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Abstract—Large imbalanced datasets have introduced dif-
ficulties to classification problems. They cause a high error
rate of the minority class samples and a long training time
of the classification model. Therefore, re-sampling and data
size reduction have become important steps to pre-process the
data. In this paper, a sampling strategy over a large imbalanced
dataset is proposed, in which the samples of the larger class are
selected based on fuzzy logic. To further reduce the data size,
the evolutionary computational method of CHC is employed. The
evaluation is done by applying a Support Vector Machine (SVM)
to train a classification model from the re-sampled training sets.
From experimental results, it can be seen that our proposed
method improves both the F-measure and AUC. The complexity
of the classification model is also compared. It is found that our
proposed method is superior to all other compared methods.

I. INTRODUCTION

The classification of imbalanced datasets is a popular
research topic. Most of the machine learning tools, such as
neural network and support vector machines, are originally
designed for well-balanced datasets to minimize the global
error rate [1]. If the dataset is imbalanced, the samples
are biased to the majority class. However, the minority
class dataset is usually more important and more meaningful.
For example, there are much less samples of people with a
particular disease than those of healthy people in a medical
problem. If a classifier is needed to label whether the people
are infected or not, it is obvious that the minority class (people
with a particular disease) is the more interested class.

Imbalanced datasets are commonly found in many appli-
cations, such as detection of oil spills from satellite images
[2], spotting customers for telecommunications management
[3], and identification of power distribution fault causes [4].
There are two main approaches to solve the problems caused
by imbalanced datasets. One is the data level approach
and the other is the algorithm level approach. Data level
approaches [5]–[7] include balancing the class distribution
by over-sampling the minority class or under-sampling the
majority class. The solutions of algorithm level approaches
improve the existing machine learning methods by adjusting
the probabilistic estimate [8], modifying the cost per class [9],
adding some penalty constants [10], or learning from one class
instead of two classes [11].
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Many experiments [12] show that preprocessing is a good
data level approach to handle the imbalanced data. Moreover,
preprocessing approaches are more flexible since they are
independent of the chosen classifier. Therefore, we focus on
re-sampling the class distribution in this paper. There are three
main types of strategies for re-sampling data. The first one is
over-sampling, which can be done randomly or by the method
of Synthetic Minority Over-sampling Technique (SMOTE) [6].
The second one is under-sampling, which include the Tomek
links [13] and Neighborhood Cleaning Rule(NCL) [14]. The
last one is the hybrid method, which combines the two pre-
vious methods (over-sampling and under-sampling methods).
Although over-sampling and hybrid methods outperform the
under-sampling methods [12], under-sampling can produce
less samples to deal with a large dataset.

An under-sampling method is proposed in this paper. The
samples of the majority class are chosen based on fuzzy logic,
which can be a useful tool to treat imbalanced datasets [12].
To further reduce the data size, an evolutionary algorithm
(EA) is applied. The chosen EA is the CHC algorithm [15]
(Cross-generational elitist selection, Heterogeneous recombi-
nation and Cataclysmic mutation) since it shows the ability of
selecting the smallest and most representative instances among
many algorithms studied in [16].

Some experiments are carried out to show the improved
performance of our proposed method against other methods,
which include random under-sampling (RUS), condensed near-
est neighbor rule (CNN) [17], Tomek Links (TL) [13], one-
sided selection (OSS) [18], and neighborhood cleaning rule
(NCL) [14]. A large imbalanced dataset from UCI Repository
[19] is used as the dataset. The Support Vector Machine
(SVM) [20] is used as the tool for reaching a classification
model from each re-sampled dataset, so as to evaluate the
corresponding preprocessing method. The evaluation methods
are based on the functions of precision and recall.

This paper is organized as follows: In Section II, some
preprocessing methods and CHC are described. Section III
introduces the details of the proposed sampling strategy and
the evaluation method of this study. To show the effectiveness
of our proposed method, the results and comparisons are
discussed in Section IV. A conclusion is drawn in Section V.

II. PREVIOUS WORK

This section describes some previous works about under-
sampling methods, which will be compared with our proposed
method in the experiments. The ideas about CHC will also be
discussed.
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A. Under-sampling Methods

Some instances of majority class are eliminated in order to
balance the class distribution.

Random under-sampling(RUS) is a non-heuristic method
that aims to balance the datasets by randomly removing some
samples of the majority class. This method may easily remove
some useful data.

Condensed nearest neighbor rule(CNN) [17] eliminates
the majority class samples that are distant from the decision
border since these samples can be considered as less relevant
for learning. First, a majority class sample is randomly drawn
and formed a subset with all the minority class samples.
Then, 1-NN is used over this subset to classify the other
majority class samples. Every misclassified majority samples
are selected to form the re-sampled dataset.

Tomek links(TL) [13] is opposite to CNN. It edits out
noisy and borderline majority class samples. Borderline sam-
ples can be treated as unsafe samples since only small changes
can cause them to be assigned to a wrong class. The process
can be described as follows. First, each sample is used to
find another sample which has the minimum distance between
them. If these two samples are in different classes, the sample
of majority class will be removed. This method can increase
the area of decision border. However, some useful data, which
is important for the classification, may also be discarded.

One-sided selection(OSS) [18] applies TL followed by
CNN. Taking advantages of those two methods, the remainder
majority samples are safe and more relevant for learning.

Neighborhood Cleaning Rule(NCL) [14] uses the Wil-
son’s Edited Nearest Neighbor Rule(ENN) to remove some
majority class samples. First, three nearest neighbors of each
sample in the training set are found. If the selected sample
belongs to the majority class but the three nearest neighbors
classify it wrongly, the selected sample will be removed. If
the selected sample belongs to the minority class but the three
nearest neighbors classify it wrongly, the nearest neighbors
belonging to the majority class will be removed.

B. CHC [15]

CHC is a kind of EAs that combines a selection strategy
with a highly disruptive recombination operator. To avoid
premature convergence and maintain diversity, incest preven-
tion and cataclysmic mutation are introduced. The process
of CHC can be described as follows. Firstly, a population
set of chromosomes 𝑃 is created. Each chromosome 𝑝𝑖 =
(𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑛) is an 𝑛-dimensional vector, which is a set
of genes, where 𝑝𝑖𝑗 is the 𝑗th gene value (𝑗 = 1, 2, . . . , 𝑛) of
the 𝑖th chromosome in the population (𝑖 = 1, 2, . . . ,𝑚); 𝑚 is
the population size and 𝑛 is the number of genes.

Secondly, the chromosomes are evaluated by a defined
fitness function. The form of fitness function depends on
the application. Thirdly, an intermediate population set of
chromosomes 𝐶, which is of the same size as 𝑃 is generated
by copying all members of 𝑃 in a random order.

Then, a uniform crossover (HUX) operator is applied on
𝐶 to form 𝐶 ′. HUX exchanges half of the genes randomly
between the parents. CHC also uses an additional method

for incest prevention. Before applying HUX to the parents,
the Hamming distance between them is calculated. If half
of that distance is larger than a difference threshold 𝑑, HUX
is applied; otherwise these two parents are deleted from 𝐶.
The initial threshold 𝑑 is set at 𝑛/4. After 𝐶 ′ has formed,
it is evaluated by the fitness function and an elitist selection
is taken. Only the best chromosomes from both 𝑃 and 𝐶 ′
are selected to form the offspring population in the next
generation. If the offspring population is the same as 𝑃 , the
difference threshold 𝑑 is decreased by one.

CHC is different from the traditional genetic algorithm.
Mutation is not performed at the recombination stage. CHC
performs partial reinitialization (divergence) when the search
becomes trapped (i.e., the difference threshold 𝑑 becomes
zero and no new offspring population is formed for several
generations). The population is reinitialized, based on the best
chromosome, by changing the elements’ values randomly with
a user-defined divergence rate 𝐷𝑟𝑎𝑡𝑒. For example, if 𝐷𝑟𝑎𝑡𝑒 =
0.35, the values of 35% elements will be changed randomly.
The search is then resumed with a new difference threshold
𝑑 = 𝐷𝑟𝑎𝑡𝑒 ∗(1−𝐷𝑟𝑎𝑡𝑒)∗𝑛. This process is called cataclysmic
mutation.

CHC has shown its ability of selecting the smallest and
most representative instances among the other algorithms
studied in [16]. Therefore, it is chosen as the algorithm to
reduce the size of dataset.

III. METHODOLOGY

In this section, the proposed under-sampling method and
the evaluation method used in this paper are discussed. The
proposed under-sampling method involves two stages. The
majority class samples of the training sets are firstly under-
sampled based on fuzzy logic. To further reduce the size
of dataset, CHC is then implemented to both minority and
majority class samples.

A. Fuzzy Set

In this paper, fuzzy logic is used to cluster the majority
class samples and select the samples depending on their
importance.

Let the class 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 be the majority class and only 𝑚
training samples (𝑋𝑝) of the class negative are considered,
where 𝑋𝑝 = (𝑥𝑝1, . . . , 𝑥𝑝𝑛) is an 𝑛-dimensional vector, 𝑝 =
1, 2, . . . ,𝑚 and 𝑥𝑝𝑖 is the 𝑖th attribute value (𝑖 = 1, 2, . . . , 𝑛)
of the 𝑝th training sample. The 𝑗th fuzzy if-then rule is written
as follows:

Rule 𝑗 : IF 𝑧1 is 𝐴𝑗1 AND . . . AND 𝑧𝑛 is 𝐴𝑗𝑛
THEN class = negative with 𝑤𝑗 , (1)

where 𝐴𝑗𝛼 is a fuzzy term of the 𝑗th rule corresponding to
the attribute 𝑧𝛼, 𝛼 = (1, 2, . . . , 𝑛), 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) is
an 𝑛-dimensional attribute vector, and 𝑤𝑗 is the rule weight.
The Gaussian membership functions are used as antecedent
fuzzy sets, which are formed based on the distribution of the
attributes. A rule base is formed by the training samples
of negative class. The corresponding label of each attribute
has the highest membership value among the other labels.
This label is selected and the rule is formed. The maximum
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TABLE I: Label Setting of Each Membership Function of the
𝑖th Attributes.

Label 𝒎𝒊𝒌 𝝈𝒊𝒌

1 Area( 1
𝐿+1 ) 𝑠𝑡𝑑𝑒𝑣𝑖∗(𝐿+1)/2

𝐿

2 Area( 2
𝐿+1 ) 𝑠𝑡𝑑𝑒𝑣𝑖∗(𝐿−1)/2

𝐿

.

.

.
.
.
.

.

.

.
𝐿+1
2 𝑚𝑒𝑎𝑛𝑖

𝑠𝑡𝑑𝑒𝑣𝑖
𝐿

.

.

.
.
.
.

.

.

.

L-1 Area( 𝐿−1
𝐿+1 ) 𝑠𝑡𝑑𝑒𝑣𝑖∗(𝐿−1)/2

𝐿

L Area( 𝐿
𝐿+1 ) 𝑠𝑡𝑑𝑒𝑣𝑖∗(𝐿+1)/2

𝐿

Note: Area( 1
𝐿+1 ) means the samples smaller than that

𝑚𝑖𝑘 have occupied 1
𝐿+1 number of samples.

number of rules depends on the number of labels and attributes
and equals to 𝐿𝑛, where 𝐿 is the number of labels. The
arrangement of each label of the membership functions and
the way of finding the values of rule weights are introduced
in the following subsections.

Fig. 1: Arrangement of the membership function of each label.
5 labels are employed as an example.

1) Membership Functions: When deciding the membership
function of each label, the distribution of the attribute is
considered. First, the mean value (𝑚𝑒𝑎𝑛𝑖) and standard
deviation (𝑠𝑡𝑑𝑒𝑣𝑖) of the 𝑖th attribute are calculated, where
𝑖 = 1, 2, . . . , 𝑛. The samples closer to the mean value
are treated as more informative. Therefore, the membership
function near the mean value is assigned with a narrower
“bell” to cluster the samples. An odd number should be used
as the number of labels. Consider 𝐿 labels per attribute are
employed and the Gaussian membership function of label 𝑘
(𝑘 = 1, 2, . . . , 𝐿) is defined as follows:

𝑓𝑘(𝑥𝑝𝑖) = 𝑒
− (𝑥𝑝𝑖−𝑚𝑖𝑘)2

2𝜎𝑖𝑘 , (2)

where 𝑚𝑖𝑘 and 𝜎𝑖𝑘 is the mean and standard deviation of
the 𝑘th label corresponding to the attribute 𝑖 respectively.
Both 𝑚𝑖𝑘 and 𝜎𝑖𝑘 are assigned based on 𝑚𝑒𝑎𝑛𝑖 and 𝑠𝑡𝑑𝑒𝑣𝑖.
Table I shows the methods of setting the parameters of each
membership function. An example of 5 labels is shown in
Fig. 1. This setting of membership functions can cluster the
samples near the mean value more significantly.

2) Rule Weight: The rule weight 𝑤𝑗 is used to reflect the
degree of matching of each fuzzy rule over all the negative

samples, so that the importance of each rule can be evaluated.
First, the fuzzy value of each sample is calculated. The fuzzy
value of 𝑋𝑝 for the 𝑗th fuzzy rule is defined as follows:

𝜇𝐴𝑗 (𝑋𝑝) = 𝑇 (𝜇𝐴𝑗
1
(𝑥𝑝1), . . . , 𝜇𝐴𝑗

𝑛
(𝑥𝑝𝑛)), (3)

where the product T-norm is used. The rule weight (𝑤𝑗) is
calculated by adding all the fuzzy values of each sample.

𝑤𝑗 =

𝑚∑

𝑝=1

(𝜇𝐴𝑗 (𝑋𝑝)). (4)

3) Selection of the Majority Samples: After the rule base
of the class negative is generated, the rules are randomly
drawn based on the rule weight. The rule with a higher rule
weight will have a higher probability to be chosen. Then, the
sample matching this rule is selected randomly to form the
new dataset. These processes are repeated until the number of
negative samples is twice of positive samples.

B. Setting of CHC

After the under-sampling, the number of majority class
samples is twice of the minority class samples, and CHC is
then applied. There are two important issues that need to
be addressed clearly before the algorithm is employed: the
representation of each chromosome and the definition of fitness
function.

1) Chromosome Representation: CHC is used to further
reduce the data size. Therefore, the chromosomes are to
represent subsets of these samples. It can be carried out by a
binary representation. Each chromosome is an 𝑛𝑔-dimensional
vector, which is a set of genes, where 𝑛𝑔 is the number of
genes. In this study, 𝑛𝑔 is the number of samples in the training
set. Each gene shows whether the corresponding sample exists
in the subset of the training set or not. Therefore, there are
two possible values for each gene: 0 and 1. If the gene value
is 1, the corresponding sample is included in the subset of the
training set. If the gene value is 0, the sample does not exist
in the subset.

2) Fitness function: In this study, the SVM is used as
the evaluation method of CHC to obtain the subset with
the highest classification rate. Normally, accuracy (ratio of
correctly classified samples to total number of samples) would
be used as the measure of classification rate. However, it
may cause difficulty for imbalanced datasets since the correct
classification rate of the majority class samples may affect the
accuracy more seriously than that of the minority class. This
problem is more obvious if the ratio of the number of majority
class to that of minority class is large. The worst case could
be that even all the minority class samples are misclassified,
the accuracy can still be very high. Therefore, some other
measures are used in this paper. These measures are commonly
employed to analyze problems with imbalanced datasets.

Firstly, precision and recall are introduced [21]. Their
definitions are given as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6)
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where 𝑇𝑃 is the number of true positives, 𝐹𝑃 is the number
of false positives and 𝐹𝑁 is the number of false negatives. A
high value of precision indicates that the predicted positive
samples are most likely relevant. A high value of recall
indicates that most of the positive samples can be predicted
correctly.

Another measure is 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒 [21], which is a function
of precision and recall. It is a popular evaluation metric for
imbalanced problems. In principle, 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 represents
a harmonic mean between precision and recall. A high value
of 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 means both the precision and recall values
are high and do not differ very much. It is defined as follows:

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

(7)

The area under the receiver operating characteristic curve
(AUC) is also commonly used to measure the performance of
classification. The AUC measure [22] is the probability of
correctly identifying a random sample, and it can be defined
as follows:

𝐴𝑈𝐶 =
1 +𝑅𝑒𝑐𝑎𝑙𝑙 − 𝐹𝑃𝑟𝑎𝑡𝑒

2
(8)

where 𝑅𝑒𝑐𝑎𝑙𝑙 is defined in (6) and 𝐹𝑃𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁 , 𝑇𝑁 is
the number of true negatives. 𝐹𝑃𝑟𝑎𝑡𝑒 defines the percentage
of true negatives cases misclassified as positives. A high value
of 𝐴𝑈𝐶 implies small values of 𝐹𝑁 and 𝐹𝑃 , meaning that
the corresponding classifier is very effective.

Since both 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and 𝐴𝑈𝐶 are important measures
on imbalanced datasets, a multi-objective fitness function is
used here. If a chromosome 𝑋 has a higher value of
𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹𝑋 > 𝐹𝑌 ) and a lower value of 𝐴𝑈𝐶
(𝐴𝑋 < 𝐴𝑌 ) than that of chromosome 𝑌 , the difference
between the chromosomes’ 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (∣𝐹𝑋 − 𝐹𝑌 ∣) and
the difference between the chromosomes’ 𝐴𝑈𝐶 (∣𝐴𝑋 −𝐴𝑌 ∣)
will be compared. If ∣𝐹𝑋 − 𝐹𝑌 ∣ > ∣𝐴𝑋 − 𝐴𝑌 ∣, chromosome
𝑋 will be regarded as a better one; otherwise chromosome 𝑌
will be regarded as a better one.

IV. EXPERIMENTAL STUDY

In this section, we present the experiments that are car-
ried out to compare our proposed method with other under-
sampling methods. The dataset used can be found in UCI
Repository [19].

The experiments involve RUS, CNN, TL, OSS, NCL,
and our proposed method. To measure the performance of
the preprocessing method, the same learning tool should be
used among all the experimental methods. This tool is the
Support Vector Machine (SVM) that attempts to obtain the
classification model from the re-sampled training set. The
program of all testing methods and the learning tool are based
on KEEL, which is an open source software available in the
Web [23]. 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and 𝐴𝑈𝐶 are used as measures to
analyze the results of the experimental methods.

As mentioned before, the large re-sampled training datasets
will increase the complexity of the classification model. There-
fore, the under-sampling rate and the number of support
vectors formed from SVM will also be compared.

TABLE II: Descriptions of the Selected Imbalanced Dataset.

Dataset 𝑵𝒔𝒂𝒎𝒑. 𝑵𝒂𝒕𝒕𝒓. Min., Maj.(%) IR

Census (Training/Testing) 57,008/57,008 41 (5.73, 94.27) 16.45

Census (Validation) 28,504 41 (5.73, 94.27) 16.45

A. Datasets

To evaluate the methods, a large dataset called Census from
UCI is chosen. It has been divided into five parts evenly. The
training set and testing set form two parts of them separately.
The remainder part forms the validation set. Table II shows the
details of the selected dataset, where the number of samples
(𝑁𝑠𝑎𝑚𝑝.), the number of attributes (𝑁𝑎𝑡𝑡𝑟.), the distribution of
minority and majority classes, and the imbalanced ratio (IR)
can be found. IR is the ratio of the number of majority class
to the number of minority class. When IR is larger, a larger
difference between these two classes is represented.

B. Setup of Experiment

For CHC, the basic setting of the parameters are:

∙ Population size: 30.

∙ Divergence rate: 0.35.

∙ Threshold decreasing rate: 0.001.

∙ Kernel of SVM: Radial Basis Function.

∙ Number of Evaluations: 2,000.

In this paper, SVM is used to weigh the influence of each
preprocessing methods. A radial basis function (RBF) is used
as the SVM kernel since a non-linear classification model is
needed and RBF is a common kernel to handle this problem.
The RBF is defined as follows:

𝑅𝐵𝐹 = 𝑒𝑥𝑝(− 1

𝜎
∥x𝑖 − x∥2) (9)

where 𝜎 > 0 is the parameter to determine the width of the
radial basis function. It controls the flexibility of the classifier.
When 𝜎 decreases, the flexibility of the resulting classifier in
fitting the training data increases, and this might lead to over-
fitting easily. The value of 𝜎 is set as 0.01 for the experiments.

C. Results

Table III shows the 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and 𝐴𝑈𝐶 of each
sampling method. The proposed method can offer the best
values of 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and 𝐴𝑈𝐶. The performance of TL and
NCL is similar since the ideas of them are similar to remove
the noisy and borderline samples. The under-sampling rate
and the support vectors’ number of the classification model
of different methods are also shown in the table. The under-
sampling rate is defined as follows:

𝑅𝑎𝑡𝑒𝑢𝑛𝑑𝑒𝑟 =
(𝑁𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

𝑁𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
∗ 100% (10)

where 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑 is the number of samples in the re-sampled
training set and 𝑁𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the number of samples in the
original training set. The proposed method can obtain the
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TABLE III: The Testing Results of Census.

Results RUS CNN TL OSS NCL Proposed Method

F-measure 0.1579 0.05753 0.02333 0.07913 0.02578 0.1702

AUC 0.6703 0.5095 0.5043 0.5163 0.5046 0.6869

Under-sampling Rate 0.8855 0.8455 0.05334 0.8592 0.1228 0.9083

Number of Support Vectors 6,396 8,799 40,083 8,024 36,690 4,381

highest under-sampling rate and the lowest number of support
vectors. This shows that our method can use less training
samples to achieve high performance and the classification
model is simpler to apply.

V. CONCLUSION

An under-sampling method over large imbalanced datasets
has been proposed. The samples of the majority class are
selected based on fuzzy logic. CHC is used to further reduce
the data size. The proposed method is compared to RUS, CNN,
TL, OSS, and NCL. To evaluate the performance of these six
sampling methods, the same SVM classifier has been used
to obtain the experimental results. It shows that our method
outperforms the other sampling methods on both 𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒
and 𝐴𝑈𝐶. The large data size may increase the computational
power of the classification. Therefore, the under-sampling rate
and the number of support vectors of the classification model
are also compared. Our method achieves good results on all
these measures, which means the proposed method can select
the most representative samples to form the training sets.
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