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Abstract In order to apply successfully the fuzzy clustering 
algorithms like shadowed C-means (SCM) to image 
segmentation problems, the spatial information related with 
each pixel in the image should be carefully calculated and 
appended to the clustering algorithms. In this paper, the 
non-local spatial information calculation is introduced to 
SCM. Because the data in the kernel space demonstrate more 
linearly-separable shape and the distances calculated in it 
shows the property of robust to noise and outliers, the 
proposed clustering algorithm is conducted in the kernel space 
(aka feature space) mapped from the original space by some 
implicit mapping functions defined in the kernel functions. 
Simulations results on some noise images and the comparison 
with traditional methods demonstrate the efficiency and 
superiority of the proposed new approach.  

Keywords: Fuzzy clustering; Image segmentation; Shadowed 
c-means; Non-local spatial information; Kernel method. 

I. INTRODUCTION 

Image segmentation works as a basic task in image and 
video understanding [1], computer vision [2], medical 
imaging [3], and pattern recognition [4]. The major target of 
image segmentation is to split the image into homogeneous 
regions in which pixels in the same region demonstrate 
similar characteristics while the pixels in the different 
regions show noticeable dissimilarities.  Fuzzy clustering 
algorithms are widely used in image segmentation tasks 
because of their simple implementation, fast convergence 
and the benefit of offering soft boundary between different 
clusters[5-6,12-14]. 

The shadowed set [9] is a derivation of fuzzy set that 
offers a new approach to deal with the outliers in data 
clustering. The shadowed set is defined over a fuzzy set by 
split the universe of discourse of the fuzzy set into three 
parts: the core region, the shadowed region and exclusive 
region. Then, the membership values in core region are boost 
to one and the membership values in exclusive region are 
suppressed to zero. By applying the concept of shadowed set 
in the iteration of fuzzy clustering, the Shadowed C-Means 
(SCM) algorithm and its variants have been studied [10-11]. 
Because the outliers in the boundary of cluster or in the 
exclusive region of fuzzy set usually take the suppressed 
membership values, their contribution to the cluster is 
limited. Therefore, the SCM has a good capability in 
reducing the outliers’ influence. In [11], SCM is 
recommended as a better image segregation problems 
approach than FCM variants. 

For fuzzy clustering based image segmentation, 
researchers have noticed that simply applying the intensities 

of pixels as the input data of clustering algorithm discarded 
the valuable spatial information pertained to each pixel 
because pixels are positioned at specific place of an image 
and the pixels neighbored to a pixel also give the pixel 
specific characteristics differed to other pixels [7]. Inspired 
by the success of nonlocal image denoise algorithms [8], the 
non-local spatial information calculation methods and the 
corresponding integration with SCM, the Non-Local SCM 
(NLSCM), will be explained in this paper. 

Kernel methods have drawn many researchers’ interests 
since the support vector machines (SVM) are proposed and 
widely used in a range of applications [15]. The kernel 
method maps the data from the original data space to a high 
dimensional Hilbert space via some mapping functions. The 
data in the kernel or feature space will show higher linear 
separatibility. The advantages of kernel methods boost the 
quick kernelization of traditional fuzzy clustering algorithms 
and their applications in image segmentation problems 
[12-14]. Encouraged by good performance of different 
Kernel Fuzzy C-means(KFCM) based image segmentation 
[12-14], this paper also introduce the kernel version of 
NLSCM, Kernel NLSCM (KNLSCM) for image 
segmentation problems. The experiments on some synthetic 
and real images demonstrate the efficiency and advantages 
of the proposed methods. 

The remainder of this paper is organized as follows. 
Section 2 reviews algorithms like FCM, KFCM and SCM. 
Then the NLSCM and its kernel version KNLSCM are 
detailed in Section 3. The comparison results between 
proposed algorithms and the traditional approaches are 
summarized in Section 4. Finally, in Section 5, we conclude 
this paper with future work. 

II. RELATED WORK 

A. Fuzzy C-Meansand Kernel Fuzzy C-Means  

Through the minimization of an objective function that 
summarizes the weighed distances between the data and the 
prototypes, the Fuzzy C-means (FCM) partitions N patterns 
Xk (k=1,2, …, N) into C clusters [16]. The objective function 
is: 
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where m 1 is the fuzzy degree, uik [0,1] is the membership 
of k th pattern in cluster i . The prototype or cluster center of 
cluster i is Vi . The || || is the Euclidean distance.  

  The FCM algorithm continually updates uik  and Vi  as  
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Where dik=||Xk -Vi||
2. The iteration usually stop when the 

stop criterion like maximum iteration number or 
max|uik(t)-uik(t-1)|<ε, is satisfied.  

  The kernel version FCM was proposed in [17-19]. By 
mapping the data from the original data space to a much 
higher dimensional space using a transform function, the 
kernel fuzzy c-means (KFCM) algorithms try to solve the 
partition problem in the mapped space. Normally, the 
mapping function is not given directly. On the other hand, 
we have the kernel function is defined with the mapping 
function as 

( , ) ( ), ( )X Y X Y                        (4) 

where is the non-linear mapping, and ,  is the inner 

product in the Hilbert space. Similar to FCM, the partition 
of data points Xk (k=1,2, …, N) in C clusters is conducted by 
minimize the weighed distances between the data and the 
prototypes, but this time in the mapped space. As a result, we 
have the new objective function of KFCM like 
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where uik [0,1] is the membership of the k th pattern to 
cluster center Vi, and is the distance in the kernel space. 

In this paper, we apply the Guassian kernel 
2 2( , ) exp( / )X Y X Y  in kernel methods. Because 

κ(X,X)=1 for Gaussian kernels, equation (5) can be 
reformulated as  
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  The new objective function can be minimized by 
iteratively updating the memberships and cluster centers as 
below [20]: 
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Here dik=||Xk -Vi||= 2 - 2 ( , )k iX V 2 

B. Shadowed C-Means 

As pointed out in Section I, the concept of shadowed set 
can be combined with fuzzy c-means and bring us the 
shadowed c-means (SCM). In other words, the SCM can be 
regarded as a variant of fuzzy c-means (FCM) [10]. 

The shadowed set is a modified fuzzy set [9], in which, 
the original membership values close to 1 are changed to 
exactly 1 and the original membership values close to 0 are 
changed to 0 evenly. The rationale behind such 
modifications is that for data points in the core region, their 
member values are close to 1; therefore, the difference 
between 0.99 and 1 in membership is useless trivia. 
Similarly, for the points in the exclusive region, the 
membership difference between 0.01 and 0 also can be 
discarded. After all, the unchanged region is defined as the 
uncertainty/shadow zone to maintain the entire level of 
ambiguity. Formally, the shadowed set is defined as 

 : {0,1,[0,1]}J X               (4) 

Here X is the universe of discourse. As illustrated in Fig. 1, 
for a shadowed set, the core region is the group the points 
with grade 1. The exclusive region contains all the points 
with grade 0. In the middle, the shadowed region includes 
points with J(x) = [0, 1]. 

 
Figure 1.  The shadowed set derived from a fuzzy set by some threshold. 

 
Figure 2.  The threshold λ is calculated by: A1+A2= card {A3}. 

Now the determining of specific regions of core and 
exclusive is a problem. In other words, if we increase 
original fuzzy membership values larger than 1-λ to 1 and 
decrease the membership values smaller than λ to 0. How 
should we set the value of λ? This problem is solved in [10] 
by the basic idea of keeping the vagueness in the original 
fuzzy set in the produced shadowed set. That is, the λ is 
selected to minimize the different between the vagueness 
removed by reduction and enhancement of membership 
values in core and exclusive regions and the increased 
uncertainty in membership values in the form of [0, 1] in the 
shadowed region. Mathematically, the λ is determined by 
minimizing the term expressed as following [10-11]. 
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Here λ (0,1/2) such that O(λ)=0. The three integrals at the 
right side of (9) represent regions A1, A2 and A3 in Fig.2. 
The parameters L1 and L2 denote the boundaries in the 
integrals, which are computed by λ. They specify the regions 
in the universe of discourse where the membership values 
are below the threshold λ and above the threshold1-λ. 

In the iteration of FCM, when we get the estimated 
membership matrix U= [uik], we have a discrete fuzzy set 
[ui1, ui1, …, uiN] for cluster i. For each fuzzy set, we can 
define a shadowed set over it, that is, we split the universe of 
discourse into three regions by some parameter λi.The λi. is 
derived by minimizing the discrete version of (9)  
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λi=λopt=argminO(λi)                      (11) 

Here uimin and uimax denote the lowest and the highest 
membership values of data points Xk to the i th cluster 
[11,23].  

With the core, shadowed and exclusion regions of a 
shadowed set, we modify the updating rule of cluster centers 
as below [11]:  
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Here, m>1 is the fuzzy coefficient and λi is the corresponding 
threshold for cluster center Vi . According to (8), we will see 
the data points in the core region have the enhanced weights 
of 1; therefore, they contribute more to the final value of 
cluster centers. On the contrary, the data points in the 
exclusion region have little impact due the double 
exponenetialed weights ( )

m

ik

mu . Such kind of processing 
benefits to the suppression of outliers because the outliers 
are usually in the boundary of clusters, and their impact on 
the cluster center calculation is decreased in (12).   

In a summary, the shadowed c-means (SCM) works 
similar to the fuzzy c-means and updates the cluster centers 
and membership values in an iterative way. The main 
procedure of the algorithm is listed as below. 

1. Initialize cluster centers. 

2. Repeat Steps3–5 by incrementing t until convergence or 
the maximum number of iterations. 

3. Compute uik as (3). 

4. Compute threshold λi for the i th cluster according to (11). 

5. Update cluster centers Vi using (12). 

III. LOCAL SPATIAL SHADOWED C-MEANS AND 

NON-LOCAL SPATIAL SHADOWED C-MEANS 

A. Non-local Spatial Shadowed C-Means 

The noticeable downside of classical SCM algorithm for 
image segmentation problem is it does not make full use of 
the spatial information in the image. In [11], the intensity of 
each pixel is the data points to be partitioned by SCM. As a 
result, the noisy pixel of the image is easy to be classified 
incorrectly due to its noised intensity.  

In order to reduce the influence of the noise in the image 
on image segmentation, the local spatial information 
obtained from the image, like the average of neighborhood 
can be incorporated into the Shadowed C-Means clustering 
algorithm. However, the non-local pixels in the image may 
contain valuable spatial information as well. Therefore, we 
introduced the non-local spatial information into the SCM 
clustering algorithms. The non-local means algorithm 
(NL-means) is first proposed by Buades et al. in [8] as an 
image denoising method. In NL-means, we try to find a set 
of pixels with similar neighborhood configurations or with 
similar patches taking those pixels as the centers. Then the 
pixel under consideration could be denoised by the weighted 
averaging over these patches. Under the same rationale, the 
non-local spatial information derived from similar patches 
will be included in the non-local spatial SCM (NLSCM). 

In NLSCM, the distance measurement between the cluster 
center and the pixel is influenced by non-local information, 
dnl  is computed as a weighted average of all the pixel to 
center distances in the given image defined by LB 

2 2( , ) ( , ) ( , ) ( , )
k k

nl j i nl k j k i nl k j
x LB x LB

d X V w X X d X V w X X (16)     

Here the weight wnl(xk ,xj) is the similarity between the pixel 
xk and xj  in the given image LB. While the similarity 
between two pixels xk and xj located in the given image LB, 
depends on the difference between the patch Nk and patch Nj, 
where Nk is a square window of fixed size and centered at a 
pixel xk. The difference between patch Nk and Nj is measured 
as a weighted Euclidean distance ||v(Nk)-v(Nj)||ρ , where ρ>0 
is the standard deviation of the Gaussian kernel [24]. In the 
distance, we use a Gaussian weighting function to give more 
weights to the pixels near the center. Specifically, the 
similarity of two pixels is represented by the distance 
between two patches as:  

2

( ) ( )

( , )
k jv N v N

h
nl k jw X X e          (17)          

Here the parameter h acts as a degree of filtering. It controls 
the decay of the exponential function and therefore the level 
of impacts of the nonlocal patches to the considered patches.  

Based on the distances between the data points (image 
pixels) and the cluster centers described in (16), we compute 
and update the cluster center Vi and the membership values 
uij just like the SCM.  

We list the major steps of the NLSCM algorithm as 
below: 

1. Initialize cluster centers 
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2. Compute uij by (3) and (16). 

3. Compute threshold λi for the i th class, using (11). 

4. Compute new cluster centers, Vi, using (12). 

5. Repeat Steps 2–4 by incrementing t until convergence or 
the maximum number of iterations. 

It should be pointed out that after step 2, we can have an 
optional step that includes the local spatial information into 
the calculation of the membership values uij by filtering the 
membership values in the local window of considered pixel. 
For example, we can weighted-average uij to: 

'

( )j

ij k ik
k NB X

u w u .              (18) 

Here NB(xj) denotes the neighborhood of pixel xj. 

B. Kernel Non-Local Spatial Shadowed C-Means 

By considering the spatial influence of a pixel, we can 
enhance the SCM’s robustness to the noise problem of 
image segmentation. Because the distances in Hilbert space 
induced by the Gaussian kernel are more robust to noises 
[12] [21], we further kernelize the NLSCM by mapping the 
data from the original data space into a higher dimensional 
kernel space. After this reproduction in the kernel Hilbert 
space, the data are more easily to be separated or clustered. 
Kernelization of other fuzzy clustering algorithms and their 
good performance [12-14] are the major motivation of the 
kernel version of NLSCM.  

Compared to NLSCM, before computing the influence of 
memberships of these nonlocal similar patches on the 
membership of each pixel point, we should first to map the 
original data space into the higher dimensional Hilbert 
space. 

Similar to the KFCM, we update the membership values 
according to the (7) as well. However, due to the impact of 
the spatial information, the distance calculation in (7) is 
changed to the nonlocal version as formulated in (16). After 
that, we update the center like the SCM. That is, we 
calculate the threshold λi for each cluster and organize the 
data points into core, shadowed and exclusion regions, and 
enhance the weights of core points and suppress the weights 
of exclusive points in the cluster center updating rule of 
KFCM, i.e. the (12). Specifically, we compute the updated 
center Vi  as  
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Clearly in (19), the contribution of data in the exclusive 
region will be decreased from ( , )( )m

k i ikX V u  in (12) to 

( , )( )
mm

k i ikX V u . By doing this, the outliers’ contribution to 

the center calculation is decreased. 

In conclusion, the major iterations of the Kernel NLSCM 
(KNLSCM) algorithm are similar to NLSCM algorithm as 
below. 
1. Initialize cluster centers. 

2. Compute uik by (7) and (16), and conduct (18) optionally. 

3. Compute threshold λi for the i th class, using (11). 

4. Compute new cluster centers, Vi, using (19). 

5. Repeat Steps 2–4 until convergence or the maximum 
number of iterations. 

IV. EXPERIMENTAL RESULTS  

In this section, we present a comparative study on FCM, 
SCM, NLSCM and KNLSCM to validate the efficiency and 
superiority of the proposed NLSCM and KNLSCM. The 
different clustering algorithms are performed on several 
synthetic and medical images with different types of noises.  

For the NLSCM and KNLSCM, the parameter like the 
variance 2  of Gaussian kernel and the degree of filtering, 
h, in non-local spatial information calculation, are varied in 
a fixed range and the best settings are selected by the 
performance index discussed later. The first testing images 
include a synthetic noised two-value image and a synthetic 
image named 'Trin'. The synthetic noised two-value image 
is similar to the one used in [12, 14]. It is in the size of 50
50 pixels. It contains two clusters with two values 0 and 1. 
The synthetic image named 'Trin' is an image having size 32

32 pixels and has four regions. In real image acquisition 
process, except the “Gaussian noise”, another widely 
appeared noise is the “Rician noise”, which usually 
contaminates the medical images [25]. So here two different 
noises including “Gaussian noise” and “Rician noise” 
(generated by a code obtained from Ged Ridgway [26]), are 
added to the synthetic images. The sampling noise images 
and the segmentations are shown as Fig.3 and Fig.4.  

In presence of ground truth information, the segmentation 
accuracy is used to evaluate the goodness of clustering 
corresponding to a given number of segments. The 
segmentation accuracy is measured as 

num. of correctly classfied pixels
. 

total num. of pixels
Seg accuracy         (18) 

  The segmentation accuracies (SAs) of the 4 methods for 
the two kinds of noised images are listed in Table I and 
Table II. According to the last two columns of the Tables, 
the NLSCM or KNLSCM provides the best results - with 
better SA than the FCM and SCM.  

Another testing image is a medical images obtained from 
database 'BrainWeb' [27]. Fig 5 (a) illustrate one sample. 
The image is T1-weighted MR phantom with slice thickness 
of 1 mm. The 5% and 7% Rician noise are added to the 
image and the noise images will be partitioned into three 
regions corresponding to White Matters (WMs), Gray 
Matters (GMs) and Cerebrospinal Fluid (CSF) with 4 
segmentation methods. For the MR image with ground truth 
segmentation, the SA of algorithm i on class j , is used to 
evaluate the goodness of clustering and calculated as 

  ij j
ij

ij j

A Aref
S

A Aref
              (24)         
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where Aij stands for the set of pixels belonging to class j that 
are found by algorithm i and Arefj stands for the set of 
pixels belonging to class j that is in the reference segmented 
image. The SAs of FCM, SCM, NLSCM and KNLSCM 
about the images having 5% and 7% Rician noise, are listed 
in Table III and IV, in which S1 means the SA for the 
cluster of CSF, S2 is for the cluster of GM and S3 is for the 
cluster of WM. According to these two tables, NLSCM and 
KNLSCM’s performance are evidently better. 

The last testing image is the MR brain image obtained 
from Internet Brain Segmentation Repository (IBSR) data 
set [28], in which the GMs in center of brain are obtained 
using some contour mapping algorithm, and different 
segmentation algorithms are mainly applied to segment the 
CSF and WMs. The image is 7% Rician noised and shown 
in Fig. 5(b). For this image, we also use the Si (the SA on 
class i) to evaluate the performance of different algorithms. 
Table V shows the segmentation results with FCM, SCM, 
NLSCM and KNLSCM. From the Table V, the KNLSCM is 
superior, that is, the KNLSCM obtains the maximum SAs in 
comparison. Except KSSCM, the spatial clustering method 
NLSCM shows decent results as well. This demonstrates the 
spatial information’s capability in coping with noise in 
images. 

In a short summary, the comparison experiments 
presented in this section reveal that NLSCM and KNLSCM 
are good choices for segregation problems of noise images. 

 

   
(a)          (b)          (c) 

Figure 3.   (a) Gaussian noised two-value image, (b) Recisan noised 
two-value image and  (c) the ground truth of segemntation 

 

   
(a)       (b)     (c) 

Figure 4.  (a) Gaussian noised image 'Trin', (b) Recisan noised image 
'Trin' and (c) the ground truth of segemntation 

 

   . 
(a) 

   
(b) 

Figure 5.  (a) One brainweb image and its ground truth segmenation (b) 
One ISBR image and its ground truth segmenation 

TABLE I.  SEGMENTATION ACCURACIES OF DIFFERENT METHODS ON 
NOISED TWO VALUE IMAGES 

 FCM SCM NLSSCM KNLSFCM 

3%Gaussian noise 0.9976 0.9976 1.0000 1.0000 

5%Gaussian noise 0.9892 0.9892 1.0000 1.0000 

10%Gaussian noise 0.9472 0.9472 1.0000 1.0000 

10%Rician noise 1.0000 1.0000 1.0000 1.0000 

20% Rician noise 0.9828 0.9832 1.0000 1.0000 

30% Rician noise 0.8948 0.8944 0.9980 1.0000 

TABLE II.  SEGMENTATION ACCURACIES OF DIFFERENT METHODS ON 
NOISED IMAGES OF 'TRIN' 

 FCM SCM NLSSCM KNLSFCM 

3%Gaussian noise 1.0000 1.0000 1.0000 1.0000 

5%Gaussian noise 0.9958 0.9958 0.9985 1.0000 

10%Gaussian noise 0.9077 0.9111 0.9939 0.9954 

10% Rician noise 0.8113 0.8279 0.9956 0.9985 

20% Rician noise 0.6201 0.6165 0.8579 0.9180 

30% Rician noise 0.4734 0.4709 0.7515 0.7681 

 

TABLE III.  SEGMENTATION ACCURACIES OF DIFFERENT METHODS ON 
'BRAINWEB5'. S1: SEGMENTATION ACCURACY FOR THE CLUSTER OF CSF, 

S2: SEGMENTATION ACCURACY FOR THE CLUSTER OF GM, S3: 
SEGMENTATION ACCURACY FOR THE CLUSTER OF WM 

5%Ricernd noise FCM SCM NLSSCM KNLSFCM 

S1 0.8760 0.8822 0.9143 0.9121 

S2 0.8270 0.8329 0.9160 0.9213 

S3 0.9022 0.9058 0.9609 0.9646 

SA 0.8707 0.8756 0.9390 0.9426 

 

TABLE IV.  SEGMENTATION ACCURACIES OF DIFFERENT METHODS ON 
'BRAINWEB7'. S1:SEGMENTATION ACCURACY FOR THE CLUSTER OF CSF, 

S2: SEGMENTATION ACCURACY FOR THE CLUSTER OF GM, S3: 
SEGMENTATION ACCURACY FOR THE CLUSTER OF WM 

7%Ricernd noise FCM SCM NLSSCM KNLSFCM 

S1 0.7791 0.7919 0.8844 0.8908 

S2 0.6989 0.7099 0.8847 0.8934 

S3 0.8137 0.8188 0.9455 0.9503 

SA 0.7637 0.7723 0.9163 0.9227 

TABLE V.  SEGMENTATION ACCURACIES OF DIFFERENT METHODS ON 
'ISBR'. S1:SEGMENTATION ACCURACY FOR THE CLUSTER OF CSF, S2: 

SEGMENTATION ACCURACY FOR THE CLUSTER OF GM, S3: SEGMENTATION 
ACCURACY FOR THE CLUSTER OF WM 

7%Ricernd noise FCM SCM NLSSCM KNLSFCM 

S1 0.7470 0.7409 0.7470 0.7823 

S2 0.7527 0.7437 0.7488 0.8055 

SA 0.7410 0.7381 0.7451 0.7529 
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V. CONCLUSION 

In the paper, the traditional clustering algorithms, FCM, 
KFMC and SCM are revisited first. Based on the 
consideration of spatial information, we introduce the 
non-local shadow c-means (NLSCM) and its kernel version 
KNLSCM for image segmentation problems. It is 
demonstrated that the NLSCM and KNLSCM are possible to 
suppress irrelevant information and outlines. They take care 
of noise in image very well and can derive better 
segmentation results than other conventional clustering 
algorithms like FCM and SCM. NLSCM and KNLSCM are 
good choices to the clustering based segmentation problems 
of noise images. But we should be point out that the iteration 
steps of SCM type algorithms including NLSCM and 
KNLSCM modified the traditional optimization steps used to 
derive some local minima. The validity of these SCM type 
algorithms’ capability to obtain local minima becomes an 
open problem now. 

There are some future work can be conducted to improve 
the methods proposed in this paper. For example, to derive 
better segmentation results, we can test other approaches to 
embed the non-local spatial information in the clustering 
procedure. The multiple kernel approach is a candidate [14]. 
Another tough problem is the theoretical convergence of 
SCM and its variants like NLSCM and KNLSCM proposed 
in this paper. Currently in the experiments, the convergence 
is not a problem. Nevertheless, the theoretical proof of 
convergence is still an open problem to the authors’ 
knowledge. 
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