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Abstract --- In this paper, a nonlinear time-varying dynamic 
system is first approximated by N fuzzy-based linear state- 
space subsystems. To track a trajectory dominant by a 
specific frequency, the reference models with desired 
amplitude and phase features are established by the same 
fuzzy sets of the system rule. It is known that linear state 
feedback control for each fuzzy subsystem is inferior to that 
using nonlinear feedback control. It is also known that most 
of the fuzzy adaptive controls must be in a specific domain 
for the function approximation. To overcome the above 
shortcomings, we propose a globally fuzzy model based 
adaptive variable structure control with a switching 
function to determine when the learning law should be used. 
As the norm of the switching surface is inside of a defined 
set, the learning law starts; simultaneously, as it is outside 
of the other set which is larger than the previous defined set, 
the learning law stops. In this situation, the proposed 
control is verified to converge into a convex set, which is 
smaller than the set for the function approximation. For the 
purpose of smoothing the discontinuity of control input, a 
transition between outside and inside of approximated set is 
also assigned. Under these circumstances, the proposed 
control can automatically tune as a control without or with 
the learning compensation of uncertainties. Finally, the 
stability of the overall system is verified by Lyapunov 
stability theory.  
Keywords: Global adaptive control, Takagi-Sugeno fuzzy 
linear model, Variable structure control, Reference Model, 
Fuzzy basis function model, Approximation theory, 
Learning law. 

 
I.  INTRODUCTION 

It is known that practical control systems are often 
nonlinear and time-variant. The major advantage of 
heuristics-based fuzzy control or modeling is that a 
mathematical model for the system is not required. Only 
some input/output data are employed to obtain an 
effective control or model. However, it is lack of 
systematic design or stability analysis or stability proof. 
Furthermore, its performance is usually not more 
excellent than that of the other controllers. Due to these 
shortcomings, a model-based fuzzy control or modeling 
(e.g., [1-3]), is a promising method to reinforce the 
performance of fuzzy system. In addition, the above- 
mentioned approaches only use a linear state-feedback 
control for every subsystem. Its robustness is often 
poorer than that using a nonlinear control for every 
subsystem [1, 4]. Furthermore, most of the fuzzy 
adaptive controls (e.g., [5-7]) must be in a specific 
domain for the function approximation. To overcome the 
above disadvantages, we propose a globally fuzzy model 
based adaptive variable structure control with a 
switching function to determine when the learning law 
should be used. On the other hand, without the 
compensation of learning uncertainties for the proposed 
control can force the system state outside of 

approximated set into the approximated domain.  
At beginning, a class of nonlinear time-varying 

dynamic systems is approximated by N fuzzy-based 
linear state-space subsystems. That is, a local 
linearization of nonlinear nominal dynamic system is 
achieved by N fuzzy-based linear state-space subsystems. 
For tracking a trajectory dominant by a specific 
frequency, the reference models with desired amplitude 
and phase features by using the same fuzzy sets of the 
system rule are constructed. Then the same fuzzy sets of 
the system rule are applied to design the globally fuzzy 
model based adaptive variable structure control 
(GFMBAVSC), which contains a switching function to 
determine whether the learning uncertainties are 
executed or not. 

 The uncertainties in this paper include the 
approximation error of fuzzy-model, time-varying 
uncertain vector functions, and the interaction dynamics 
resulting from the other subsystems. There have five 
possible approaches to deal with uncertainties. The first 
approach is to assume that it is bounded by a known 
function to design an effective controller. This is the 
methodology for the deterministic robust control (e.g., 
[8], [9]). The disturbance observer also can be employed 
to estimate the external disturbance which is then 
compensated by the controller (e.g., [10]-[11]). If the 
uncertainties possess the strong randomness, a 
probabilistic approach is one of suitable choice 
([12]-[13]). The fourth approach is to apply the neural 
network modeling of uncertainties, which are applied to 
attenuate their effect ([14]-[15]). The fifth approach is to 
use fuzzy set theory to designate the membership 
function for the description of uncertainties, which are 
on-line learned for compensation ([1], [16]). In this paper, 
fuzzy model for the approximation of these non- 
autonomous uncertainties, which are respectively 
assumed to be absolutely bounded for time variable and 
relatively bounded for the other variables. 

 If uncertainties are excess, the learning law is 
progressed to learn the uncertainties for compensation, 
and then to improve system performance and stability. 
The learning law with a suitable learning rate and e- 
modification rate can effectively learn system 
uncertainties without the risk of unbounded learning 
weight [1]. The main contributions (or features) of the 
proposed GFMBAVSC are as follows: (i) The global 
trajectory tracking for different initial system states 
outside of approximated set is obtained. (ii) The transient 
response caused by different initial learning weight is 
reduced because the learning law executes only after the 
convergence to a smaller convex set. (iii) It not only 
improves steady state performance as compared with 
GFMBAVSC without the learning compensation (or 
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other robust controls), but also enhances the system 
stability in the face of excess uncertainties.  

 
II. MATHEMATICAL PRELIMINARIES 

 
 Throughout this paper, a continuous-time signal at 
t is represented by ( )x t . The notation n m×ℜ  denotes the 
sets of real matrices with dimension .n m×  The symbol 

jM  denotes a fuzzy set of ( ).jx t  The notation i
jM  

denotes a fuzzy term of jM selected for rule i. The 

symbol 1 21
...N

j Nj
f f f f

=
=∏  represents a scalar 

multiplication. The symbol x  represents an Euclidean 

norm of vector x. The notation [ ]Aλ  denotes the 
eigenvalues of matrix A. Define the trace operator as 

[ ] 1
[ ] and ,n

iii
tr tr A a

=
⋅ =∑  where n nA ×∈ℜ The property 

[ ] [ ] [ ]    tr ABC tr CAB tr BCA= = exists, where 
,  and A B C are three compatible square (or non-square) 

matrices. The notation 
F
⋅ denotes the Frobenius norm, 

i.e., 2 ,T T
F

W tr W W tr WW⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ where .n mW ×∈ℜ The 

symbol nI  denotes a unit matrix of dimension n. 
 
Definition 1 [16]: The solutions of a dynamic system 

( ) ( , ),  ( ) nx t A x t x t= ∈ℜ� are said to be UUB if there exist 
positive constants  and ,υ κ and for every (0, )κΔ ∈ there 
is a positive constant ( ),T T= Δ  such that 

0( )x t < Δ → ( ) ,x t υ≤ 0 .t t T∀ ≥ + If the initial state 

0( ) nx t ∈ℜ , they are said to be GUUB. 
   

III. PROBLEM FORMULATION 
 

Consider a class of nonlinear time-varying dynamic 
systems: 
   ( ) ( , ) ( , ) ( )x t F x t G x t u t= +�                   (1a) 
where ( ) nx t ∈ℜ  is the system state which is available, 

( ) mu t ∈ℜ  is the control input, and the continuous 
mappings ( , ) : , ( , ) : .n n n n mF x t G x t+ + ×ℜ ×ℜ →ℜ ℜ ×ℜ →ℜ  
It is assumed that 
  ( , ) ( ) ( , ), ( , ) ( ) ( , )F x t F x F x t G x t G x G x t= +Δ = +Δ   (1b) 
where ( ) and ( )F x G x denote the nominal system vector 
functions, ( , ) and ( , )F x t G x tΔ Δ are the uncertain system 
vector functions. The system (1) is assumed to be 
reachable and observable at 0 .nx ∈ℜ  Based on the 
linearizing around some suitable operating point, e.g., 
equilibrium point 0 0( , )x u of the controlled system (1), a 
fuzzy dynamic system using Takagi and Sugeno model to 
represent local linear input/output relations of nonlinear 
dynamic systems is described by the following fuzzy 
IF-THEN rules: 

System rule i: IF 1 1( ) is ...iz Mφ  and ( ) is i
n nz Mφ  

  THEN ( ) ( ) ( ),i ix t A x t B u t= +� for 1,2,..., ,i N=     (2) 

where ( ) [ ( ) ( )],T T Tz t x t u t=  
0

, ( ) ,i n n
z z

n n A F x x ×
=

≤ = ∂ ∂ ∈ℜ  

0
( ) ,i n m

z z
B G x x ×

=
= ∂ ∂ ∈ℜ N is the number of IF-THEN 

rules, ( )x t  denotes the output from the ith IF-THEN 
rules, and 1 2( ), ( ),..., ( )nz z zφ φ φ are the premise variables. 

Assume that ( ),  for 1,2,...,i iA B i N= are known and 
controllable. The output of the overall fuzzy system is 
inferred as follows: 

1
( ) ( ) ( ) ( )N i i i

i
x t z A x t B u tμ

=
⎡ ⎤= +⎣ ⎦∑�           (3a) 

where  

1
( ) ( ) ( ) 0,Ni i i

i
z z zμ ρ ρ

=
= ≥∑    

11
( ) ( ( )) and  ( ) 1.n Ni i i

j j ij
z M z zρ φ μ

==
= =∑∏   (3b) 

Then the following uncertain system vector functions 
( , ) and  ( , ),A z t B z tΔ Δ  those are denoted as nonlinear 

time-varying uncertainties caused by the approximation 
error of fuzzy-model and uncertain system vector 
functions:  

1
( , ) ( , ) ( ) ( )N i i

i
A z t F x t z A x tμ

=
Δ = −∑    

1
( , ) ( , ) ( )N i i

i
B z t G x t z Bμ

=
Δ = −∑ .          ( 4 ) 

Similarly, a fuzzy dynamic system using Takagi and 
Sugeno model to represent local linear input/output 
relations of reference model is described by the 
following fuzzy IF-THEN rules: 

Reference Model Rule i: IF 1 1( ) is ...iz Mφ  and 
( ) is i

n nz Mφ  
THEN ( ) ( ) ( ),i i

m m m mx t A x t B r t θ= + +� for 1,2,..., ,i N= (5) 
 

where { }, e  0, ,i n n i i n m
m m mA A Bλ× ×⎡ ⎤∈ℜ ℜ < ∈ℜ⎣ ⎦ ( ) mr t ∈ℜ  

is a known reference input, and θ  denotes a phase-lead 
angle for compensating the phase-lag of the reference 
model. The output of the overall reference model system 
is inferred as follows: 

1
( ) ( ) ( ) ( )N i i i

m m m mi
x t z A x t B r tμ θ

=
⎡ ⎤= + +⎣ ⎦∑� .      (6) 

 Define the following switching surface: 
( ) ( )S t Dx t= �                          ( 7 ) 

where ( ) ( ) ( ) and m n
mx t x t x t D ×= − ∈ℜ�  is chosen such 

that the dynamics of ( ) 0S t = is Hurwitz. Suppose that 
the proposed GFMBAVSC share the same fuzzy sets 
with the fuzzy system (2). 

Controller Rule i: IF 1 1( ) is ...iz Mφ  and ( ) is i
n nz Mφ  

THEN ( ) ( ) ( )i i
eq swu t u t u t= + .               ( 8 ) 

Let 

 
( ) {

( ) }
1

( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

i i i i
eq m m

Ti i
m

u t DB DA x t DA x t

DB r t S t W t zθ σ Ψ

−
= − −

⎡ ⎤− + + ⎣ ⎦

    (9a) 

( ) { } ( )1

1 2( )  ( ) ( ) ( )i i i i i i
swu t DB S t S t S t mη η ε α

−
⎡ ⎤= − + + −⎣ ⎦

                                      ( 9 b ) 
where i m mDB ×∈ℜ  is nonsingular, { }1 11 1,..., ,i i i

ndiagη η η=  

{ }2 21 2,..., , 0,i i i i
ndiagη η η ε= >  iα  satisfies the following 
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inequality: 

  ( ) 1
( , ) ,  , , ( )i i

F
D B z t DB m i t z tα

−
Δ ≤ < ∀       (9c) 

and the scalar function ( )( )S tσ is designed so that 
globally fuzzy model based adaptive variable structure 
control is achieved: 

( )
( ) ( )

1

2

2 1 2

0,                                 as ( )
( ) 1,                                  as ( )

( ) ,        otherwise

s

s

s s s

S t n
S t S t n

S t n n n
σ

⎧ >
⎪= <⎨
⎪ − −⎩

                                      ( 9 d ) 
where 1 2 0.s m s mn h n p> > > >  The details of these 
parameters  and m mh p are discussed in the next section. 
The following equation describes the system 
uncertainties caused by the approximation error of fuzzy- 
model, uncertain system vector functions, and the 
interaction dynamics resulting from the other 
subsystems. 

 
{

( ) }
1

1

( , ) ( , ) ( ) ( )

( , ) ( ) ( , ) ( ) ( )

Ni i j j
j eq
j i

Ni j j
jeq sw
j i

z t D A z t B z u t

B z t u t B B z t z u t

Ω Δ μ

Δ Δ μ

=
≠

=
≠

= +

+ + +

∑

∑
 (10) 

where ( )z t is the same as (2). If the system uncertainties 

are mild, then ( )( ) 0S tσ = is set. Otherwise, the 
following learning law (e.g., [1]) is considered. 

 ˆ ˆ( ) ( ) ( ) ( )i i T i iW t z S t W tβΨ γ= −�            (11a) 
where 0iβ > ∈ℜ  denotes a learning rate, 0iγ > ∈ℜ  
denotes an e-modification rate to ensure the boundedness 
of learning weight, ˆ ( )i L mW t ×∈ℜ stands for the learning 
weight, ( ) LzΨ ∈ℜ  represents the fuzzy basis function: 

[ ]2( ) 1 ( ) ... ( ) T
Lz z zΨ ϕ ϕ=          (11b) 

where
2 2( ) exp ( ) ,j j jz z t cϕ σ⎡ ⎤= − −⎢ ⎥⎣ ⎦

, ,j jL c σ  for j = 2, 

3,…, L are known, and the centers   for 2,3,...,jc j L=  
are chosen as the normal distribution in the 
corresponding domain. Hence, the overall control law is 
described as follows: 

1
( ) ( ) ( ) ( )N i i i

eq swi
u t z u t u tμ

=
⎡ ⎤= +⎣ ⎦∑ .          (12) 

  
The objectives of the paper are expressed as follows 

(cf. Fig. 1).  
(i) If the system uncertainties (10) are not enormous, 
based on a fuzzy model (2) a GFMBAVSC (9) 
with ( )( ) 0S tσ = or ˆ ( ) 0iW t = is constructed to stabilize 
the nonlinear time-varying dynamic system (1). Then the 
system state ( )x t will asymptotically track the output of 
reference model, i.e., ( ).mx t In addition, an eligible 
selection of reference model makes the system state track 
a trajectory dominant by a specific frequency. (ii) 
Similarly, if the system uncertainties (10) are huge, the 
proposed control with learning law (11) and 
( )( ) =1S tσ is considered to enhance the system 

performance and stability. (iii) According to the 

designed ( )( ) ,S tσ the proposed control is also achieved 
to improve the robust performance, e.g., accuracy of 
trajectory tracking, smoothness of control input. (iv) 
Based on the designed scalar function (9d), the globally 
fuzzy model based adaptive variable structure control is 
achieved.  
 

IV. CONTROLLER DESIGN 
 AND STABILITY ANALYSIS 

 
 Before verifying the stability, the derivative of 
switching surface is given as follows: 

 
( ){

( ) }

1

1
( ) ( ) ( , )

         ( ) ( , ) .

N i i
i

i i i
sw

S t z I D B z t DB

DB u t z t

μ Δ

Ω

−

=
⎡ ⎤= +⎢ ⎥⎣ ⎦

+

∑�

i
   (13) 

If the system uncertainties in (10) are mild, their upper 
bounds are estimated as follows:  

( , ) ( ), ( ),i iz t h z z t tΩΩ ≤ ∀        (14) 

where ( )ih zΩ is a known scalar function. Then the 
proposed control becomes a robust control, i.e., without 
the compensation of learning uncertainties (i.e., 
( )( ) 0S tσ = in (9a)). The corresponding convergent set 

of ( )S t  will be discussed later. 
Similarly, if system uncertainties are excess, the 

learning law (11) is employed to learn the system 
uncertainties ( , ).i z tΩ  It is supposed that the unknown 
signals ( , )i z tΩ  can be smoothly truncated outside of 

( ) ( )z t D z∈  (a compact subset in n m+ℜ ) for .t +∀ ∈ℜ  
Based on the learning model, the proposed GFMBAVSC 
is then constructed to improve system performance. The 
extension of universal approximation theory is stated as 
follows. 

 
Theorem 1: Suppose ( ) ( )z t D z∈  (a compact subset 
of n m+ℜ ), ( , ) : mf z t D +×ℜ →ℜ  is a continuous vector 
function, which is absolutely and relatively bounded with 
respect to arguments t and ( ),z t respectively. For an 
arbitrary constant 0,ε > there exists an integer L (the 
number of hidden neurons) and real constant matrix 

m LW ×∈ℜ , where
2

,mF
W W≤ such that  

( , ) ( ) ( , )T
ff z t W z z tε= Θ +   

where ( )zΘ is the fuzzy basis function, ( , ) ,f z t tε ε≤ ∀  

and ( ) ( ).z t D z∈  
 Based on the result of Theorem 1, the system 
uncertainties in a compact subset ( )D z  are assumed to 
be continuous and approximated by the following fuzzy 
basis function model: 

( )( , ) ( ) ( , )
Ti i iz t W z z tΩ Ψ= + υ           (15) 

where i L mW ×∈ℜ  is constant matrix which is not 
necessarily unique, ( )  ( ) ( ).i iz p z t D zυυ ≤ ∀ ∈  In addition, 

the upper bound of iW  is known, i.e., .i i
mF

W W≤  
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The compact subsets ( )D z  can be achieved because the 
result of the proposed control without learning 
compensation in (9a) with ( )( ) =0S tσ  can guarantee 

the boundedness of ( )z t . The estimated weight error of 

the ith fuzzy subsystem defined as ˆ( ) ( ).i i iW t W W t= −�  
Then the properties of the closed-loop system are 
addressed as follows. 
 
Theorem 2: Consider the nonlinear time-varying 
dynamic system (1) with  (0) nx ∈ℜ and the proposed 
GFMBAVSC (9) with the switching gains 

1 2 0,i
nIη δ> > 2

i i
np Iυη >  and the learning law (11). 

Then 1ˆ ˆ( ),  ( ),...,and ( )Nu t W t W t are UUB, ( ) and ( )S t x t   
GUUB. The system performances are achieved as 
follows:  
(i) As 1( ) ,sS t n>  

{ }1 ( )  0 ( )m
mS t S t hΨ = ∈ℜ ≤ ≤               (16a) 

where 

( ){ }1 2 1( )  ( ) 2  2i i i i i

F F
h z h zΩε η η δ⎡ ⎤= + − −⎣ ⎦  (16b) 

( )2 1( ) ( ) 2i i i i

F
h z h zΩε η δ= −              (16c) 

2

1 2 1( ) ( ) ( ) ( )i i i ih z h z h z h z⎡ ⎤= + −⎣ ⎦              ( 16d ) 

1
max ( )i

m i N
h h z

≤ ≤
⎡ ⎤= ⎣ ⎦ .                       (16e) 

(ii) As 2( ) ,sS t n< where 2 ,s mn h<  

{
}

1
2 ( )  0 ( ) ,

      0 ( ) ,for 1

N
m

i i

F

Z t S t p

W t q i N

Ψ += ∈ℜ ≤ ≤

≤ ≤ ≤ ≤�
         (17a) 

where 
1( )  ( ) ( ) ... ( )  T N

F F
Z t S t W t W t⎡ ⎤= ⎣ ⎦

� �    (17b)  

( )
1
max i

m i N
p p

≤ ≤
= , ( )2i i i i

mq Wγ γ δ= −          (17c) 

( ) ( ){ }1 2 1 2  2i i i i i

F F
p pυε η η δ= + − −      (17d) 

( )2 1 2i i i i

F
p pυε η δ= −                   (17e) 

( )21 2 1
i i i ip p p p= + − .                   (17f) 

(iii) As 2 1( ) ,s sn S t n≤ ≤ the corresponding result can 
be obtained by the mean value of (16) and (17). 
 
Proof: For simplicity, the arguments of variable are 
omitted. As 1sS n> , the following Lyapunov function is 
defined.  

1 2 0,  as 0.TV S S S= > ≠               ( 1 8 ) 
Taking the time derivative of (18) and assuming that 

1 1,  where 0,V Vδ δ≤ − >�  gives 

1  2T TV S S S Sδ= +� �                ( 1 9 ) 

where 1 1 1.V V Vδ= +� �  Substituting (13), (14), and (9) 

with ( )=0Sσ  into (19) yields 

( )( )

( ) ( ){

( ) ( ) ( )

( ) ( ) ( )

1

2
1 1

1

1

1

2

1 1

11

2

2

2 2

2

i
iN

T i i
ii

i

i

i i
N iF

ii

i i
iF

i i

F F

N i i i i
i F

I D B DB SV S S
Sm

S

S
S S

S

hS S

S H S S

Ω

Δ ημ η
εα

δΩ

μ η δ
ε

ε

η
ε

η δ η δ

μ η δ ε

−

=

=

=

⎧ ⎡− + ⎛ ⎞⎪ ⎢≤ +⎜ ⎟⎨ ⎢ ⎜ ⎟+−⎪ ⎝ ⎠⎢⎣⎩
⎫⎤+ + ⎬⎦ ⎭

−
≤ − +

+

⎫
⎪+ − + ⎬

− − ⎪⎭

≤ − − +

∑

∑

∑

�

                                      ( 2 0 ) 
where ( ) 2

1 22 .i i iH S S h S h= + −  When ,mS h≥ the 

inequalities ( ) 0 for 1,2,..., ,iH S i N≥ =  are satisfied. 

Then, outside of the domain 1Ψ  in (16a) making 

0 (or  )V V Vδ≤ ≤ −� �  is achieved. Hence, the signal S  
exponentially converges into the domain 1.Ψ   
 Similarly, as 2 ,s mS n h< < the following Lyapunov 
function is defined.  

 ( ){ } ( )2 1
2  2

   0,   as 0 or 0

TNT i i i i
i

T i

V S S tr W W

Z RZ S W

μ β
=

= +

= > ≠ ≠

∑ � �

�
   (21) 

where 1 11 2 (2 ) ... (2 ) 0N NR Diag μ β μ β⎡ ⎤= >⎣ ⎦  
( 1) ( 1).N N+ × +∈ℜ Similarly, taking the time derivative of (21) 

and assuming that 2 2 ,  where 0,V Vδ δ≤ − >� and using (9), 
(11), (12) yields 
 

( )( )

( )

( ) ( ){ }
( ){ } ( )

( )( )

2 2 2

1

2
1

1

1

1

1

2
1

1

 

2

ˆ  

 2

2

i
iN

i i
ii

i

Ti i

TN i i i T i i i
i

TN i i i i
i

i
iN

i i
ii

i

i

V V V

I D B DB SS
Sm

SW

tr W S W

tr W W

I D B DB SS
Sm

S

δ

Δ ημ η
εα

δΨ υ

μ βΨ γ β

δ μ β

Δ ημ η
εα

δυ

−

=

=

=

−

=

= +

⎧ ⎡− + ⎛ ⎞⎪ ⎢≤ +⎜ ⎟⎨ ⎢ ⎜ ⎟+−⎪ ⎝ ⎠⎢⎣⎩
⎫⎤+ + + ⎬⎥⎦ ⎭

− −

+

⎧ ⎡− + ⎛ ⎞⎪ ⎢= +⎜ ⎟⎨ ⎢ ⎜ ⎟+−⎪ ⎝ ⎠⎢⎣⎩
⎫⎤+ +⎦

∑

∑

∑

∑

� �

�

�

� �

( ) ( ) ( ){ }1
 2

T TN i i i i i i i i
i

tr W W W W Wμ γ δ β
=

⎬
⎭

+ − +∑ � � � �
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( ) ( ){

( ) ( ) ( )

( )

( ) ( )

( ) ( )

1

1

2

1 1

2

1

1

1

2

2 2

2

2

2

i i
N iF

ii

i i
iF

i i

F F

i i i i i
mN i F F

ii

i i
N i F

ii

i i i i

F F
i

S
S S

S

pS S

W W W

S P S

S

W Q W

υ

μ η δ
ε

ε

η
ε

η δ η δ

γ δ γ
μ

β

η δ
μ

ε

γ δ

β

=

=

=

−
≤ − +

+

⎫
⎪+ − + ⎬

− − ⎪⎭
⎧ ⎫− −⎪ ⎪− ⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ −⎪≤ − ⎨ +⎪⎩

⎫− ⎪+ ⎬
⎪⎭

∑

∑

∑

� �

� �

  (22) 

where ( ) 2
1 22 ,i i iP S S p S p= + −  ( ) .i i i i

F F
Q W W q= −� �  

When mS p≥  and i i

F
W q≥� for 1,2,..., ,i N=  the 

inequalities ( ) 0iP S ≥ and ( ) 0i i

F
Q W ≥� for 1,2,..., ,i N=  

are obtained. Then outside of the domain 2Ψ  in (17a) 

makes 2 2 20 (or ).V V Vδ≤ ≤ −� � Hence, the signal Z  
exponentially converges into the domain 2.Ψ Similarly, as 

2 1,s sn S n≤ ≤ the corresponding result can be obtained 
by the mean value of (16) and (17). Finally, from (7)-(8) ) 

{ }1 2ˆ ˆ ˆ, , , , Nu W W W…  are UUB, and { },S x are GUUB 

because  (0) .nx ∈ℜ . 
         
        Q.E.D. 
Remark 1: Because ( ),i ip h zυ Ω<<  the comparison 
between mp  in (17a) and mh  in (16a) gives the 
tracking performance, i.e., ( ) ,S t of GFMBAVSC with 

( )( ) =1S tσ is much smaller than that with 

( )( ) =0S tσ .  

Remark 2:  To obtain the result 1 2 0,s m s mn h n p> > > >  
a suitable selection of 1 2 and s sn n is dependent on the 
system. However, the information of mh in (16e) can 
help to assign them. A thumb rule of their selection can 
be described as follows:  
(i) The simulation (or experiment) using GFMBAVSC 
with ( )( ) =0S tσ is first progressed. Then the steady 

state response of ( )S t (i.e., ssS ) is obtained. 
(ii) The value of m ssh S> is assigned.  
(iii) The values of 1 2  and  ,s m s mn h n hε ε≈ + ≈ − where 
ε is a suitably small positive constant (e.g., 0.1 mhε = ), 
are accomplished. 
 
Remark 3: If the system uncertainties are small enough, 
then the value of mh is also small enough. If the value of 

mh (or the system performance) satisfies the specification, 

then the value of 1sn approaches zero, i.e., the learning 
law (11) is shut down. 
Remark 4: If 0iε =  (i.e., no boundary layer for the ith 
subsystem), then 0  as ,  for 1,2,..., .mh t i N→ →∞ = Hence, 

( ) 0 (or ( ) 0) as .S t x t t→ → →∞� However, the control 
input is probably in a chattering way and the amplitude 
of control input is larger if the upper bound of 
uncertainties is larger. Although a larger value of iε will 
make the control input smooth, the tracking accuracy is 
generally deteriorated. Hence, a compromise must be 
made. This is one of important motivation that the 
system uncertainties must be learned to design an extra 
compensation so that the tracking accuracy and the 
degree of chattering control input are improved.  
 
Remark 5: The coefficients of the reference model of the 
ith subsystem, i.e., , ,i i

m mA B for 1,2,..., ,i N= are chosen so 
that the corresponding transfer function matrix, i.e., 

1
( )i i i i

m m n m mG s C sI A B
−

⎡ ⎤= −⎣ ⎦ { }1 2( ), ( ),..., ( ) ,i i i
ndiag g s g s g s=

has the properties: ( ) 1,i
j jg iw = ( ) ,i

j j jg iw θ∠ =  where jw  
for  denotes the specific frequency of the jth channel 
reference input. The matrices ,i

mC 1,2,..., ,i N=  are 
chosen so that the desired output of the fuzzy reference 
model is attained. For example, a sinusoidal (or 
triangular) trajectory with frequency jw is set, the 
reference input of the jth channel should add an extra 
lead phase to compensate the phase lag of the reference 
model, i.e., ( ) sin( ),j j j jr t r w t θ= + 1,2,...,j n= where jr   
is a assigned constant. 
 

V. CONCLUSIONS 
 

  In the beginning, a nonlinear time-varying 
dynamic system is approximated by N fuzzy-based linear 
state-space subsystems. Then the same fuzzy sets of the 
system rule are employed to design GFMBAVSC. 
Learning has the capability of reducing the system 
uncertainties affecting the performance of a dynamic 
system. Under suitable conditions, an asymptotical 
tracking result of the controlled system with mild 
uncertainties by the proposed GFMBAVSC without the 
compensation of learning uncertainties (i.e., 
( )( ) =0S tσ ) is obtained. As the uncertainties are huge, 

the tracking performances become only acceptable or 
even unstable. Under these circumstances, the proposed 
GFMBAVSC with the compensation of learning 
uncertainties (i.e., ( )( ) =1S tσ ) can improve the tracking 
performance and the stability of the closed-loop system. 
In addition, the global tracking for initial states outside 
of approximated domain is obtained as compared with 
previous studies, which are only semi-global ultimate 
bounded. It is believed that the proposed control scheme 
can be extended to a class of highly nonlinear 
time-varying dynamic systems.  
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Fig. 1. Control block diagram. 
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