
 
 

 

  

Abstract—This paper presents a Takagi-Sugeno (T-S) fuzzy 
affine linear modeling algorithm by the possibilistic c-regression 
models (PCRM) clustering algorithm. We apply the PCRM to 
partition the given input-output data into hyper-plane-shaped 
clusters (regression models). We choose the suitable number of 
cluster by the cluster validity criterion and then to construct the 
T-S fuzzy affine linear model. A simulation example is provided 
to demonstrate the effectiveness of the T-S fuzzy affine linear 
modeling algorithm. 
 

Index Terms- Takagi-Sugeno (T-S) fuzzy model; affine linear; 
possibilistic c-regression models (PCRM); cluster validity criterion 

I. INTRODUCTION 
uzzy models have been an active research area for several 
years. Building a fuzzy model for a real system which is 
usually a nonlinear system will encounter some problems, 

such as the kind of structure that could be accepted to describe 
this real system, the number of IF-THEN rules, and the 
reliable parameter of the antecedent and consequent parts. 
Takagi-Sugeno (T-S) fuzzy model [1, 2] is a popular fuzzy 
model because its consequent part is functional type and it has 
good capability of describing a nonlinear system. It can 
accurately approximate the given nonlinear systems with 
fewer rules than other types of fuzzy models. 

In particular, Bezdek et al. proposed the fuzzy clustering 
algorithm for hyper-plane-shaped, that is, fuzzy c-regression 
models (FCRM) clustering algorithm [3] which assumes that 
the data are draw from c different regression models. 
Additionally, Kim et al. [4] successfully applied the FCRM 
clustering algorithm to construct fuzzy model. However, the 
clustering result of the FCRM clustering algorithm is 
sensitive to the noisy data. The column sum constraint of the 
FCRM clustering algorithm could result in each cluster is 
sensitive to the noisy data. To overcome this problem, 
Krishnapuram and Keller [5] proposed the possibilistic 
c-means (PCM) clustering algorithm which relaxes the 
column sum constraint and each cluster reduces the effects of 
the noisy data effectively. Recently, we successfully applied 
the characteristic of the PCM clustering algorithm to the 
FCRM clustering algorithm named the possibilistic 
c-regression models (PCRM) clustering algorithm [6] and it 
could reduce the effects of the noisy data effectively. 

On the other hand, the number of clusters, c , is fixed and 
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must be prior assigned. In order to solve this problem, there 
were many literatures of cluster validity criterion proposed to 
help the cluster algorithm to choose an appropriate number of 
clusters such as Bezdek’s partition coefficient [7] and 
partition entropy [8], Xie-Beni’s index [9], and cluster 
validity criterion for FCRM clustering algorithm [10- 16]. We 
adopt the cluster validity criterion for FCRM clustering 
algorithm to our fuzzy modeling algorithm because the 
PCRM clustering algorithm is similar to the FCRM clustering 
algorithm.  

T-S fuzzy affine linear model also have been used to 
describe nonlinear systems [3, 10- 16]. In this paper, our 
objective is to use the T-S fuzzy affine linear models to 
describe a nonlinear system with high accuracy and as few 
IF-THEN rules as possible. First, we collect input and output 
data from original nonlinear system, and partition these data 
into some different clusters via identification and PCRM 
clustering algorithm. Then, we apply a cluster validity 
criterion for the PCRM clustering algorithm to choose an 
appropriate number of clusters. Finally, we construct fuzzy 
affine linear model for original nonlinear system via 
modeling algorithm. 

The rest of the paper is organized as follows.  Section II 
introduces the T-S fuzzy model. Section III proposes the T-S 
fuzzy affine linear modeling algorithm includes data partition, 
determination of the number of the clusters and fuzzy rule 
construction.  In Section IV, we illustrate the effectiveness of 
the T-S fuzzy affine linear modeling algorithm with several 
examples. Section V gives the summary and conclusions. 

II. TAKAGI-SUGENO FUZZY MODEL 
A fuzzy rule-based model suitable for describing a large 

class of nonlinear systems was introduced by Takagi and 
Sugeno [1, 2] as follows: 
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where 1
1 ,], ,[ +ℜ∈ℜ∈= ninT

nuu βu " is the parameter of the 

ith regression model (cluster) for ,,,2,1 ri …= iR denotes 
the ith IF-THEN rule and c is the number of rules in the rule 
base. ,,,2,1, nquq …= are individual input variables, and 

i
qA  are associated individual antecedent fuzzy sets of each 

input variable. ℜ∈iy is the output of each rule. 
For any input vector u, if the singleton fuzzifier, the 

product fuzzy inference and the centre average defuzzifier are 
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applied, the output of the fuzzy model ŷ  is inferred as 
follows [17, 18]: 
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)(uiw denote the degree of fulfillment of the antecedent, that 
is, the level of firing of the ith rule. 

III. FUZZY MODELING ALGORITHM 
The proposed T-S fuzzy affine linear modeling algorithm 

is composed of three parts: input-output data partition by the 
PCRM clustering algorithm, determination of the number of 
clusters and fuzzy rule construction. 

A. Data partition 
To overcome the problem of the FCRM clustering 

algorithm [6], we successfully applied the characteristics of 
the possibilistic c-means (PCM) [5] clustering algorithm to 
the FCRM clustering algorithm and proposed a new 
clustering algorithm named possibilistic c-regression models 
(PCRM). 

Suppose that } , ,{ 1 LzzZ "=  is an unlabeled data set, 

where ℜ×ℜ∈= n
hhh y ),(uz  for all },,1{ Lh "∈ , and let P 

denote a Lc × possibilistic c-partition matrix generated by 
PCRM clustering algorithm as follows [5, 6, 19]: 
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where ihp  of P  satisfies the following conditions [5, 6, 19]: 

 },,,1{ and},,1{allfor   ]1,0[ Lh cipih "" ∈∈∈  (5) 
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where c is the number of clusters and ihp  is the degree of 
possibility (typicality) of hz  belonging to the ith cluster.  

The regression model adopted in this paper is as follows [3, 
6, 10- 16]: 
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where 1
011 ],,,[,], ,[ +ℜ∈=ℜ∈= nii

n
iinT

hnhh uu βββ "" βu is 
the vector of parameters of the ith regression model (cluster) 
for all },{1, ci "∈  and ℜ∈i

0β  denotes the offset or shift 
term. Then the local estimation error is defined by [3, 6, 10- 
16]: 
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In such case, the regression model parameters iβ  can be 
estimated by using the weighted least square (WLS) 
algorithm [6, 15, 16, 20, 21] as follows: 

 ΠWΓΓWΓβ iTiTi 1][ −=  (10) 

where  

 L

L

nL

T
L

T

T

y

y
y

ℜ∈
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=ℜ∈

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= +×

##
2

1

)1(2

1

 ,

1,

1,
1,

Π

u

u
u

Γ  (11) 

and 
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 The objective function for the PCRM clustering algorithm 
is defined by [5, 6, 19] 
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where ), ..., , ,( 21 cβββΘ = ρ is a constant and ),2[ ∞∈m  is 
the weighting exponent. For the PCRM clustering algorithm, 
the objective is to find ),( ΘP  such that (13) is minimized. 
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PCRM Clustering Algorithm: 
Step 1: Given c ( Lc <<1 ), ),,2[ ∞∈m the termination 

threshold 0>ε , set an initial possibilistic c-partition matrix 
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satisfying (5)-(7), and set iteration index .0=k  
Step 2: By (7), calculate the parameter vectors allfor  )(kiβ  

}.,{1, ci "∈  

Step 3: Update )(kP  to )1( +kP  by [10, 11] 
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for all },,1{ and},,1{ Lh ci "" ∈∈ . 

Step 4: If ,)1()( ε<− +kk PP stop; otherwise, set 1+= kk  

and return to Step 2. 

B. Determination of the number of clusters 
In the PCRM clustering algorithm, the number of clusters c 

is fixed and assigned by the user. In practice, the appropriate 
number of clusters is usually decided with the aid of a reliable 
index called the cluster validity criterion. 

Because the PCRM clustering algorithm is similar to the 
FCRM clustering algorithm, we adopt the same concept of 
the compactness-to-separation ratio as a cluster validity 
criterion for the PCRM clustering algorithm. Referring to the 
affine linear regression models defined in (16) 
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0β , we could rewrite each linear hyper-plane, 
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In (17), in  denotes the normal vector of the ith linear 
hyper-plane. The corresponding unit normal vector of each 
linear hyper-plane in (17) can be defined as 
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where • denotes the Euclidean norm. For any given two 

hyper-planes, ),,(and),( jjii fyfy βuβu ==  its linear 
hyper-planes are 0=i

Tnη and ,0=j
Tnη  respectively. If 

,1, =>< ji vv then these two linear hyper-planes are 

coincident. If 0, =>< ji vv , then these two linear 
hyper-planes are orthogonal [22]. Furthermore, we define the 
distance of the shift term between two hyper-planes as: 
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where ijδ  is normalized, that is, ].1,0[∈ijδ  
Accordingly, we define a separation validity function, 

,sepV for the affine linear regression models by 
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where 21, λλ  are rather small real positive constants that 
prevents the function from being zero or being divided by 
zero. Obvious, sepV (20) fits the concept of separation 
measure criterion in [9]: the more diverse the hyper-planes, 
the larger the separation validity function. 

To reflect the compactness of clusters, the compactness 
validity function for PCRM, ,comV is defined as 

 
L

yp
V

L

h

c

i

iT
h

m
ih

com

∑∑
= =

−
= 1 1

]1[)( βu
 (21) 

which also fits the objective function of the PCRM clustering 
algorithm. 

The cluster validity criterion suitable for PCRM clustering 
algorithm can be defined by the compactness-to-separation 
ratio as follows 
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where the numerator reflects the compactness of 
hyper-plane-shaped clusters, and the denominator indicates 
the separation of hyper-plane-shaped clusters. The optimal 
number of clusters c is chosen when V  reaches its minimum. 
In practice, the appropriate number c is chosen at which the 
first local minimum of V  has occurred; moreover, when the 
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cluster validity index decreases monotonically, we can choose 
c at which a significant change in its curvature has occurred [9, 
23]. 

C. Fuzzy rule construction 
Once the appropriate number of clusters c is chosen with 

the aid of the cluster validity criterion (22), we can therefore 
construct the T-S fuzzy affine linear model from the cluster 
representatives and the fuzzy partitions obtained by the 
PCRM clustering algorithm. The fuzzy rules we want to 
construct for the T-S fuzzy affine linear model are expressed 
as follows: 
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where the consequent parameters ],,,[ 01
ii

n
ii βββ "=β  can be 

directly calculate by (10), but the antecedent fuzzy sets i
qA  

need some additional manipulations. The antecedent fuzzy 
sets are usually achieved by projecting (the axis-orthogonal 
projection method [23]) the membership degrees in the fuzzy 
partitions matrix P onto the axes of individual antecedent 
variable qu  to obtain a point-wise defined antecedent fuzzy 

set i
qA  and then to approximate it by a normal bell-shaped 

membership function [18, 23- 25]. The uniform structure of 
bell-shaped function is advantageous and convenient for 
identification, analysis and optimization; besides, data of all 
ranges are supported by this kind of membership function. 

Hence, each antecedent fuzzy set i
qA  in (23) is calculated 

from the sampled input data  T
hnhh uu ], ,[ 1 "=u  and the 

fuzzy partition matrix ][ ihp=P  as follows [4, 26]: 
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denote the mean and standard deviation of the bell-shaped 
membership function, respectively.  

 

T-S Fuzzy Affine Linear Modeling Algorithm: 
Step 1: Given experimental data .,,1for),,( Lhyhh "=u  

Set exponential weighting ).,2[ ∞∈m Specify the cluster 
representatives as affine linear models, and define the 
corresponding measurement error ihD  in PCRM clustering 
algorithm applied to bilinear models. Set mincc =  and pick a 
termination threshold 0>ε . 

Step 2: Set an initial partition )0(P  satisfying (5)- (7). Set 
iteration index 0=r . 

Step 3: Calculate c  model parameters by (10) that 
minimize the objective function in (13). 

Step 4: Update )(rP  to )1( +rP  by (15). 
Step 5: If ε≤− + )1()( rr PP , go to Step 6; otherwise, set 

1+= rr  and return to Step 3. 
Step 6: Set 1+= cc  and repeat Step 2 to Step 6 until 

.maxcc =  
Step 7: Use the cluster validity criterion (22) to find the 

appropriate number of clusters. 
Step 8: According to the appropriate number of clusters, 

construct the antecedent of fuzzy model from the partition. 
Apply (23)- (26) to generate the antecedent and consequent 
parameters of the affine linear model. 

IV. NUMERICAL EXAMPLES 
To illustrate the T-S fuzzy affine linear modeling algorithm, 

we consider the following example to demonstrate the 
effectiveness of the modeling algorithm.  

Example: Consider the discrete-time nonlinear system 
described by the following second-order difference equation 
[18]: 

 ).()(
)1()(1

)5.2)()(1()()1( 22 keku
kyky

kykykyky ++
−++
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where  )(ke  is an independent white Gaussian random noise 
having zero mean and standard deviation 0.04. 

The T-S fuzzy affine linear model is described as follows: 
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where  .,,2,1 ci …=  
    We use the input signal with uniformly distributed white 
random signal as the training input signal [1], i.e. )(ku  is a 
uniformly distributed random signal in the range ]1,1[−  for 

.2001 ≤≤ k The number of training data L is 200. The 
termination threshold in the PCRM clustering algorithm is 
chosen .00001.0=ε This training input signal is depicted in 
Fig. 1 with .001.021 == λλ  The plots in Fig. 2 show that the 
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appropriate number of clusters is .4=c The parameters of the 
antecedent and the consequent parts are listed in Table 1 and 
2, respectively.  

To analyze the performance of the obtained T-S fuzzy 
affine linear model, we use the sinusoidal signal 

)25/2sin()( kku π= for 1001 ≤≤ k  to validate. The number 
of testing data L is 100. 

Define the mean square error (MSE) as follows: 

  
( )

L

kyky
L

k
∑

=
+−+

= 1

2)1(ˆ)1(
MSE  (29) 

where )1( +ky and )1(ˆ +ky are the outputs of the discrete-time 
nonlinear system (27) and the T-S fuzzy affine linear model 
(28), respectively. 

The result MSE of our fuzzy modeling is 0.0689 for 
.100=L  But we use this fuzzy modeling algorithm with the 

FCRM clustering method, the result MSE is 0.1027. Fig. 3(a)- 
(c) illustrate the testing input signal and the output response, 
respectively. 

V. CONCLUSION 
In this paper, we have established the T-S fuzzy affine 

linear modeling algorithm by PCRM clustering. The 
simulation result shows that the modeling algorithm could 
construct the T-S fuzzy affine linear model that will approximate 
the nonlinear system with high accuracy and fuzzy modeling by 
PCRM clustering method better than by FCRM clustering 
method.  
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TABLE I. List of antecedent parameters 

 i
1α  i

1σ  i
2α  i

2σ  
1=i  -0.7607 0.3322 -0.2915 1.0161 
2=i  -0.6716 1.2644 -0.0794 1.0017 
3=i  -0.3626 0.7257 -0.5009 0.8697 
4=i  -0.3386 0.7294 -0.4001 0.2409 

 
 
 
 
 
 
 
 

TABLE II. List of consequent parameters 
 i

1β  i
2β  i

3β  i
0β  

1=i  0.8621 0.8049 0.7735 0.8177 
2=i  0.2246 -0.0149 0.0732 0.3422 
3=i  0.3086 0.1521 0.2511 0.0221 
4=i  0.1462 -0.0266 0.0236 0.0136 
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Fig. 1. The training input u(k). 
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Fig. 3. (a) The testing input )25/2sin()( kku π= . (b) The output 
of the T-S affine linear model (dotted line) and the plant (solid 
line). (c) Errors between the outputs of fuzzy bilinear model and 
plant for test input with L = 100 (MSE = 0.0689). 
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Fig. 2. Plot of the cluster index V vs. the number of cluster c. 
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