefficients ck,1(yl), cl,1(xk), k = 1, . . . , n, l = 1, . . . ,m are
given by the F 1-transform

ck,1(yl) =
12

h3
x

N∑
i=1

f(pi, yl)(pi − xk)Ak(pi), (12)

cl,1(xk) =
12

h3
y

M∑
j=1

f(xk, pj)(pj − yl)Bl(pj). (13)

Then, the gradient magnitude G of an edge at point (pi, pj)
is computed as

G(pi, pj) =
√
Gx(pi, pj)2 + Gy(pi, pj)2 (14)

and the gradient angle Θ is determined by

Θ(pi, pj) = arctan
Gy(pi, pj)

Gx(pi, pj)
(15)

where for simplicity the gradient angle will be quantized by:
ΘQ : Θ→ {0, 45, 90, 135}.

We say that a corner is a set of neighboring pixels (we call
them corner points) where at least three different quantized
angles show up. A center of gravity of the corner is called a
feature point. Many corner points can be found in an image. It
may happen that corner points are close to each other. In this
case we have to choose only one of them. We modify computer
graphic flood fill algorithm to detect clusters of close corner
points and then compute centers of gravity of each cluster.
These centers constitute the set of point features.

B. Feature matching

In this step, a correspondence between the point features
detected in the reference and sensed images is established.
The reference image is the first of the image set, all followed
are sensed and centered according to the referenced one. As a
main technique (among various similarity measures or spatial
relationships) we propose to measure similarity by a (inverse)
distance between F-transform components of various levels.

In more details, the lowest (first) level is comprised by the
F-transform components of image f and corresponds to the
discretization given by the respective fuzzy partition of the
domain. This first level F (1)[f ] is given by the F-transform of
f so that

F (1)[f ] = F [f ] = (F11, ..., Fnm). (16)

The vector of the F-transform components (F11, ..., Fnm) is
a linear representation of a respective matrix of components.
This first level serves as a new image for the F-transform
components of the second level and so on. For a higher level
` we propose the following recursive formula:

F (`)[f ] = F [F (`−1)] = (F
(`−1)
11 , ..., F (`−1)

n(`−1)m(`−1)
). (17)

The top (last) level F (t)[f ] consists of only one final compo-
nent F fin.

The F-transform based similarity S of two image functions
f, g ∈ I is proposed to be as follows:

S(f, g) = 1− |F fin−Gfin| ·
∑n

k=1

∑m
l=1 |Fkl −Gkl|
nm

(18)

where F fin, Gfin are the top F-transform components of f
and g, and Fkl, Gkl, k = 1, . . . , n, l = 1, . . . ,m are the first
level F-transform components of f and g, respectively. The
justification that S is a similarity measure with respect to the
product t-norm was given in [6].
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Figure 1. Image A with detected point features

Figure 2. Image B with detected point features

The F-transform similarity is used to compare two areas
around feature points of two images. If two feature points have
similarity higher than threshold value, they are remembered
and relative shift between them are stored. Finally, the sensed
image is moved by shift obtained from these step. Registered
images can be fused. Without the registering process, the final
result image should containt defective artifacts.

C. Image fusion

The last step of the process is the merge of the registered
images u1, ..., uk into one result image. The image fusion
based on F-transform is used for to do this. Image fusion is
important field of image processing area, which generally aims
to the following task: how to obtain result image which is
somehow ”better” than each of the input images.

Generally, let u is ideal image and u1, . . . , uK are acquired
(input) images, then the relation between each ui and u can
be expressed by

ui(x, y) = di(u(x, y)) + ei(x, y), i = 1, . . . ,K (19)

where di is an unknown operator describing the image degra-
dation, and ei is some random noise. The aim of the fusion
is to obtain fused image û such that it is closer to u (and
therefore ”better”) than any of u1, . . . , uK .

If we apply F-transform based image fusion, we may
introduce following representation of u on P :

u(x, y) = unm(x, y) + e(x, y), (20)
e(x, y) = u(x, y)− unm(x, y), (21)

where 0 < n ≤ N, 0 < m ≤ M , and unm is the inverse
F-transform of u and e is the respective first difference. Value
e represents residuals of the image u (see 21). If we replace
e in (20) by its inverse F-transform eNM with respect to the
finest partition of [1, N ]× [1,M ], the above representation can
then be rewritten as follows:

u(x, y) = unm(x, y) + eNM (x, y), ∀(x, y) ∈ P. (22)

We call (22) a one-level decomposition of u on P .

If function u is smooth, then the function eNM is small. If
an input image contains a significant noise or sharp changes
(e.g. at edges), the residuals eNM are higher. For two compared
images, the lower residuals mean that the image has less noise
or is less sharp. This property can be used to obtain the most
sharpest image from the input ones, and also to reduce noise
by filtering it from the input images and join them together. If
one level decomposition is not enough, second (third etc.) level
decomposition can be calculated over e(x, y), until required
quality is achieved. The detailed algorithm was presented in
[9]. However, this processing is very time consuming, therefore
some improvements of the original algorithm were researched
([16] or [17]). Finally, three different algorithms were tested to
fuse feature–matched images presented in this article. Because
lack of the space, only the one algorithm (called IESA)
producing best results will be briefly explained.

Let u1, ..., uk is the set of k input algorithms obtained
by feature matching part of explained solution. The IESA
algorithm consists of three main steps (there are some values
set as fixed constants. Those constants are set by experiments
and recommendations presented in [17]):

1) Set n,m values to 5.
2) For each of input image ui (where i ∈ [1, k]): decompose

image into inversed F-transform representation ui
nm and

calculate residuals einm = ui − ui
nm.

3) For each obtained residuals einm from previous step
calculate blurred residuals êinm using direct and inverse
F-transform with n = m = 25.
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Figure 3. Input for image fusion (one of seven input images)

4) For each residual value êinm set êinm(x, y) = 0 if êinm <
0.9. This will suppress low residual values produced by
noise.

5) Calculate final image f that for each pixel f(x, y):
a) From all residuals êinm find the index j with the highest

pixel value êinm(x, y) in absolute: abs(êjnm(x, y)) ≥
abs(êinm(x, y)), i ∈ [1, k].

b) Set pixel value f(x, y) = uj(x, y).

The IESA algorithm takes the best part from each input
image and creates result image with suppressed noise, em-
phasizing sharpest parts from each image. For multiple input
images (Figure 3) the result can be seen at Figure 4. Another
example can be seen at figure 5.

As a result of image fusion, one final image with improved
quality and suppressed noise is produced from the set of input
images.

IV. CONCLUSION

The article presented new approach based on F-transform
technique to produce fused image with improved quality
against the set of input images. The presented algorithm is
applicable for the input images with varying in image scale,
shift and light conditions. Further research will be aimed to
support other kinds of variance, like image angle (different
point of view of the camera) and rotation.

ACKNOWLEDGEMENT

This work was supported by the European Regional
Development Fund in the IT4Innovations Centre of Excel-
lence project (CZ.1.05/1.1.00/02.0070). This work was also
supported by SGS14/PrF/2013 project and SGS18/PrF/2014
project.

Figure 4. Image fusion - reduced noise (one output image)
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