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Abstract—Variable Precision Rough Set (VPRS) model is one
of the most important extensions of the Classical Rough Set (RS)
theory. It employs a majority inclusion relation mechanism in
order to make the Classical RS model become more fault tolerant,
and therefore the generalization of the model is improved. This
paper can be viewed as an extension of previous investigations
on attribution reduction problem in VPRS model. In our in-
vestigation, we illustrated with examples that the previously
proposed reduct definitions may spoil the hidden classification
ability of a knowledge system by ignoring certian essential
attributes in some circumstances. Consequently, by proposing
a new β-consistent notion, we analyze the relationship between
the structures of Decision Table (DT) and different definitions
of reduct in VPRS model. Then we give a new notion of β-
complement reduct that can avoid the defects of reduct notions
defined in previous literatures. We also supply the method to
obtain the β- complement reduct using a decision table splitting
algorithm, and finally demonstrate the feasibility of our approach
with sample instances.

I. INTRODUCTION

Rough Set (RS) theory has been developed dramatically
since its introduction by Pawlak in 1982 [1], [2], [3]. It pro-
vides a formal methodology aiming at data analysis problems
that involve uncertain, imprecise or incomplete information,
and has had widespread success in many artificial intelligence
research fields [4], [5], [6]. However, when the given infor-
mation contains some errors, such as missing information and
classification abnormalities or the given Decision Table (DT)
is derived from a relatively smaller data set, the obtained
results of the classical RS model cannot always perform well
and shows a poor generalization ability [7], [8]. The Variable
Precision Rough Set (VPRS) [8] model was consequently
proposed by Ziarko in 1993. The VPRS is one of the most
important extensions of the RS which has been proved to
be capable of efficiently solving the mentioned disadvantage
of the RS model[9], [10] . By introducing a threshold β,
the standard inclusion relation in RS is extended to majority

inclusion relation in VPRS and data patterns can be analyzed
from the perspective of statistics.

For both classical RS model and VPRS model, one of
the core problems is to find some particular subsets of the
attributes collection. Attributes out of such subsets can be
deemed as redundant and removed without causing deteri-
oration of classification quality and inducing brief decision
rules inherent in the given tables [11], [4], [12]. These subsets
of attributes are called the reduct of a RS or VPRS model.
By calculating the reduct, necessary attributes are identified
and redundant information can be removed. For classical RS
model, the definition of reduct is uncontroversial [13], [14].
Accordingly, previous investigations about the reduct problem
in RS model have mainly focused on the algorithm of calculat-
ing reduct [13], [15]. Unlike the classical RS model, in VPRS
model, the definition of the reduct has been revised many times
in previous investigations. Ziarko defined the β- reduct first [8],
but unfortunately, subsequent researches reported that decision
rule conflict will occur when using Ziarko’s reduct definition
[16], [17], [18]. Then a new definition called β-distribution
reduct in VPRS is proposed [11], [17]. Different from the
β-reduct that only requires the consistency of classification
quality degree between the original DT and the reduct, the β-
distribution reduct is a more rigorous definition that can avoid
the decision rule conflict by keeping β-positive regions of the
original DT consistent.

Our paper presents a further investigation on the reduct
problem in VPRS model. In our investigation, we focus on
the limitation of the β-distribution reduct and try to develop
the reduct definition by considering the consistent property of
a certain DT in VPRS model. Firstly, we use examples to
demonstrate that although the β-distribution reduct can keep
the decision rule consistent, it still has the risk to lose hidden
information of the original DT and weaken the system’s hidden
classification ability. To deal with this problem, we extend the
traditional consistent notion to a β-consistent notion for a DT
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in VPRS model, and analyze the relationship between the β-
consistent notion and different definitions of reduct. Based on
this analysis, a β-complete reduct notion is proposed. The β-
complete reduct is shown not only can it keep the decision
rule consistent but also avoid the weakening of the system’s
hidden classification ability. We give a decision table splitting
algorithm for obtaining the proposed β-complement reduct.
All of the notions and investigations in this paper can help
develop the VPRS model further.

II. PRELIMINARIES

A DT is characterized by a 4-tuple S = 〈U,A = C ∪
D,V, f〉, where U = {x1,x2,...xn} denotes a nonempty finite
set called universe, A is a nonempty finite set of attributes
that contains condition attribute set C = {c1, c2, · · · ck} and
decision attribute set D = {d1, d2, · · · dh}, where C ∩D = ∅.
V = ∪α∈C∩D and Vα is the domain of the attributes α.
f : U ×A→ V is a total function such that f(x, α) ∈ Vα for
every x ∈ U and α ∈ A, called an information function. e.g.
f(xi, αj) = v means that in this DT, w.r.t. a certain attribute
αj , the element xi has the value v.

Given an arbitrary non-empty subset B ⊆ A, an indiscerni-
bility relation IND(B) is defined as:

{(xi, xj) ∈ U × U |f(xi, α) = f(xj , α) ,∀α ∈ B} (1)

IND(B) partial U into a family of disjoint subsets
U/IND(B) called a quotient set of U :

U/IND(B) = { [x]B |x ∈ U} (2)

where [x]B denotes equivalence class determined by x w.r.t.
IND(B), i.e., :[x]B = {y ∈ U | (y, x) ∈ IND(B)}.

Then for a DT, we can define the equivalence classes
determined by condition attribute set C and equivalence classes
determined by the decision attribute set D respectively as
follows:

{Ci, i = 1, 2, · · · ,m} = { [x]C |x ∈ U} (3)

{Dj , j = 1, 2, · · · , n} = { [x]D|x ∈ U} (4)

Especially, Dj is called the decision class.

In classical RS model, For C, the lower and upper approx-
imations of Dj can be respectively defined as:

C(Dj) = {x |[x]C ⊆ Dj } (5)

C(Dj) = {x |[x]C ∩Dj 6= ∅} (6)

and the positive region is defined as POSC(Dj) = C(Dj)

A VPRS model was proposed as an important extension of
classical RS model, which gives a less rigorous definition of
the inclusion relation in eq.(5) and eq.(6) to make the classical
RS model more fault tolerant [8], [19], [13]. In VPRS model,
for a given precision parameter value β ∈ (0.5, 1], we denote:

Cβ(Dj) =
⋃
{x ∈ Ci |ω(Ci, Dj) ≥ β } (7)

C
β
(Dj) =

⋃
{x ∈ Ci |ω(Ci, Dj) >1− β } (8)

where ω is the inclusion degree function defined as:

ω(X,Y ) =

{ |X∩Y |
|X| , |X| > 0,

0, |X| = 0.
(9)

and the β-positive region of Dj w.r.t. C is POSβ
C(Dj) =

Cβ(Dj).

Since β > 0.5, the less rigorous inclusion relation in VPRS
model is called the majority inclusion relation that is seen as
the heart of the VPRS model.

When β = 1, the VPRS model is equal to a classical RS
model [8].

A notion called the classification quality degree (or called
the degree of dependence of decision attribute set D w.r.t. con-
dition attribute set C) is applied to measure the classification
quality in classical RS model. If the decision attribute set D
divides U into n decision classes, the classification quality
degree w.r.t a certain attribute set C is:

σC(D) =

∣∣∣∣∣ n∑
j=1

C(Dj)

∣∣∣∣∣
|U |

(10)

Similarly, in VPRS model, when a precision parameter β
is given, the classification quality degree is:

σβ
C(D) =

∣∣∣∣∣ n∑
j=1

Cβ(Dj)

∣∣∣∣∣
|U |

(11)

Positive regions and classification quality degree reflect the
knowledge of a certain data set from the perspective of quality
and quantity respectively [8], [18].

III. ATTRIBUTES REDUCTION IN VPRS MODEL

This section briefly introduces the previous definitions of
reduct in VPRS model, and more importantly, we will show
the limitation of the presently used β-distribution reduct in this
section.

A. The β-reduct and its limitation in VPRS model

The quality of classification is often used to measure
the classification ability of a DT. Nevertheless, the final rule
inference is based on the concrete objects in positive region. In
classical RS model, the monotonicity of classification quality
and positive region are uniform during the procedures of
attribute reduction [20]. Accordingly, the same classification
quality degree implies the consistency of positive region in
classical RS model[13]. However, in VPRS model, these
monotonicity properties will not be satisfied any more, there-
fore the same classification quality may result in different β-
positive regions[18]. i.e., the final decision rules extracted from
the reduct maybe in conflict with those extracted from the
original DT under the same classification quality degree [20].

Definition 1: For a DT S = (U,A = C∪D,V, f) in VPRS
model with precision parameter β, B ⊆ C, if:

σβ
B(D) = σβ

C(D) and ∀α ∈ B, σβ
B−{α} 6= σβ

C (12)
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TABLE I. SAMPLE DT 1

U α1 α2 α3 α4 d

o1 0 1 1 1 1
o2 1 1 1 1 1
o3 1 1 0 0 1
o4 0 1 0 1 0
o5 1 1 1 1 0
o6 1 0 1 0 0
o7 1 1 1 1 0

such a subset B is called a β-reduct of C under the precision
β, defined by Ziarko [8].

However, under some circumstances, the β-reduct, based
on the equalization of classification quality degree, has to face
the inconsistent problem. Some conflicts will be generated
between the decision rules extracted from the original DT
and the decision rules extracted from the obtained reduct. An
example is shown in Table I .

In sample DT 1, o1, o2, . . . , o7 are the elements in the
universe, C = {α1, α2, α3, α4} is the condition attribute set
of this DT, and D = {d} is the decision attribute set. The
values in the table are the attribute values of the corresponding
elements. We have:

D1 = {o1, o2, o3},
D2 = {o4, o5, o6, o7},

as decision classes determined by d; and:
C1 = {o1},
C2 = {o2, o5, o7},
C4 = {o4},
C5 = {o6},

are equivalent classes determined by C. Setting β = 0.59, we
can see that B = {α2, α4} is a β-reduct of sample DT 1 since
it is easy to calculate σ0.59

B (D) = σ0.59
C (D) = 1. However, we

can also find the positive region inconsistency as:
POS0.59

C(Dd=1) = C0.59(Dd=1) = {o1, o3},
POS0.59

C(Dd=2) = C0.59(Dd=2) = {o2, o5, o7, o4, o6},
and:

POS0.59
B(Dd=1) = B0.59(Dd=1) = {o3},

POS0.59
B(Dd=2) = B0.59(Dd=2) = {o1, o2, o4, o5, o7, o6}

which show that the β-positive regions are changed in the
reduct B = {α2, α4}. Specifically, from the obtained β-
reduct, when β = 0.59, we can extract the decision rule:
(α2, 1) ∧ (α4, 1) → (d, 0), which is supported by o1, o2, o4,
o5 and o7; but in the original DT, we have: (α1, 0)∧ (α2, 1)∧
(α3, 1)∧ (α4, 1)→ (d, 1), supported by o1. The classification
information is changed after the reduction.

B. The β-distribution reduct and its limitation

Definition 2: Given a DT S = (U,A = C ∪ D,V, f) in
VPRS model with precision parameter β, B ⊆ C, B is a
β-distribution reduct of C if:

Lβ
B = Lβ

C and ∀α ∈ B, Lβ
C 6= Lβ

B−{α} (13)

where L is used to denote the collection of β-positive re-
gions, Lβ

B = (Bβ(D1), B
β(D2), · · · , Bβ(Dn)) and Lβ

C =
(Cβ(D1), C

β(D2), · · · , Cβ(Dn)).

Obviously, the β-distribution reduct is a more rigorous defi-
nition since it requires the consistency of both the classification
quality degree and β-positive regions. From the definition,
because that according to eq.(11), if eq.(12) is true, eq.(13)

TABLE II. SAMPLE DT 2

U α1 α2 α3 α4 α5 d

x1 1 1 1 1 1 1
x2 1 1 0 1 1 1
x3 0 0 1 0 0 1
x4 1 1 2 1 1 1
x5 1 1 0 1 0 2
x6 1 1 0 1 1 2
x7 0 0 1 2 1 2
x8 1 1 0 1 1 2
x9 1 1 2 1 1 2
x10 1 0 2 1 1 3
x11 1 0 2 1 1 4

must be true. a β-distribution reduct is also a β-reduct, but
conversely, a β-reduct is not definitely a β-distribution reduct
as shown in sample DT 1. However, in our investigation, we
find that the β-distribution reduct also has limitations:

In sample DT 2, set β = 0.6, we have:
D1 = {x1, x2, x3, x4},
D2 = {x5, x6, x7, x8, x9},
D3 = {x10},
D4 = {x11},

as decision classes. Meanwhile, we have equivalent classes:
C1 = {x1},
C2 = {x2,x6,x8},
C3 = {x3},
C4 = {x4, x9},
C5 = {x5},
C6 = {x7},
C7 = {x10, x11}.

For B = {α3,α4}, we can obtain equivalent classes:
B1 = {x1},
B2 = {x2, x5, x6, x8},
B3 = {x3},
B4 = {x4,x9, x10, x11},
B5 = {x7}.

Consequently, by calculating B0.6(Dj) and C0.6(Dj), j =
1, 2, 3, 4, we have:

POS0.6
B(D1) = {x1, x3} = POS0.6

C(D1),
POS0.6

B(D2) = {x2, x5, x7, x6, x8} = POS0.6
C(D2),

POS0.6
B(D3) = ∅ = POS0.6

C(D3),
POS0.6

B(D4) = ∅ = POS0.6
C(D4),

in the meanwhile, we also have:
POS0.6

C(D1) = C0.6(D1) = {x1, x3},
POS0.6

C(D2) = C0.6(D2) = {x2, x5, x7, x6, x8},
POS0.6

C(D3) = C0.6(D3) = ∅,
POS0.6

C(D4) = C0.6(D4) = ∅.
So Lβ

B = Lβ
C . Accordingly, B = {α3,α4} is a β-distribution

reduct of C when β = 0.6.

Now the problem comes. Observing sample DT 2, when
β = 0.6, we can extract two special decision rules:

(α1, 1)∧ (α2, 0)∧ (α3, 2)∧ (α4, 1)∧ (α5, 1)→ (d, (1or2)),
by x4 and x9;

(α1, 1)∧ (α2, 0)∧ (α3, 2)∧ (α4, 1)∧ (α5, 1)→ (d, (3or4)),
by x10 and x11;
After the reduction, we can extract:

(α3, 2)∧ (α4, 1)→ (d, (1or2or3or4)), by x4, x9, x10 and
x11.
If the decision attribute in a decision rule can get various
values, we say the conflict happens and denote the conflict
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decision part of such conflict decision rule as (d, ∅).

In both of the original DT and the β-distribution reduct,
when β = 0.6, x4, x9, x10 and x11 all support that
(α3, 2) ∧ (α4, 1) → (d, ∅). But in the original DT, we can
observe that when f(xi, α2) = 0, there is (α3, 2)∧ (α4, 1)→
(d, (1or2)), and when f(xi, α2) = 1, the decision rule is
(α3, 2) ∧ (α4, 1) → (d, (3or4)), so the α2 has some hidden
classification ability that the attributes in the β-distribution
reduct don’t have and should not be seen as redundant.

The problem is generated in the process of calculating the
β-distribution reduct: both of the two conditions, (α3, 2) ∧
(α4, 1)→ (d, (1or2)) and (α3, 2)∧ (α4, 1)→ (d, (3or4)), are
considered as (α3, 2)∧(α4, 1)→ (d, ∅) without distinguishing
the decision conflicts. But actually, when f(xi, α2) = 1 , xi
with (α3, 2) ∧ (α4, 1) has 50% probability to be classified in
D1 and 50% probability to be classified in D2, and when
f(xi, α2) = 0, sample point with (α3, 2) ∧ (α4, 1) has 50%
probability to be classified in D3 and 50% probability to be
classified in D4. The conflicts should be differentiated and α2

is also an essential attribute.

Therefore, although the β-distribution reduct is a more
rigorous definition, it still has the limitations that it may
exclude some essential attributes. This limitation is due to the
“indifferentiation” of the different conflict decision rules. This
may lose some hidden classification information in the original
DT and weaken the classification ability.

IV. β-CONSISTENT NOTION FOR A DT IN VPRS

In this section, a β-consistent notion for a DT in VPRS is
proposed to analyze the limitations mentioned in the previous
section.

A. The consistent DT

Definition 3: A DT S = (U,A = C ∪ D,V, f) is a
consistent DT [21] if ∀x, y ∈ U where x 6= y, we have:

f(x,C) = f(y, C)⇒ f(x,D) = f(y,D). (14)

This definition can be also represented from the perspective
of indiscernibility relation as IND(C) ⊆ IND(D). However,
in VPRS model, because the majority inclusion relation is
applied, some inconsistent DT in RS can be re-evaluated.
Under VPRS models with different β, a certain DT may change
its consistency property. In our paper, a new notion called β-
consistency is proposed for VPRS.

B. The β-consistent DT

Given a DT S = (U,A = C ∪ D,V, f) and a precision
parameter β, ∀x, y ∈ U , x 6= y, for a certain equivalent class
Ci, if x ∈ Ci, y ∈ Ci, ∃Dj satisfies that x ∈ POSβ

C(Dj),
y ∈ POSβ

C(Dj), then we define this DT as β-consistent under
the precision β.

Definition 4: A DT S = (U,A = C ∪ D,V, f) is a β-
consistent DT in VPRS if ∀x, y ∈ U where x 6= y, we have:

f(x,C) = f(y, C)⇒ x, y ∈ POSβ
C(Dj) (15)

Based on this definition, given a precision parameter β ,
some inconsistent DT in RS becomes β-consistent in VPRS.
The sample DT 1 is an example, obviously, it is an inconsistent
DT: for sample points o2 and o5, we have o2 ∈ C2 and o5 ∈
C2, i.e., f(o2, C) = f(o5, C), meanwhile, o2 ∈ D1, o5 ∈ D2,
i.e., f(o2, D) 6= f(o5, D), which is in conflict with eq.(14),
therefore this DT is not consistent.

However, when we analyze the same DT in VPRS model,
setting β = 0.59, we have equivalent classes:

C1 = {o1},
C2 = {o2, o5, o7},
C3 = {o3},
C4 = {o4},
C5 = {o6},

and decision classes:
D1 = {o1, o2, o3},
D2 = {o4, o5, o6, o7}.

So we have:
POS0.59

C (D1) = C0.59(D1) = {o1, o3},
POS0.59

C (D2) = C0.59(D2) = {o2, o5, o7, o4, o6}.
For any two elements in U of sample DT 1, if they belong to
the same Ci, we can definitely find a Dj , and both of these two
elements belong to POS0.59

C (Dj). So, this DT is β-consistent
when β = 0.59 in VPRS.

Moreover, for DT 1, if we set β = 0.67, the β-consistent
property will change: the β-positive region of D1 becomes:

POS0.67
C (D1) = {o1},

and the β-positive region of D2 is :
POS0.67

C (D2) = {o4, o6, o7},
we will observe that the elements o2, o5 and o7 in C2 cannot be
included by positive region of any Dj since that ω(C2, D1) =
2/3 < 0.67 and ω(C2, D2) = 1/3 < 0.67, i.e., for o2, o5 and
o7, we cannot find a Dj to satisfy eq.(15). So, when β = 0.67,
this DT is NOT a β-consistent DT (or β-inconsistent DT for
presentation simplicity).

From the perspective of indiscernibility relation, a DT is
β-consistent meaning that IND(C) and IND(D) are not in
conflict when the classification precision is not higher than
β in VPRS, and DT 1 shows that a DT may change its β-
consistency property when varying the value of β.

Theorem 1: for β1, β2 ∈ (0.5, 1], set β2 ≤ β1, a β1-
consistent DT must be a β2-consistent DT.

Proof: if a DT is β1-consistent, that means all the elements
in each Ci can be classified into a β1-positive region of
a certain Dj . According to eq.(7) and eq.(8), ω(Ci, Dj) =
(|Ci ∩Dj |/|Ci|) ≥ β1, since β2 ≤ β1, ω(Ci, Dj) ≥ β2.
Therefore, any element in Ci can also be classified into β2-
positive region of a certain Dj . So this DT is β2-consistent.

From the definition, the 1-consistent notion in VPRS is
equal to the consistent notion in RS. So the β-consistent
notion can be considered as an extension of classical consistent
notion, and we easily have the following deduction:

Deduction 1: a consistent DT must be a β-consistent DT,
∀β ∈ (0.5, 1].

Eq.(16) and eq.(17) give two notions for further analysis:

Gβ
C(x) = {Dj

∣∣∣x ∈ POSβ
C(Dj)}, x ∈ U (16)
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Rβ(Ci) = {Gβ
C(x) |x ∈ Ci } (17)

Samples in collection Rβ(Ci) are constituted by the deci-
sion classes. For each Ci, if any element in it also belongs to
the β-positive region of a certain decision class Dj , we put
the decision class Dj into a corresponding collection Rβ(Ci).

Theorem 2: when β ∈ (0.5, 1],
∣∣Rβ(Ci)

∣∣ ∈ {0, 1}, in other
words,

∣∣Rβ(Ci)
∣∣ < 2.

Proof: It is easy to find the example of
∣∣Rβ(Ci)

∣∣ = 0
and

∣∣Rβ(Ci)
∣∣ = 1. Observe sample DT 1, Set β = 0.6, we

can get R0.6(C{o1}) = {D1}, so
∣∣R0.6(C{o1})

∣∣ = 1, and
R0.6(C{o2,o3}) = ∅, so

∣∣R0.6(C{o2,o3})
∣∣ = 0.

Denote |Ci| = N , if
∣∣Rβ(Ci)

∣∣ = 2, setting R(Ci) =
(Dj′ , Dj′′), where Dj′ 6= Dj′′ . From eq. (4), we have
Dj′ ∩Dj′′ = ∅. m is the number of elements in Ci belonging
to Dj′ , n is the number of elements in Ci belonging to Dj′′ ,
according to the definition of β-positive region, m/N ≥ β,
and n/N ≥ β, 0.5 < β ≤ 1, so m/N > 0.5, n/N > 0.5,
therefore (m+ n)/N > 1, this is in conflict with m+n = N .
The condition is similar when

∣∣Rβ(Ci)
∣∣ = 3, 4, ...∞.

Theorem 2 gives the fact that when β > 0.5, one sample
point can only support one decision rule.

From the definition of Rβ(Ci), given β, if a DT is β-
consistent, ∀Ci,

∣∣Rβ(Ci)
∣∣ = 1; meanwhile, if in a DT, ∀Ci,

we have
∣∣Rβ(Ci)

∣∣ = 1, this DT is β-consistent. Thus:∣∣Rβ(Ci)
∣∣ = 1,∀Ci (18)

is the sufficient and necessary condition for that a DT is β-
consistent. If in a DT, ∃Ci, where

∣∣Rβ(Ci)
∣∣ = 0, we can

deduce that this DT is β-inconsistent, and the equivalent class
Ci with

∣∣Rβ(Ci)
∣∣ = 0 is called undecidable equivalent class

of this DT in our investigation. Moreover, the number of
undecidable equivalent classes shows the number of decision
conflict conditions in the decision rules of a DT.

V. THE RELATIONSHIPS BETWEEN THE REDUCTS AND
β-CONSISTENT PROPERTY OF A DT IN VPRS MODEL

In the previous sections, we have already discussed differ-
ent definitions of attribute reduct in VPRS model: the β-reduct
has already been proved to have limitations in previous inves-
tigations; moreover, our example in Table II has illustrated that
the β-distribution reduct also has limitations. Consequently, we
proposed the definition of β-consistent property of a DT in
VPRS model, which is an extension of the consistent notion
in classical RS model. In this section, we will analyze the
relationship between different definitions of reduct and the β-
consistent property of a certain DT in VPRS.

If a DT is 1-consistent, the β-reduct is equal to the
β-distribution reduct, where β ∈ (0.5, 1].

If a DT is 1-consistent, that means for each equivalent class
Ci, ∃Dj , where (Ci ∩Dj)/Dj = 1. In Theorem 2, we have
proved that when β ∈ (0.5, 1],

∣∣Rβ(Ci)
∣∣ < 2. Therefore, ∀β ∈

(0.5, 1), POSβ
C (Dj) = POS1

C (Dj). So the VPRS evolves a
classical RS when the DT is 1-consistent.

In classical RS, the monotonicity of classification quality
and positive regions are always uniform. The same classifica-
tion quality degree means the consistency of positive regions.
Accordingly, the β-reduct is equal to the β-distribution reduct,
and therefore the decision rule conflict can be avoided.

If an inconsistent DT is β-consistent for β ∈ (0.5, 1), the
β-reduct may lead to the decision rule conflict, while the
β-distribution reduct can keep the decision rule consistent.
Moreover, the β-distribution reduct can also avoid losing
hidden classification information.

If a DT is inconsistent but β-consistent where β 6= 1,
that means there are decision conflicts in this DT initially,
but these decision conflicts can be eliminated in VPRS when
the classification precision requirement is lower than β as the
majority inclusion relation is employed.

For example, in sample DT 1, a decision rule conflict is:
(α1, 1) ∧ (α2, 1) ∧ (α3, 1) ∧ (α4, 1)→ (d, 1), by o2;
(α1, 1)∧ (α2, 1)∧ (α3, 1)∧ (α4, 1)→ (d, 0), by o5 and o7.

This DT is obviously an inconsistent DT, But in VPRS
with β = 0.59, since two of the three sample points have
supported (d, 0), so the classification precision is 2/3 ≥ 0.59,
thus the majority inclusion relation requirement is satisfied,
which means that in this conflict, the majority (o5 and o7)
of the three samples support the latter decision rule So
this conflict can be eliminated and we use the decision
rule:(α1, 1) ∧ (α2, 1) ∧ (α3, 1) ∧ (α4, 1) → (d, 0) in VPRS
model. Furthermore, in general, for an inconsistent DT, if it
is β-consistent, all the decision conflicts can be eliminated
under a classification precision lower than β. However, for
such DT, only calculating the β-reduct may cause the decision
rule inconsistent as shown in sample DT 1.

On the other hand, for a β-consistent DT, the β-distribution
reduct can not only keep the classification quality degrees
consistent but also keep the decision rules consistent: decision
rules of a DT is determined by the positive regions[20], the
β-distribution reduct requires the β-positive regions to be
kept consistent, so the decision rules are also kept consistent
after reduction. Additionally, if a DT is β-consistent, the
β-distribution reduct of this DT can avoid losing hidden
information. The loss of hidden information is caused by
neglecting the differences among different decision conflicts.
From the definition of β-consistency, in a β-consistent DT, for
each equivalent class Ci, ∃Dj , where Ci ⊆ POSβ

C(Dj). Thus,
∀Ci , a definite decision rule:

∧
(c, f(Ci, c))→ (d, f(Dj , d))

without any decision conflict can be extracted. Therefore the β-
distribution reduct is able to avoid losing hidden classification
information.

If a DT is β-inconsistent, β ∈ (0.5, 1], use N to denote
the number of undecidable equivalent classes, if N = 1, the
β-distribution reduct can keep the decision rule consistent
and will not lose information in the original DT.

The number of undecidable equivalent classes reflects the
number of decision conflict conditions of a DT, moreover, the
problem of losing hidden information of β-distribution reduct
is led by ignoring the differences among various conflicts in
the procedure of calculating the β-distribution reduct. For a
DT, if N = 1, there is only one undecidable equivalent class,
i.e., there is only one decision conflict in the decision rules.
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TABLE III. SAMPLE DT 3

U α1 α2 α3 α4 α5 d

x1 1 1 1 1 1 1
x2 1 1 0 1 1 1
x3 0 0 1 0 0 1
x4 1 1 2 1 1 1
x5 1 1 0 1 0 2
x6 1 1 0 1 1 2
x7 0 0 1 2 1 2
x8 1 1 0 1 1 2
x9 1 1 2 1 1 2

Setting this undecidable equivalent class as Ci, according to
eq.(3), ∀x ∈ Ci, x can support

∧
(c, f(Ci, c)) → (d, ∅);

moreover, as there is only one decision conflict in the original
DT, differentiation of various conflicts is not necessary. When
calculating the reduct, we can consider ∅ as a special decision
class D∅ and set that ∀Dj , Dj 6= D∅. The sample DT 3 is an
example.

In this DT, we have decision classes:
D1 = {x1, x2, x3, x4},
D2 = {x5, x6, x7, x8, x9}.

Also, we can obtain:
C1 = {x1},
C2 = {x2,x6,x8},
C3 = {x3},
C4 = {x4, x9},
C5 = {x5},
C6 = {x7}.

In sample DT 3, set β = 0.6, C{x4,x9} is the only
undecidable equivalent class, so N = 1. {α3, α4} is a β-
distribution reduct for this DT. In sample DT 3, the decision
rules are:

(α1, 1) ∧ (α2, 1) ∧ (α3, 1) ∧ (α4, 1) ∧ (α5, 1)→ (d, 1), by
x1;

(α1, 1) ∧ (α2, 1) ∧ (α3, 0) ∧ (α4, 1) ∧ (α5, 1)→ (d, 2), by
x2, x6 and x8;

(α1, 0) ∧ (α2, 0) ∧ (α3, 1) ∧ (α4, 0) ∧ (α5, 0)→ (d, 1), by
x3;

(α1, 1) ∧ (α2, 1) ∧ (α3, 0) ∧ (α4, 1) ∧ (α5, 0)→ (d, 2), by
x5;

(α1, 0) ∧ (α2, 0) ∧ (α3, 1) ∧ (α4, 2) ∧ (α5, 1)→ (d, 2), by
x7;

(α1, 1)∧ (α2, 1)∧ (α3, 2)∧ (α4, 1)∧ (α5, 1)→ (d, (1or2)),
by x4 and x9.

After the reduction, the decision rules are:
(α3, 1) ∧ (α4, 1)→ (d, 1), by x1;
(α3, 0) ∧ (α4, 1)→ (d, 2), by x2, x5, x6 and x8;
(α3, 1) ∧ (α4, 0)→ (d, 1), by x3;
(α3, 1) ∧ (α4, 2)→ (d, 2), by x7;
(α3, 2) ∧ (α4, 1)→ (d, (1or2)),by x4 and x9.

all decision rules are kept consistent after reduction and no
essential information lost.

If a DT is β-inconsistent, β ∈ (0.5, 1], use N to
denote the number of undecidable equivalent classes, if
N > 1, the β-distribution reduct can keep the decision
rule consistent but may lead to loss of hidden information.
DT If a DT is β-inconsistent, and there are more than one
undecidable equivalent classes, the β-distribution reduct can
avoid the decision rule conflict by keeping the β-positive
regions consistent. But the β-distribution reduct deals with all

the undecidable equivalent classes by excluding them from
all the β-positive regions. In so doing the β-distribution
reduct neglects the differences among different undecidable
equivalent classes, so that the β-distribution reduct may lose
some essential information in DT and weaken the classification
ability of the original DT. The sample DT 2 discussed above
demonstrates this problem in β-inconsistent table with more
than one undecidable equivalent classes.

VI. β-COMPLETE REDUCT CALCULATION

We have already discussed the relationship between the
reduct and the β-consistent property of a DT in VPRS model.
We see that in a VRPS model, set β ∈ (0.5, 1], if a DT is 1-
consistent, we only need to calculate the β-reduct of the DT;
for a β-consistent DT, we have to calculate the β-distribution
reduct to make sure the reduct not bringing in the decision
rule conflicts; if a DT is β-inconsistent, the condition becomes
complicated: if there is only one undecidable equivalent class,
we only need to calculate the β-distribution reduct; Otherwise,
only calculating the β-distribution reduct may lead to loss of
some important information and lower the classification ability
of the original DT. Accordingly, in this section, a new method
will be proposed to deal with the reduct problem for the β-
inconsistent DT with more than one undecidable equivalent
classes.

In this section, we will first give a DT splitting method to
deal with the reduct problem for β-inconsistent DT.

Theorem 3: In VPRS model, given β ∈ (0.5, 1] , if a DT
is β-inconsistent, it can be split into two DTs, one is a β-
consistent DT, the other one is a complete β-inconsistent DT
in which all equivalent classes are undecidable.

Proof: If a DT S = (U,A = C ∪ D,V, f) is β-
inconsistent, from eq.(17), ∃Ci,

∣∣Rβ(Ci)
∣∣ = 0. Since we

have proved that
∣∣Rβ(Ci)

∣∣ ∈ {0, 1} in Theorem 2, we can
split the DT into two DTs S1 and S2. Elements in S1 satisfy
{x |x ∈ Ci,

∣∣Rβ(Ci)
∣∣ = 1}. Thus, ∀Ci ∈ S1,

∣∣Rβ(Ci)
∣∣ = 1.

Accordingly, S1 is β-consistent. In the meanwhile, elements
in S2 satisfy {x |x ∈ Ci,

∣∣Rβ(Ci)
∣∣ = 0}, that means all

equivalent classes are undecidable.

Then a β-inconsistent DT can be split as Figure 1, and
Figure 2 uses sample DT 2 to demonstrate this DT splitting
method with β = 0.6. The sample DT 2 is split into a β-
consistent DT (white background) formed by the consistent
equivalent classes; and a complete β-inconsistent DT (dark
background) formed by elements that are all in conflict.

A method for all the reduct (denoted as RED) of a β-
inconsistent DT can be given as following steps:

Input: A DT S = (U,A = C ∪D,V, f), β

Output: the Reduct of the input DT RED

Step 1: Find all the equivalent classes Ci in this DT, where
{Ci, i = 1, 2, · · · ,m} = U/IND(C);

Step 2: For each Ci, calculate
∣∣Rβ(Ci)

∣∣, and use N to
denote the number of Ci, whose

∣∣Rβ(Ci)
∣∣ = 0;

Step 3: If N = 1, consider that the only undecidable
equivalent class can be classified into POSβ

c (D∅), D∅ 6= Dj ,
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Fig. 1. The β-inconsistent DT splitting approach

where {Dj , j = 1, 2, · · · , n} = U/IND(C). Then calculate
the β-distribution reduct of this DT, a detailed algorithm for
β-distribution reduct is given by [17] or [22], return the result
as RED;

Step 4: If N > 1, split the DT into a β-consistent DT S1

and a complete β-inconsistent DT S2;

Step 5: Calculate a β-distribution reduct for S1, and denote
the reduct as REDS1 ;

Step 6: For DT S2, only consider the condition attributes,
a DT without decision part is called Attribute-value Table (AT)
[1], convert S2 into an AT by deleting its decision attributes
and calculate the reduct of this AT according to [15], denoted
as REDS2 ;

Step 7: return RED = REDS1 ∪REDS2 .

For sample DT 2, we split it into two DTs as shown
in Figure 2. For the β-consistent DT, we can obtain its
reduct REDS1 = {α3, α4}; meanwhile, the reduct of the
complete β-inconsistent DT is REDS2 = {α2}, accordingly,
RED = REDS1 ∪REDS2 = {α2, α3, α4}.The total decision
rules obtained in the original sample DT 2 are:

(α1, 1) ∧ (α2, 1) ∧ (α3, 1) ∧ (α4, 1) ∧ (α5, 1)→ (d, 1), by
x1;

(α1, 1) ∧ (α2, 1) ∧ (α3, 0) ∧ (α4, 1) ∧ (α5, 1)→ (d, 2), by
x2, x6 and x8;

(α1, 0) ∧ (α2, 0) ∧ (α3, 1) ∧ (α4, 0) ∧ (α5, 0)→ (d, 1), by
x3;

(α1, 1) ∧ (α2, 1) ∧ (α3, 0) ∧ (α4, 1) ∧ (α5, 0)→ (d, 2), by

Fig. 2. The DT splitting approach on sample DT 2

x5;
(α1, 0) ∧ (α2, 0) ∧ (α3, 1) ∧ (α4, 2) ∧ (α5, 1)→ (d, 2), by

x7;
(α1, 1)∧ (α2, 1)∧ (α3, 2)∧ (α4, 1)∧ (α5, 1)→ (d, (1or2)),

by x4 and x9;
(α1, 1)∧ (α2, 0)∧ (α3, 2)∧ (α4, 1)∧ (α5, 1)→ (d, (3or4)),

by x10 and x11.
the total decision rules extracted from the obtained reduct
RED = {α2, α3, α4} are:

(α2, 1) ∧ (α3, 1) ∧ (α4, 1)→ (d, 1), by x1;
(α2, 0) ∧ (α3, 1) ∧ (α4, 0)→ (d, 1), by x3;
(α2, 1) ∧ (α3, 0) ∧ (α4, 1)→ (d, 2), by x2, x6 ,x5 and x8;
(α2, 0) ∧ (α3, 1) ∧ (α4, 2)→ (d, 2), by x7;
(α2, 1) ∧ (α3, 2) ∧ (α4, 1)→ (d, (1or2)), by x4 and x9;
(α2, 0) ∧ (α3, 2) ∧ (α4, 1)→ (d, (3or4)), by x10 and x11.

In the previous sections, we have already discussed different
definitions of attribute reduct in VPRS model: the β-reduct has
already been proved to have limitations in previous investiga-
tions; moreover, our example in Table III has illustrated that
the β-distribution reduct also has limitations. Consequently,
we proposed the definition of β-consistent property of a DT
in VPRS model, which is an extension of the consistent
notion in classical RS model. In this section, we will analyze
the relationship between different definitions of reduct and
the β-consistent property of a certain DT in VPRS. The
comparison of the decision rules shows that the obtained
reduct RED = {α2, α3, α4} cannot only keep the decision
rule consistent, but also discern the two different undecidable
equivalent classes C4 = {x4, x9} and C7 = {x10, x11} . It
conserves the hidden information that, given the condition
(α3, 2) ∧ (α4, 1), a sample point x with f(x, α2) = 1 has
50% probability to be classified in D1 and 50% probability to
be classified in D2, and a sample point with f(x, α2) = 0 has
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50% probability to be classified in D3 and 50% probability to
be classified in D4.

The obtained reduct by this approach is called as the β-
complete reduct in our paper. DT S1 contains all the consistent
equivalent classes in the original DT, accordingly, the β-
distribution reduct of S1 can keep all decision rules in the
original DT consistent. Meanwhile, reduct of S2 reflects the
hidden classification information of the original DT. Then we
get the union set of the two reducts as the β-complete reduct.
It not only makes sure the β-positive regions are consistent
in the reduct, but also considers the hidden information in the
inconsistent equivalent classes of the original DT in order to
avoid the deterioration of classification ability. Obviously, the
requirement of the β-complete reduct is more rigorous than
that of the β-distribution reduct. We may observe that the β-
distribution reduct is a subset of the β-complete reduct, that
means a β-complete reduct must be a β-distribution reduct,
but the inverse proposition is not aways true.

VII. CONCLUSION

The β-distribution reduct is seen as a modified version of
the β-reduct in the VPRS model. However, in our investigation,
from some sample instances, we find that the β-distribution
reduct also has limitations. It may neglect the differences
among the different conflicts of a DT. Accordingly, a β-
complement reduct is proposed in this paper. By splitting the
β-inconsistent DT into two DTs and combining the reduct of
the two DTs together, we can obtain the β-complement reduct,
and this β-complement reduct can avoid the loss of hidden
classification information of the original DT.

We also analyze the hierarchical relationship between the
proposed β-consistent notion and different definitions of reduct
in VPRS model. For 1-consistent DT, we only need to calculate
the β-reduct, if β ∈ (0.5, 1), the β-distribution reduct can
perform well for a β-consistent DT. For β-inconsistent DT,
if there is only one undecidable class, we need to calculate
the β-distribution reduct; otherwise, we need to split the β-
inconsistent DT to get the β-complete reduct. Based on this
investigation, for a given DT and VPRS with certain β, we
can analyze the β-consistency property of this DT first, and
then choose the proper definition of reduct for this DT, and
calculate it with a suitable algorithm in [15] or [17].

About the further work, some more general algorithms
to β-complete reduct will be introduced and evaluated; what
is more, the reduct for some other important RS extension
models will be investigated [23]; finally, we will work further
on our investigation from the probabilistic aspect and fuzzy
logic aspect[24].
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