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Abstract— Projected clustering discovers clusters in subsets of
locally relevant attributes. There is uncertainty and imprecision
about how groups of categorical values are learnt from data
for projected clustering and also the data itself. A method
is presented for learning discrete possibility distributions of
categorical values from data for projected clustering in order
to model uncertainty and imprecision. Empirical results show
that fewer, more accurate, more compact, and new clusters can
be discovered by using possibility distributions of categorical
values when compared to an existing method based on Boolean
memberships. This potentially allows for new relationships to
be identified from data.

I. INTRODUCTION

C
LUSTERING is a task for exploratory data anal-

ysis that uses unsupervised learning to sort unla-

belled/uncategorised data objects into groups according to

attributes of the data objects. Traditional approaches use

all attributes when measuring the similarity between data

objects. However, using all attributes has been shown to be

less effective on high-dimensional data [1] because there is

a lack of contrast in distance between data objects as the

number of dimensions increases. This is referred to as the

“curse of dimensionality” [2].

For answering specific questions, scientific design can

select only those attributes considered to be relevant to the

question. An increasing volume of data with many attributes,

i.e., high dimensional, is being recorded nowadays, and there

is less focus on specific questions. Alleviating the “curse

of dimensionality” in clustering by removing irrelevant at-

tributes is challenging when there is no prior knowledge of

what is relevant. Global dimensionality reduction methods,

such as feature selection and feature transformation (e.g.,

principal component analysis), do not overcome the problem

because relevant attributes of one cluster may be irrelevant

for another cluster.

Projected clustering overcomes this problem by finding

clusters in subsets of attributes, also known as subspaces.

Consider D = (xij) to be a dataset of i = 1, . . . , n data

objects and j = 1, . . . , d attributes, and A = {a1, . . . , ad} to

be the set of attributes in D. Each attribute aj is associated

with a discrete domain dom(aj), j = 1, . . . , d. A projected

cluster is defined as a pair (Xi, Yi), where Xi is a subset of

data objects in D, Yi is a subset of dimensions in D such that

the points in Xi project along each attribute in Yi (“relevant”

attributes) onto a small range of values compared to the
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whole dataset, and the points in Xi are uniformly distributed

along every other attribute not in Yi (“irrelevant” attributes).

The aim of projected clustering is to find k projected clusters

(Xi, Yi) where i = 1, . . . , k, and to find a set of outliers

O such that the dataset D can be partitioned into clusters

and outliers, i.e., {X1, . . . , Xk, O}. Projected clustering finds

subsets of attributes that are local to data objects rather than

using global dimensionality reduction.

The Projected Clustering via Cluster Cores (P3C) algo-

rithm [3] handles all-numeric data, all-categorical data, or

mixed data (by discretising numeric attributes and applying

the categorical approach). For a numerical attribute, an

interval S = [vl, vu] for attribute aj is defined for all real

values x such that vl ≤ x ≤ vu. For a categorical attribute,

an interval is defined as S = {xi1j , . . . , xihj} ⊆ dom(aj)
for h values of an attribute aj . In P3C, intervals of attribute

values are used to search for projected clusters, which is

similar to set-valued rules [4]. P3C’s notion of “adjacency”

relationships between values of numerical attributes comes

from the natural order of numerical values. However, there

is no natural order in categorical data, so P3C’s “adjacency”

relationship for categorical attributes is based on a transitive

relation where if a is related to b and b is related to c then

a is also related to c.
Consider the example dataset in Table I. There are 5

data objects representing people with 3 categorical attributes.

Beijing, Bristol, and London are “adjacent” because they

have another attribute in common, hip hop. Bristol and

London are “adjacent” because they have multiple, other

attributes in common, hip hop and nurse. P3C requires only

one other attribute in common, so the additional informa-

tion (two other attributes in common) is not used for the

“adjacency” relationship between Bristol and London. In

this example, the additional information indicates a stronger

“adjacency” relationship between Bristol and London (with

two common attributes) than between Beijing and Bristol

(with one common attribute), which is not used in P3C.

TABLE I: Example data from customer profiling to demon-

strate P3C’s “adjacency” relationship

municipality music job

1 Beijing hip hop chef

2 Bristol hip hop nurse

3 Bristol hip hop nurse

4 London hip hop nurse

5 Ipswich reggae researcher

We capture the additional information from the stronger

“adjacency” relationship, and its uncertainty and imprecision,

by modelling the “adjacency” relationship with possibility
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distributions. The additional information builds upon P3C by

providing a richer representation of the “adjacency” relation-

ship. We explore a method for learning discrete possibility

distributions of categorical values using P3C’s “adjacency”

relationship and introduce the Possibilistic Projected Cate-

gorical Clustering via Cluster Cores (2P4C) algorithm. The

2P4C algorithm extends P3C by incorporating possibility

distributions.

The outline of the paper is as follows: Section II discusses

related work, Section III introduces preliminary requisites

such as definitions and P3C, Section IV introduces 2P4C,

Section V presents experimentation and results, and Sec-

tion VI draws conclusions.

II. RELATED WORK

Different types and categorisations of “subspace” cluster-

ing are defined first in order to explain projected clustering

and related clustering methods. Various types of clustering

algorithm are reviewed for subspace and projected clustering

on categorical data and fuzzy and possibilistic clustering.

The terms “subspace” and “projected” have been used

interchangeably with some confusion in the literature [5],

and “subspace” clustering is often used as an umbrella term.

According to the type of problem that clustering tackles,

there are several types of “subspace” clustering [5].

Subspace clustering finds all clusters of objects in all

subspaces of a dataset according to the definition of a

cluster. CLIQUE [6] is a subspace clustering algorithm for

numeric values that performs an Apriori-like search, and its

effectiveness is determined by the granularity and positioning

of the grid used for discretising numeric values.

Projected clustering finds a unique assignment of each

point to exactly one subspace cluster or noise. PROCLUS

[7] is a projected k-medoid-like clustering algorithm with a

randomised approach that results in different clusterings.

Soft-projected clustering allows the soft assignment of

points to clusters (as opposed to hard assignment in projected

clustering), so clusters can overlap. LAC [8] is a soft-

projected clustering algorithm that has parameters for the

number of clusters k and the incentive to cluster on more

features h, and assigns weights to features according to the

local variance of data along each dimension.

P3C is a projected clustering algorithm that has also been

categorised as a hybrid clustering algorithm [5], because P3C

does not find all clusters in all subspaces and P3C can operate

with hard/soft assignment of points to clusters. P3C uses one

parameter, which affects the sensitivity of finding projected

clusters, and finds maximal patterns that can be understood

as a more compact set of results when compared to other

Apriori-like algorithms.

It should be noted that projected clustering was proposed

independently and simultaneously to Probabilistic Latent

Semantic Indexing (PLSI) [9][10], which has similar aims

of clustering and dimensionality reduction but on text.

Subspace clustering can be categorised according to the

type of approach that clustering takes [5]. For example,

CLIQUE uses a bottom-up search based on the Apriori asso-

ciation rule mining algorithm [11] that also uses a grid-based

approach [12] where a subset of the dimensions forming

small clusters are discovered first and are then expanded

to find larger clusters with more attributes. PROCLUS uses

a top-down approach starting with a predefined number of

clusters from the full-dimensional space that are reduced

to lower dimensions. Top-down approaches are capable of

discovering subspaces, but less likely to discover projections

[5].

Subspace clustering on categorical datasets has been per-

formed by CLICKS [13]. CLICKS requires all objects in the

same cluster to have the same value for each attribute in the

subspace, which differs from P3C that allows multiple values

in an interval of categorical values. CLICKS does not use the

Apriori-like search, instead it performs a depth-first search

for maximal cliques in a k-partite graph. HSM [14] performs

density-based subspace clustering on heterogeneous data.

Similarly to P3C, HSM can operate on datasets containing

both numeric and categorical attributes. A projected cluster-

ing method was proposed by [15] for categorical datasets.

[16] defined a dissimilarity measure for categorical data that

gives more importance for some attributes in one cluster and

more importance to other attributes in other clusters.

Existing algorithms for clustering have been modified for

discovering subspaces with fuzzy approaches. The k-means

approach was adapted [17] to include a fuzzy weighting of

attributes of a cluster in a similar manner to LAC. Gustafson-

Kessel clustering has been used for fuzzy attribute weighting

[18] and possibilistic attribute weighting [19] in subspaces.

Fuzzy c-means has been modified for fuzzy weighting of

descriptors of subspace clusters [20]. Fuzzy or weighting

approaches for subspace clustering of categorical data exist

[21] [22], however, they are top-down approaches that require

a predetermined number of clusters.

III. PRELIMINARIES

Preliminary definitions are introduced before they are used

in the main algorithm presented in Section IV. An overview

of P3C is also presented before the extensions in 2P4C are

presented in Section IV.

A. Definitions

These definitions follow on from the definitions in Sec-

tion I.

For a categorical attribute aj in 2P4C, a discrete possibility

distribution of unordered categorical values represents an

interval1 Π on attribute aj that is defined as

Π =

{
x1

π(x1)
,

x2

π(x2)
, . . . ,

xh

π(xh)

}
, (1)

where x is one of h values, and π is degree of mem-

bership. The possibility distribution of (1) extends P3C’s

1An interval is different to a fuzzy interval (or possibility interval), which
is characterised by a trapezoidal fuzzy set where b = c, or an interval-value
fuzzy set.
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crisp approach by allowing membership values with different

degrees. An example of a categorical possibility distribution

is presented in the results (15).

The width of interval Π is

width(Π) =

∑
π∈(Π) π

| dom(aj) |
, (2)

which effectively normalises categorical data in a manner

similar to P3C’s normalisation of numerical data.

Let Π be an interval on attribute aj . The support set of Π
is SuppSet(Π) = {x ∈ D | πΠ(x

(aj)) > 0}, which contains

the data objects that belong to Π. The possibilistic support

of Π is defined as

PossSupp(Π) =
∑

x∈SuppSet(Π)

πΠ(x), (3)

where π is the membership function of a possibility distri-

bution Π for element x.

A possibilistic projected cluster has a possibilistic p-

signature P that is defined as a set P = {Π1, . . . ,Πp}
of p intervals on a (sub)set of p distinct attributes

{aj1 , . . . , ajp}(ji ∈ {1, . . . , d}). For example, a possibilistic

3-signature P from Table I might be

P = {Πmunicipality,Πmusic,Πjobs}, (4)

where

Πmunicipality =

{
Beijing

π(Beijing)
,

Bristol

π(Bristol)
,

London

π(London)

}
, (5)

Πmusic =

{
hip hop

π(hip hop)

}
, (6)

Πjob =

{
chef

π(chef)

}
. (7)

The support set of a possibilistic p-signature P =
{Π1, . . . ,Πp} is defined as SuppSet(P ) = {x ∈ D |
x ∈

⋂p

i=1 SuppSet(Πi)}. The possibilistic support of a

possibilistic p-signature P is

PossSupp(P ) =
∑

x∈SuppSet(P )

min
Π∈P

πΠ(x), (8)

where the minimum is used for intersection of intervals in

P .

The concept of a possibilistic p-signature is used later in

the 2P4C algorithm as candidate patterns for approximat-

ing a true possibilistic p-signature of a projected cluster.

A true possibilistic p-signature P̃ of a projected cluster

(Xi, Yi), Yi = {a1, . . . , ap}, is a possibilistic p-signature

{Π1, . . . ,Πp} where Πi is the smallest interval on attribute

ai that projects the data points in Xi onto ai.

B. The P3C algorithm

Pseudocode of the original P3C algorithm [3] is given

below.

1) Discretise each attribute into bins.

2) Determine attributes with non-uniform distribution, and

compute intervals that approximate projections of clus-

ters onto these attributes.

3) Aggregate the intervals into cluster cores.

4) Refine cluster cores into projected clusters, compute

outliers, and detect clusters’ relevant attributes.

The first step of P3C is only relevant to numeric data,

not categorical data. The second step finds “adjacency”

relationships between bins, and uses these to create intervals

of bins. The third step refers to using the intervals in a

bottom-up search of clusters cores. The fourth step finds

the membership matrix of data objects to projected clusters.

2P4C follows the same steps as P3C.

IV. THE 2P4C ALGORITHM

2P4C uses the same algorithm as P3C (see Section III-B)

combined with possibility distributions. Steps 2 and 3 of the

P3C pseudocode were modified to incorporate the possibility

distributions, however, the underlying principal of the P3C

algorithm is the same.

The changes to step 2 are presented in Section IV-A. The

changes include creating: intervals of items with possibil-

ity membership instead of crisp membership; measures of

observed and expected possibilistic support instead of crisp

support; and a continuous Poisson distribution instead of a

discrete Poisson distribution.

The changes to step 3 are presented in Section IV-B.

The changes include incorporating the measures of observed

and expected possibilistic support into the same bottom-up

search.

A. Approximating true possibilistic p-signatures

2P4C finds intervals—discrete possibility distributions of

categorical values—that give a good approximation of true

possibilistic p-signatures. This includes finding bins of cate-

gorical data that form the intervals.

1) Binning: The same approach as P3C for finding bins

of categorical data is used here (step 1 of pseudocode in

Section III-B). The idea is to find attribute bins with unusu-

ally high support that do not belong to a normal distribution.

Attribute bins with non-uniform distribution may be relevant

to a projected cluster, as defined in Section I.

There is a bin for every value in the domain of a cate-

gorical attribute. The support of every bin is calculated. The

Chi-square test statistic is calculated with a confidence level

fixed at α = 0.001. The Chi-square statistic tests whether

the bins in an attribute have a normal distribution. If the

Chi-squared test determines an attribute to be non-uniform

then the bin with the largest support is marked, and the

remaining unmarked bins are tested again with the Chi-

square test statistic. The process is repeated by marking the

bin with the next largest support until the Chi-square test
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statistic determines the unmarked bins of an attribute to have

a normal distribution.

Now that the non-uniform bins are identified, intervals of

marked bins are then created.

2) Intervals—Creating “adjacency”: As previously men-

tioned in the introduction, an interval of numeric data is

created based on “adjacency” in the natural order of real

values. However, there are no consecutive values and no

natural order with categorical data. Instead, an alternative

approach for defining “adjacency” was created in P3C, and

2P4C improves the approach by better utilising the available

data. We first describe our extension to P3C’s Poisson-based

criterion for creating and searching for intervals. We then

introduce how the intervals are formed for discrete possibility

distributions of categorical values.

For the continuous Poisson-based criterion, consider P

to be a possibilistic p-signature, Π′ to be an interval, and

R = P ∪ {Π′} to be a larger possibilistic (p+1)-signature.

For searching for possibilistic p-signatures, R is a candidate

possibilistic (p+1)-signature to be tested; and for creating

intervals, R is a combination of bins from two distinct

attributes, which determines if they belong to the same

cluster projection onto those attributes. The Poisson-based

criterion assesses how likely the observed possibilistic sup-

port PossSupp(R) of R is with respect to the expected

possibilistic support EPossSupp(R = P∪Π′) of R given P .

If the observed support is less likely then this provides strong

evidence that Π′ represents the same cluster as that of P . The

expected possibilistic support EPossSupp(R = P ∪ {Π′})
of R given P is defined as

EPossSupp(R = P ∪ {Π′} | P ) =

PossSupp(P )× width(Π′). (9)

The continuous Poisson-based criterion in 2P4C deter-

mines when the observed possibilistic support is significantly

larger than the expected possibilistic support. A continuous

extension CPoissonλ(k) of the Poisson distribution handles

real numbers of possibilistic support and is defined as

CPoissonλ(k) =
λke−λ

Γ(k)
, (10)

where λ is a positive real number, which is equivalent to

the expected possibilistic support, and k is the observed

possibilistic support. The gamma function Γ substitutes the

(discrete) Poisson distribution’s denominator k! and is de-

fined as

Γ(k) =

∫ ∞

0

xk−1e−x dx. (11)

Extending the Poisson-based criterion to continuous values

allows possibilistic and fuzzy events to be included, which

relates to previous work on probability measures of fuzzy

events [23].

For creating intervals, the Poisson-based criterion deter-

mines if two bins from two distinct categorical attributes

belong to same cluster projection. Formally, according to

P3C, consider two marked bins mb1 and mb2 from two

distinct categorical attributes ai and aj (i 6= j), and a Poisson

threshold P . Marked bins mb1 and mb2 belong to the same

true possibilistic p-signature onto ai and aj if the following

two conditions are satisfied.

1) PossSupp({mb1} ∪ {mb2}) >
EPossSupp({mb1} ∪ {mb2} | {mb1}), and

CPoisson(PossSupp({mb1} ∪ {mb2}),
EPossSupp({mb1} ∪ {mb2} | {mb1})) < P

2) PossSupp({mb2} ∪ {mb1}) >
EPossSupp({mb2} ∪ {mb1} | {mb2}), and

CPoisson(PossSupp({mb2} ∪ {mb1}),
EPossSupp({mb2} ∪ {mb1} | {mb2})) < P

P3C’s “adjacency” relationship is based on transitive re-

lations between all pairs of bins from distinct categorical

attributes. If two marked bins mb1 and mb2 from the same

categorical attribute ai share at least one attribute from

another categorical attribute aj , (i 6= j), e.g., (mb1,mb3) and

(mb2,mb3), then mb1 and mb2 are “adjacent”. Intervals are

formed from bins on the same attribute that have connected

components of “adjacent” bins, which are crisp sets. P3C’s

requirement of sharing at least one attribute disregards the

available information. For example, one shared attribute

has the same meaning as ten shared attributes. So, 2P4C

creates intervals that are possibility distributions to express

different membership of bins according to the uncertainty

and imprecision of the “adjacency” relationship.

3) Intervals—Discrete Possibility Distributions of Cate-

gorical Values: Both 2P4C and P3C use the same principal

for binning data and defining “adjacency”. 2P4C extends the

principal of the Poisson-based criterion to handle continuous

numbers for observed possibilistic support and expected pos-

sibilistic support. We now introduce how 2P4C determines

membership of the intervals from “adjacency”. Determining

the possibilistic membership grades of discrete categorical

data is based on a normalisation method [24].

Possibility distributions are suitable for modelling classes

with non-sharp boundaries and gradual memberships that

relate to uncertainty [25]. We adopt a possibility distribution

[26] to also model the imprecision of the available informa-

tion, because the connected components in an “adjacency”

relationship provide a set of possible values and we can

not fix a specific value, hence the set is considered to be

imprecise. The possibility distribution models the uncertainty

of the “adjacency” relationships between set members, which

is considered to be unreliable or indeterministic because

a) the co-occurrence of some paired set members may be

more than that of other paired set members, and b) co-

occurrences may be coincidental rather than relational. A

probability distribution would be suitable if there was uncer-

tainty and precision, however, this problem has uncertainty

and imprecision [27].

We evaluate the relationships between values of the same

attribute whilst others have learnt possibilistic graphical

models of relations between different attributes [28].

2066



For each variable, there is a contingency table with marked

bins from the variable as rows and marked bins from all

other attributes as columns. The crisp support of bin-bin

pairs are the values in the table. For example, Table II is

the contingency table of variable municipality in Table I.

TABLE II: Example contingency table

music job
municipality hip hop reggae chef nurse researcher

Beijing 1 0 1 0 0

Bristol 2 0 0 2 0

London 1 0 0 1 0

Ipswich 0 1 0 0 1

We use a frequency-based possibilistic approach for mea-

suring membership grades. The possibilistic membership

grade for member xi in interval Π with |Π| > 1 is defined

as

πΠ(xi) =

∑|P ′|
j=1

{
Mij

∑|Π|

k=1
Mkj

if QtyBins(Π, j) > 1;

0 otherwise;

|P ′|
(12)

where P ′ is all other attributes and bins (e.g., {hip hop,

reggae, chef, nurse, researcher} from Table II), and M is

the contingency table with rows denoted as i and columns

denoted as j. QtyBins determines the number of bins in

an interval that share a value from another attribute. For

example, QtyBins(Π1, 1) for the example interval Π1 and

the ‘hip hop’ attribute of music gives 3 shared values (1, 2,

and 1 in column hip hop of Table II). QtyBins is defined as

QtyBins(Π, j) =

|Π|∑
i=1

{
1 if Mij > 0;

0 otherwise.
(13)

For the case where member xi in possibilistic interval Π
has the smallest possible value, i.e., |Π| = 1, the membership

grade is defined as

πΠ(xi) =
1

|P ′|
. (14)

For the example in Table II, consider two intervals for

municipality were created from the two conditions using

the Poisson-based criterion in the previous stage. They are

Π1 = {Beijing,Bristol,London} and Π2 = {Ipswich}. The

possibility distribution Π1 is defined as

Π1 =

{
Beijing

1/4
5

,
Bristol
2/4+2/3

5

,
London
1/4+1/3

5

}
,

=

{
Beijing

.05
,

Bristol

0.23̇
,

London

0.116̇

}
. (15)

A normal possibility distribution Π has a maximum

membership value of 1, i.e., ∃x′ such that πA(x
′) = 1.

However, our proposed method relaxes the requirement for

normality, so the membership values for a discrete categorical

possibility distribution Π can be sub-normal, i.e., ∄x′ such

that πΠ(x
′) = 1. The reason for relaxing this requirement is

to allow a weighting of set members relative to each other.

This is a similar reason to weighting linguistic variables

modelled with fuzzy sets in medical applications [29]. Sub-

normal possibility distributions cause issues concerning the

necessity measure that are addressed by the certainty measure

[30].

B. Cluster Core Search

Once true possibilistic p-signatures are approximated, an

Apriori-like search for cluster cores is performed. 2P4C

extends the method from P3C to handle possibility distri-

butions.

A possibilistic p-signature represents a projected cluster

core C if P consists of 1) only and 2) all intervals that

represent cluster C. So, a possibilistic p-signature P =
{Π1, . . . ,Πp} with support set SuppSet(P ) is a cluster core

if:

1) For any possibilistic q-signature Q ⊆ P where q =
1, . . . , p− 1 and interval Π′ ∈ P \Q, it holds that:

PossSupp(Q ∪ {Π′}) > EPossSupp(Q ∪ {Π′} | Q),
and

CPoisson(PossSupp(Q ∪ {Π′}),EPossSupp(Q ∪
{Π′} | Q) < P

2) For any interval Π′ not in P , it holds that:

PossSupp(P ∪ {Π′}) ≤ EPossSupp(P ∪ {Π′} | P ),
and

CPoisson(PossSupp(P ∪ {Π′}),EPossSupp(P ∪
{Π′} | P ) ≥ P

The first condition satisfies the downward closure property,

which means for any possibilistic p-signature P that satisfies

the first condition, any sub-signature of P also satisfies the

first condition. This property allows an Apriori-like search.

The second condition satisfies the conditions for a pos-

sibilistic p-signature to be maximal, which means for any

possibilistic p-signature P that satisfies the first condition,

there are no super-signatures of P .

Projected clusters are computed from the cluster cores and

support sets according to P3C, which also detects outliers that

do not belong to a projected cluster.

V. EXPERIMENTATION

2P4C and P3C were compared on multiple real-world

datasets. The aims of the experiments were a) to analyse

performance of the two algorithms and b) to analyse the

benefit of using possibility distributions. The datasets are

discussed first followed by experimentation.

All runs of both algorithms were performed with a Poisson

threshold of 1.0e−10. The experiments were conducted on a

Windows 7 PC with a 2.4 GHz CPU and 4 GB RAM.
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A. Datasets

Six real-world benchmark datasets from the University of

California, Irvine (UCI)2 repository were used. The datasets

are listed in Table III with their properties.

It has been shown that as the number of dimensions

increases in different runs of (full-space) clustering, the

similarity between data objects/records starts to degrade at

10 dimensions [1]. So, a criterion for choosing datasets

was to have different size dimensions. The number of data

objects/records was also varied. All selected datasets are

labelled, so the clustering accuracy can be measured and

comparisons made between the two algorithms, which is

discussed in the next section. The Hepatitis and Molecular

biology (promoter gene sequences) datasets were not used

because preliminary experiments did not discover projected

clusters.

TABLE III: Properties of UCI datasets

Dataset # Records # Categorical attributes

Breast Cancer Wisconsin 699 10

Congressional Voting 435 16

Lymphography 148 18

Mushroom 8124 22

Soybean 307 35

Splice3 3190 61

B. Performance analysis

The performance of 2P4C and P3C were compared using

the following measures.

• Number of clusters.

• Execution time of the algorithm.

• Distribution of cluster size measures the percentage of

clusters that have few or many attributes. For example,

the number of clusters with two dimensions, the number

of clusters with three dimensions, and so on.

• Average support size per cluster size measures the

average support for each (small/large) cluster size. For

example, the average support for clusters with two

dimensions, the average support for clusters with three

dimensions, and so on.

• F1 score measures clustering accuracy. The F1 score

is often used to measure supervised learning methods,

however, it is used here on unsupervised learning meth-

ods with labelled data to measure the accuracy of finding

real clusters in the datasets and to compare accuracy

between 2P4C and P3C. For each projected cluster i, the

true cluster ji (from labelled dataset) with the largest

number of shared data points is determined. Precision is

calculated for projected cluster i as the number of data

points shared with projected cluster i and true cluster ji

divided by the total number of data points in i. Recall is

calculated for projected cluster i as the number of data

points shared with projected cluster i and true cluster

2http://archive.ics.uci.edu/ml/
3Full name is Molecular biology (splice-junction gene sequences)

ji divided by the total number of data points in ji. The

F1 score of projected cluster i is the harmonic mean of

precision and recall, which is defined as

F1 = 2 ·
precision · recall

precision+ recall
. (16)

The F1 score of a clustering algorithm is the mean of

all projected cluster F1 scores.

The number of clusters and F1 scores are presented in

Table IV. 2P4C discovered less clusters than P3C in three

of the datasets. One of those datasets, Splice, was termi-

nated after running for many hours because the number of

candidate p-signatures was increasing at a high rate (almost

by a factor of one) at each p, which means a very large

number of clusters would have been produced after a very

large execution time. 2P4C discovered more clusters than

P3C in one of the datasets. In the other two datasets, P3C

discovered no clusters in one dataset and 2P4C discovered

no clusters in the other.

Three results do not contain F1 scores for either P3C

or 2P4C because no clusters were discovered or P3C was

terminated early. For the other three datasets, the F1 scores

were larger for 2P4C than P3C in two datasets and smaller

in one dataset. This suggests 2P4C is able to discover more

accurate projected clusters than P3C on most of the datasets

used.

TABLE IV: Performance results

# Clusters F1 score
Dataset P3C 2P4C P3C 2P4C

Breast Cancer Wisconsin 29 32 0.62 0.73

Congressional Voting 0 7 0 0.64

Lymphography 1 0 0.72 0

Mushroom 71 23 0.60 0.63

Soybean 59 2 0.40 0.27

Splice — 8 — 0.34

The percentage of clusters with different numbers of

attributes (cluster size) is presented in Figure 1. The purpose

is to explore the cluster size between both algorithms. For the

datasets where clusters were discovered by both algorithms

(Figures 1a, 1d, and 1e), 2P4C discovered more clusters that

were smaller than P3C. For the two datasets where 2P4C

produced clusters but P3C did not (Figures 1b and 1f), 2P4C

discovered clusters that were small, i.e., containing two or

three attributes. This demonstrates that 2P4C produces more

smaller clusters than 2P4C.

Figure 2 shows the average support per cluster size. The

support values from 2P4C are lower than P3C, which was

expected, because 2P4C handles partial membership with

possibility distributions whilst P3C has Boolean membership.

Some of the possibilistic supports are very small, particularly

in Figures 2d and 2f. An observation is that the average

supports have similar magnitudes per cluster size within each

dataset.

The execution time of 2P4C, in Table V, was less than

P3C in all datasets. A possible reason is that fewer clusters
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(f) Splice

Fig. 1: Distribution of cluster size for each dataset. Black is

P3C, diagonal pattern is 2P4C.

were discovered and the cluster sizes were smaller in 2P4C.

Larger execution times are observed for the Mushroom and

Splice datasets, which both have a large number of records

and attributes. No execution time of P3C was recorded for

the Splice dataset because it was terminated during execution

for the previously stated reason.

TABLE V: Execution times

Execution time (s)
Dataset P3C 2P4C

Breast Cancer Wisconsin 2.76 1.97

Congressional Voting 0.72 0.65

Lymphography 1.19 1.08

Mushroom 6853.50 77.31

Soybean 6.20 1.80

Splice — 67.01

C. Analysis of nested clusters

In the previous section, Figure 1 showed that 2P4C

produced projected clusters with fewer attributes than P3C.

To identify whether the algorithms discovered similar or

different clusters, an analysis was performed on the number

of clusters from one algorithm that were nested inside
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Fig. 2: Average support per cluster size for each dataset.

Normalised within [0, 1]. Black is P3C, diagonal pattern is

2P4C.

clusters from the other algorithm. A nested projected cluster

would suggest a more compact cluster. Nested means the

entire possibilistic p-signature of one cluster is contained

with a cluster from the other algorithm. For example, the

possibilistic p-signature

{municipality = {Beijing,Bristol,London},

music = {hip hop}},

is nested within possibilistic p-signature

{municipality = {Beijing,Bristol,London},

music = {hip hop},

job = {chef}},

because all of the intervals from the first projected cluster—

municipality and music—are contained within the second

projected cluster.

The projected clusters produced from 2P4C and P3C were

compared for all datasets, and the results are reported in

Table VI. A “—” indicates no result, because there were
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no cluster results from either P3C or 2P4C to allow a

comparison. 2P4C contained more nested clusters than P3C

in two of the datasets, and there were no nested clusters in

third dataset, Soybean. Note that 2P4C produced few clusters

from the Soybean dataset, which may account for no nested

clusters. The observation that 2P4C produces smaller clusters

with some of the same attributes as those clusters from P3C

could further support the suggestion that 2P4C discovers

compact clusters (fewer attributes) when compared to P3C.

TABLE VI: Number of nested clusters

# P3C clusters # 2P4C clusters
nested in nested in

Dataset 2P4C clusters P3C clusters

Breast Cancer Wisconsin 0 245

Congressional Voting — —

Lymphography — —

Mushroom 3 92

Soybean 0 0

Splice — —

VI. CONCLUSIONS

This paper demonstrates the viability and potential benefits

of adding variable membership grades with possibility distri-

butions in 2P4C. 2P4C produced higher clustering accuracy

and fewer clusters in most of the datasets. On one dataset,

P3C discovered no clusters whilst P3C discovered multiple

clusters. The number of clusters per cluster size and the

number of nested clusters suggests that 2P4C has more

compact clusters.

This paper’s contribution is that fewer, more accurate,

more compact, and new clusters can be discovered with 2P4C

when compared to P3C. To understand any importance of

this, the meaning of the clusters will be analysed in future

work with a real-world application. Scalability analysis will

also explore potential limitations of P3C that 2P4C might

overcome, such as the observed large execution times of P3C.

Alternative representations and learning methods of variable

membership grades may also be explored.
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