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Abstract— Sigma count measures scalar cardinality of fuzzy
sets. A problem with sigma count is that values of scalar
cardinality are calculated entirely from many small membership
grades or entirely from few large membership grades. Two
novel scalar cardinality measures are proposed for the fitness
of a genetic algorithm for tuning membership functions prior
to fuzzy association rule mining so that individual membership
grades are larger. Preliminary results show a decrease in small
membership grades and an increase in large membership grades
for fuzzy association rules tested on real-world benchmark
datasets.

I. INTRODUCTION

Association rule mining is an exploratory and descriptive
rule induction process of identifying significant relations be-
tween items in Boolean transaction datasets [1] used for data
analysis and interpretation. Association rules are expressed
as an implication of the form X ⇒ Y where the antecedent
and consequent are sets of Boolean items, which are known
as itemsets, where X ∩ Y = ∅. For example, beer ⇒ pizza
means there is a frequent association between customers who
purchased beer and pizza.

For datasets containing numeric items instead of Boolean
items, quantitative association rules [2] model the relations
between intervals of items containing numeric values, such as
4–5 items purchased, greater than 60 seconds spent visiting
a Web page, or company shares greater than 1,000 [2]. In
fuzzy association rule mining, concepts are described with
linguistic terms, and fuzzy sets [3] model the uncertainty
and imprecision of linguistic terms used by humans.

The support-confidence framework introduced two mea-
sures for Boolean association rules [4]. Support measures
the number of transactions for a rule X ⇒ Y in which
both X and Y occur. Confidence measures the conditional
probability of Y being in a transaction given that it contains
X . The generalisation of support and confidence from crisp
sets to fuzzy sets often uses Zadeh’s sigma count σ for fuzzy
support

FuzzySup(A ⇒ B) = σ(min(A,B)), (1)

where the minimum min is used for the intersection of two
fuzzy sets A and B [3].

Fuzzy support of an itemset can also be expressed as scalar
cardinality of a fuzzy set containing dataset transactions [5].
The membership grades express the degree of belonging of
transactions to an itemset. For example, consider a dataset
of 19 transactions and 2 itemsets C and D
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The sigma count causes a problem in the scalar cardinality
of a fuzzy set [6] [7]. The scalar cardinality of each set
using the sigma count is 1.9. However, A contains only 2
members that both have large membership grades, and B
contains 19 members with small membership grades. The
fuzzy supports of A and B are the same when the number
of transactions is very different. The sigma count does not
distinguish between many elements with small membership
grades and few elements with large membership grades.

The sigma count problem effects the accuracy and inter-
pretability of fuzzy association rules, and more generally
fuzzy rule-based systems. Consider two fuzzy association
rules from C and D in the previous example. Many small
membership grades suggests the rule is a less accurate
description of a relation in the dataset, and also the meaning
and interpretability of the rule is inconsistent.

This paper proposes two scalar cardinality measures of
fuzzy sets of transactions, which are based on the sigma
count, for tuning the membership functions (of fuzzy sets
describing linguistic terms of variables) prior to mining fuzzy
association rules. The aim of the proposed scalar cardinality
measures is to guide the genetic tuning towards more larger
membership grades in the fuzzy set.

The outline of the paper is as follows: Section II reviews
previous related work, Section III discusses the effect of
the sigma count problem on the accuracy-interpretability
problem, Section IV presents the method of tuning the
membership functions and proposes the two scalar cardinality
measures of fuzzy sets, Section V presents preliminary
results demonstrating the capability of the proposal, and
Section VI draws conclusions.

II. RELATED WORK

Previous research on fuzzy association rule mining, the
sigma count problem, and cardinality of fuzzy sets are
reviewed.

Fuzzy sets were initially proposed as a less terse sum-
marisation of data with linguistic terms in data mining [8].
After the concept of fuzzy association rule induction was
initially proposed without an algorithm [9], the F-APACS
algorithm for fuzzy association rule mining was proposed
[10]. FuzzyApriori [11] is an extension of Apriori [4] for
fuzzy association rule mining. FuzzyApriori performs the
same bottom-up search as Apriori combined with the down-
ward closure property for discovering itemsets (a subset of
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all items in the dataset) greater than or equal to the minimum
fuzzy support and rules are generated that are greater than
or equal to the minimum confidence. Fuzzy association rules
have been used for descriptive data mining, such as Web
usage mining [12], and also predictive data mining [13].

As described in the introduction, the sigma count problem
affects support but it also affects confidence. The following
example [14] demonstrates this. Confidence is measured as

Conf(A ⇒ B) =
σ(min(A,B))

σ(A)
, (2)

for two fuzzy sets A and B containing different members
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}
,

which leads to Conf(A,B) = 0. However,
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leads to

Conf(A,B) =
1000× 0.01

1 + 999× 0.01
≈ 0.91,

which is large for two disjoint sets.
The cardinality of a fuzzy set can be measured with either

scalar cardinality by aggregating integer or real values, or
fuzzy cardinality where the measure is a fuzzy set. The sigma
count [3] and power of a fuzzy set [15] are scalar cardinalities
that sum membership grades. To alleviate the effects of the
sigma count problem, the cardinality of the α-cut at levels of
0.5 has been used to replace real values with integer values
[16]. A similar approach proposed an interval between the
cardinality of the α-cut at 0.5 and the cardinality of the
strong α-cut at level 0.5 [17]. A different integer interval was
proposed in the range of the lower and upper expectations
of cardinality [18]. Weighted cardinality was proposed [14],
and a weighted summation of the cardinalities of alpha cuts
was also proposed [19].

A new, alternative perspective is to view fuzzy cardinality
for association rules as fuzzy numbers [6]. Different interpre-
tations of fuzzy sets have recently been proposed that offer
alternatives for dealing with the impact of small membership
values. Instead of mapping a universal set of elements
onto a membership scale, the X-µ approach maps from the
membership scale to the universe, and allows a visual inter-
pretation of fuzzy cardinality and fuzzy arithmetic [20]. The
X-µ approach has been applied in a fuzzy association rule
method [21]. A similar idea is used in gradual numbers and
the Representation-by-level (RL) approach, which represents
fuzzy concepts by an assignment of crisp sets to levels of
fulfilment of a property [22].

III. ACCURACY-INTERPRETABILITY

The accuracy-interpretability problem is a trade-off in the
design of a fuzzy rule-based system (FRBS) between creating
a true model of a system that is accurate [23] and creating
a model that is understandable and interpretable by humans
[24] [25]. The problem is also relevant to fuzzy association
rule mining because it shares components with FRBSs.

Accuracy is easily measured in FRBSs with measures
such as mean square error, so attention has focused on
interpretability [26]. For measuring the accuracy of fuzzy
association rules, previous research has focused specifically
on overcoming the sigma count problem, which has been
reviewed in Section II. However, this has not been addressed
from the perspective of the accuracy-interpretability problem.

How accurately does a rule represent a relation in a dataset
when the rules has many small membership grades compared
to another rule with one large membership grade? A rule with
many small membership grades is a less accurate description
because the scalar cardinality measure does not model each
individual item in the count.

The sigma count problem occurs in support measures or
scalar cardinality, both of which measure accuracy. This
problem also raises questions about the interpretability of
fuzzy association rules. Consider two rules with the same
fuzzy support, it is not known whether both rules have
many small membership grades or few large membership
grades. Many small membership grades can be misleading
and counter-intuitive because the membership grades of each
element are small but the accumulated membership grades
are relatively large. Are many small membership grades
useful in interpreting fuzzy association rules?

Accuracy and interpretability are competing objectives
when learning/tuning FRBSs and membership functions for
fuzzy association rules, so a trade-off is often sort. Takagi-
Sugeno-Kang FRBSs [27] [28] use fuzzy numbers for ap-
proximation, which do not have linguistic terms assigned to
fuzzy sets, to achieve better levels of accuracy but at the
cost of losing interpretability. Improving accuracy of scalar
cardinality is an approach that can maintain the interpretabil-
ity of linguistic terms assigned to fuzzy sets in descriptive
Mamdani approaches.

IV. PROPOSED METHOD

The aim is to improve the accuracy of fuzzy associa-
tion rules by increasing the number of larger membership
grades, whilst maintaining the interpretability of membership
functions. A Genetic Algorithm (GA) [29] performs genetic
tuning [30] of the membership functions before fuzzy associ-
ation rules are mined. Our proposed approach considers the
data as fuzzy transactions in the GA with scalar cardinality
and as non-fuzzy transactions when mining fuzzy association
rules with fuzzy support according to FuzzyApriori.

The proposed method uses an existing GA model for
tuning membership functions and the general model of fuzzy
association rules and fuzzy transactions, which are both
discussed here. The two scalar cardinality measures of fuzzy
transactions are proposed for the fitness function of the GA.
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A. Genetic Algorithm and 2-tuple linguistic representation
An existing GA was chosen to demonstrate the two scalar

cardinality measures. Alcalá-Fdez et al. [31] used the Cross-
generational elitist selection, Heterogeneous re-combination,
and Cataclysmic mutation (CHC) GA [32] and the 2-tuple
linguistic representation [33]. The combination of this GA
and fuzzy representation has a proven ability in achieving
both accuracy and interpretability of fuzzy association rules
[31] [12].

The 2-tuple linguistic representation is based on a sym-
bolic translation of a fuzzy set [33]. The symbolic translation
is the lateral displacement of a fuzzy set within the interval
[−0.5, 0.5) about the fuzzy set’s index and between two lin-
guistic terms on the universe of discourse. The membership
function maintains its shape whilst it is laterally displaced
left or right from its original membership function but not
further than the middle points of adjacent fuzzy sets. The
2-tuple linguistic representation is defined as

{(sj , αj) | sj ∈ S, αj ∈ [−0.5, 0.5)}, (3)

where S is a set of linguistic labels, α quantifies the lateral
displacement of a linguistic label sj within the interval
[−0.5, 0.5) and j is the index. An example of the 2-tuple
linguistic representation is shown in Figure 1.
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Fig. 1: Example of a 2-tuple membership function (s1,−0.3)
(light grey) that is displaced from membership function s1
(dark grey)

The CHC algorithm tunes the membership functions by
learning the lateral displacements of the 2-tuple linguistic
representation. The benefit of this approach is that the
accuracy is tuned whilst maintaining interpretability and the
dimensionality of the search space is reduced (membership
functions modelled by one parameter, lateral displacement)
hence the complexity of the fuzzy partitions is reduced [26].

The evolutionary process of CHC is illustrated in Figure 2.
There are three key differences of CHC compared to a
traditional GA. These differences are described here.

Cross-generational elitist selection
Selecting individuals for the next population oc-
curs across parents and offsprings. This selection
method is the same as that used in the (µ+ λ)
evolutionary strategy [34] where µ refers to the
number of parents and λ indicates the number of
offspring. Selection uses elitism to select the best
µ parents from a population or the best λ offspring
that are always copied over to the next population.

Initialise population,
initialise d = L/4

and evaluate

Crossover Evaluate

Select

If no new
individuals then

d = d− 0.05(L/4)
d < 0

Restart and
initialise
d = L/4 No

Yes

Fig. 2: Evolutionary process of CHC

Heterogeneous re-combination
Uniform crossover is applied where the probability
of crossing over each bit in a binary representation
(of L bits) is 50%, rather than crossing over seg-
ments of bits. Uniform crossover is said to be highly
disruptive by [32] because it swaps about half
the genes during crossover. An incest prevention
mechanism prevents reproduction between similar
chromosomes, so crossover is only performed on
chromosomes whose measured difference is above
a difference threshold d. Crossover is performed on
two individuals if the Hamming distance between
the chromosomes’ bit strings is above the threshold.

Cataclysmic mutation
The mutation operator is not present in CHC.
Instead, a restart operator provides the exploration
ability that is crucial for a GA. Restart reintroduces
diversity when the population converges and there
have been no new chromosomes for multiple gen-
erations. Instead of mutating at every generation,
a population is restarted in only those generations
where the level of diversity drops below a thresh-
old, which is determined by the incest prevention
mechanism. Note that convergence is not used
as a termination criterion. When a population is
restarted, each individual is reinitialised except the
best individual, which is just copied. Each indi-
vidual is evaluated and the algorithm continues.
A Boolean representation (of real value numbers)
is used, and a percentage of bits is flipped. The
percentage of bits is referred to as divergence rate
[32]. The best individual is used as a template for
creating other individuals.

The incest prevention mechanism slows convergence,
which helps prevent premature convergence and is integral to
CHC’s operation because it influences crossover and restart.

Initialisation and the genetic operators are the same as
[31]. In our proposal, we only change the fitness function.

A real-value representation of the 2-tuple linguistic rep-
resentation of membership functions in a chromosome is
defined as
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{c11, . . . , c1m, c21, . . . , c2m, . . . , cn1, . . . , cnm},

where c is the lateral displacement, n is the number of
items, and m is the number of linguistic labels. The lateral
displacement for all linguistic terms of one item are followed
by the lateral displacements for all linguistic terms of the next
item and so on.

B. Fuzzy Transactions

The general model for fuzzy association rules [5] is used
by the GA. In this general model, data is considered as a
set of fuzzy transactions. A (crisp) set of fuzzy transactions
is referred to as an FT-set. Consider an FT-set T and a set
of items I . A fuzzy transaction is a non-empty fuzzy subset
τ̃ ⊆ I . For every i ∈ I , there is a degree of membership τ̃(i)
of item i in fuzzy transaction τ̃ . The degree of inclusion τ̃(J)
of an itemset J ⊆ I in fuzzy transaction τ̃ is defined as

τ̃(J) = min
i∈J

τ̃(i). (4)

For example [5], consider a set of items I = {i1, i2, i3, i4}
in a dataset of 6 transactions in Table I. Each row is a fuzzy
transaction τ̃ , each column is an item i, and each cell value is
a degree of membership τ̃(i). An example degree of inclusion
is τ̃1({i3, i4}) = 0.7. The dataset in Table I has an FT-set
{τ̃1, . . . , τ̃6}, which is a crisp set.

An itemset J belongs to the fuzzy set Γ̃J on an FT-set
according to

Γ̃J(τ̃) = τ̃(J). (5)

Scalar cardinality is calculated using the sigma count of
members in the fuzzy set Γ̃J .

TABLE I: Example set of fuzzy transactions τ̃ containing
items i and degrees of membership

i1 i2 i3 i4
τ̃1 0 0.6 0.7 0.9
τ̃2 0 1 0 1
τ̃3 1 0.5 0.75 1
τ̃4 1 0 0.1 1
τ̃5 0.5 1 0 1
τ̃6 1 0 0.75 1

This general model for fuzzy association rules is applied
only in the GA to measure scalar cardinality instead of fuzzy
support.

C. Fitness Function

The fitness function of CHC from [35] was previously
used to tune the membership functions by learning the
lateral displacements [31]. In this paper, the fitness function
was extended to tune larger membership grades using two
proposed scalar cardinality measures.

An FT-set models every large 1-itemset Ik as a fuzzy
set Γ̃Ik on the FT-set. The set of large 1-itemsets I is a

set of all 1-itemsets from a chromosome that are greater
than or equal to the minimum fuzzy support threshold used
in FuzzyApriori. Fuzzy support [36] [37] [11] of a large
1-itemset Ik is replaced with the scalar cardinality of the
fuzzy set Γ̃Ik .

The fitness value of a chromosome Cq is defined as

fitness(Cq) =

∑n
k=1 cardinality(Γ̃Ik)

suitability(Cq)
(6)

where I is the set of n large 1-itemsets that are determined
by the membership functions in Cq . The cardinality mea-
sure replaces the fuzzy support measure used in [35]. Two
measures of scalar cardinality are proposed in the following
subsections.

The suitability of membership functions in a chromosome
Cq is measured by suitability(Cq). Suitability measures the
shape of the set of membership functions in a chromosome
Cq and is defined as

suitability(Cq) =
n∑

k=1

overlap factor(Cqk) + coverage factor(Cqk), (7)

where overlap factor(Cqk) is the overlap factor of
membership functions of item Ik in chromosome Cq ,
coverage factor(Cqk) is the coverage factor of membership
functions of item Ik in chromosome Cq , and n is the
number of items in the chromosome. The aim of the overlap
factor and the coverage factor is to enhance interpretability
[35] [31]. The overlap factor prevents too much overlap
of membership functions. Membership functions receive
maximum penalty when they fully overlap. The coverage
factor prevents separation between membership functions and
promotes membership functions to cover the universe of
discourse so that every data point belongs to a fuzzy set.
The overlap factor and coverage factor address the semantic
interpretability of fuzzy partitions [26].

The two proposed measures of scalar cardinality are:
1) α-cut thresholding: The α-cut of a fuzzy set A is

defined [38] as

Aα = {x | µA(x) ≥ α, α ∈ [0, 1]}, (8)

which is a crisp set of elements of the domain with member-
ship grades greater than or equal to the α level. A fuzzy set
A can be represented by the union of its α-cut sets weighted
by α [39] according to

A =
⋃

α∈[0,1]

α ·Aα. (9)

This is referred to as the decomposition theorem that was
proposed by Zadeh under the name resolution identity [40].

The first proposed scalar cardinality specifies the lower
bound of the interval for the values of α. A fuzzy set A′ is a
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reduction of fuzzy set A represented by the union of α-cuts
of A restricted by a lower bound a, and is defined as

A′ =
⋃

α∈[a,1]

α ·Aα. (10)

The set containing all the levels α ∈ [a, 1] of distinct
α-cuts of a fuzzy set A′ is the level set of A′, which is
defined as

ΛA′ = {α | A′(x) = α for some x ∈ X,α ≥ a}. (11)

The α-cut thresholding scalar cardinality thresholds the
membership grades for determining scalar cardinality of a
fuzzy set.

2) power-and-root α-cut weighting: The second proposed
scalar cardinality adjusts the α weight in the union operation.
A piecewise function par(α) applies the nth root of α when
α ≥ a, otherwise it raises the power of α to n. This is defined
as

par(α) =

{
n
√
α if α ≥ a;

αn otherwise. (12)

A fuzzy set A′′ is represented by the union of its α-cut
weighted by par(α) according to

A′′ =
⋃

α∈[0,1]

par(α) ·Aα. (13)

The power-and-root α-cut weighting scalar cardinality
assigns more weight to large membership grades that are
greater than or equal to a threshold a and less weight for
small membership grades that are below the same threshold.

V. EXPERIMENTATION

The aim of experimentation was to identify if the two
proposed measures of scalar cardinality can tune membership
functions to have larger membership grades. The methodol-
ogy, datasets, configuration of parameters, and results are
presented.

A. Methodology

To identify if the fuzzy association rules have larger
membership grades, a single run with/without the proposed
scalar cardinality measures comprised the following steps:

1) Run GA to tune lateral displacements of membership
functions.

2) Run FuzzyApriori to mine fuzzy association rules
using the tuned membership functions.

3) Produce a normalised frequency distribution of every
membership grade in the fuzzy set Γ̃Ik for an itemset
Ik for all k rules found from FuzzyApriori.

The normalised frequency distribution had 20 bins for mem-
bership grades of width 0.05 in [0.0, 1.0]. A single run was
performed with one of the proposed scalar cardinality mea-
sures and then repeated without that measure. The normalised
frequency distribution found without a proposed scalar cardi-
nality measure was subtracted from the normalised frequency

distribution found with a proposed scalar cardinality mea-
sure. The difference between the two normalised frequency
distributions provides an indication of any increase or de-
crease in membership grades within interval widths of 0.05.
Plotting the difference between two normalised frequency
distributions allows qualitative and exploratory analysis of
the proposed scalar cardinality measures.

B. Datasets

Four datasets from the Knowledge Extraction based on
Evolutionary Learning (KEEL)1 and University of California,
Irvine Machine Learning (UCI)2 data repositories were used.
The datasets are listed in Table II with their properties.
These datasets where chosen because they are real-world
benchmark datasets and contain only real-value attributes.

TABLE II: Properties of the KEEL datasets

Name Repository # Instances # Variables
Pollution KEEL 60 16
Stock Price KEEL 950 10
Stulong KEEL 1419 5
Water Treatment Plant UCI 537 38

C. Configuration of Parameters

CHC was configured with a population size of 50, 30
bits in a gene representation, 10,000 fitness evaluations, and
the Parent Centric BLX Crossover was set to 1.0. Uniform
fuzzy partitions for three linguistic terms were used for each
variable.

The parameter n in the power-and-root α-cut weighting
scalar cardinality was set to 2.

FuzzyApriori was run several times before experimenta-
tion to determine minimum fuzzy support and minimum
confidence. For the purposes of demonstrating the idea
proposed in this paper, the heuristic was to choose parameters
that produced several hundred rules. The parameters for
FuzzyApriori are shown in Table III.

TABLE III: FuzzyApriori parameters

Minimum Minimum
Name Fuzzy Support Confidence

Pollution 0.6 0.8
Stock Price 0.35 0.8
Stulong 0.6 0.8
Water Treatment Plant 0.85 0.8

Implementations of CHC and FuzzyApriori from the
KEEL software tool were used [41].

D. Results

A total of eight experiments were conducted. Four ex-
periments made comparisons between using and not using
the α-cut thresholding on the four datasets. Another four

1http://keel.es/
2http://archive.ics.uci.edu/ml/
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experiments made comparisons between using and not using
the power-and-root α-cut weighting on the four datasets. In
each experiment, the proposed scalar cardinality measures
were repeated with different values of the a parameter, and
the differences in normalised frequency distributions were
produced.

Note, the minimum a value was different for each dataset,
because the minimum support in FuzzyApriori was config-
ured separately for each dataset. The fitness function only
evaluates large 1-itemsets that meet the minimum support,
and the minimum is used for the intersection in FuzzyApriori,
so values of a below the minimum support threshold have
no effect on tuning membership functions.

The difference in normalised frequency distributions of
using α-cut thresholding and not using α-cut thresholding
for various values of a on the Stulong dataset are shown in
Figure 3a. The difference in normalised frequency distribu-
tion for a = 0.9 shows a decrease in the quantity of rules
with membership grades between 0 and 0.8, and an increase
in the quantity of rules with membership grades greater than
0.8. This shows that α-cut thresholding scalar cardinality
is reducing the number of small membership grades and
increasing the number of large membership grades. The
same pattern is observed for values of a in {0.8, 0.85, 0.9},
however, this does not occur for other values of a. For the
Pollution (Figure 3e) and Water Treatment Plant (Figure 3g)
datasets, the same pattern is observed for values of a in
{0.85, 0.9, 0.95}. A pattern illustrating the opposite effect
is observed on the results for Stock Price dataset (Figure 3c)
where all values of a show an increase in smaller membership
grades and a decrease in larger membership grades. The
α-cut thresholding measure was effective on three datasets
for large values of a and not effective on the Stock Price
dataset for all values of a.

The power-and-root α-cut weighting measure applied to
the Stock Price dataset produced the normalised frequency
distributions for various values of a shown in Figure 3d.
This shows a decrease in smaller membership grades and
an increase in larger membership grades for all values of
a, which is the opposite to that observed on the same
dataset with α-cut thresholding scalar cardinality. For all
other datasets tested, the results of power-and-root α-cut
weighting measure indicate no observable improvement, in
terms of decreasing the number of small membership grades
and increasing the number of large membership grades.

VI. CONCLUSIONS

Issues regarding the accuracy and interpretability of fuzzy
association rules were discussed. Questions are raised about
how accurately a fuzzy association rule with many small
membership grades represents a relation in a dataset, and
whether or not many small membership grades are useful
in interpreting fuzzy association rules. Re-assessing the ac-
curacy measures used in the tuning/learning of membership
functions in FRBSs, fuzzy association rule mining, and more
broadly fuzzy data mining can provide further insight into

the accuracy, interpretability, and issues around the trade-off
between accuracy and interpretability.

Two measures for scalar cardinality of a fuzzy set were
proposed for tuning membership functions with a GA. The
α-cut thresholding measure determines scalar cardinality of
a fuzzy set by only including the union of α-cuts above a
user-specified threshold. When applied to tuning membership
functions, an increase in larger membership grades was
observed on three of the four real-world benchmark datasets
tested. The power-and-root α-cut weighting measure weights
the α value used in the union of α-cuts, and an increase in
larger membership grades was observed on the dataset that
did not show the same increase with the α-cut thresholding
measure. This suggests the choice of cardinality measure is
associated with aspects or features of the dataset.

These preliminary results suggest the two proposed scalar
cardinality measures are capable in guiding the tuning of
membership functions with a GA towards larger membership
grades on the datasets tested. Further analysis and more
datasets are required to analyse why the scalar cardinality
measures appear to be better suited to some datasets and not
others. A complete comparative analysis of proposed scalar
cardinality measures will be conducted.

There is potential for further understanding how the learn-
ing and tuning of FRBSs and fuzzy association rules can
address accuracy and interpretability problems associated
with the sigma count problem.
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(a) Stulong dataset with α-cut thresholding
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(b) Stulong dataset with power-and-root α-cut weighting
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(c) Stock Price dataset with α-cut thresholding
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(d) Stock Price dataset with power-and-root α-cut weighting
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(e) Pollution dataset with α-cut thresholding

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

0.
450.

5

0.
550.

6

0.
650.

7

0.
750.

8

0.
850.

9

0.
95 1

−2

0

2

·10−2

Membership

Pe
rc

en
ta

ge
ch

an
ge

a = 0.65
a = 0.7
a = 0.75
a = 0.8
a = 0.85
a = 0.9
a = 0.95

(f) Pollution dataset with power-and-root α-cut weighting
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(g) Water Treatment Plant dataset with α-cut thresholding
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(h) Water Treatment Plant dataset with power-and-root α-cut weighting

Fig. 3: Difference in normalised frequency distributions for all experiments
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