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Abstract— A universal fuzzy clustering model is proposed in
order to adapt to the variability of a similarity data structure.
For the purpose of the consideration of the variability of a
similarity data, a nonlinear fuzzy clustering model has been
proposed. In the nonlinear fuzzy clustering model, the similarity
is represented by common degree of membership of a pair of
objects to “each” fuzzy cluster and an ordinary aggregation
operator is used for adjusting variety of the common degree
of membership of a pair of objects to “each” fuzzy cluster.
However, the ordinary aggregation operator is a binary op-
erator and can only adjust for variety of common degree of
membership of a pair of objects to “each” fuzzy cluster, it
cannot adapt the variety of common degree of membership of a
pair of objects to “all” fuzzy clusters. That is, this model cannot
satisfactorily adjust to the variability of the obtained similarity
data structure. Therefore, we define a new aggregation operator
called a generalized aggregation operator in a linear product
space spanned by “all” fuzzy clusters and propose a universal
fuzzy clustering model based on this generalized aggregation
operator in order to adjust to the variability of the obtained
similarity data structure.

I. INTRODUCTION

REcently, clustering techniques for analyzing the in-
creasing number of large and noisy data have received

tremendous attention from many researchers due to the
necessity of cleaning, summarizing, and reducing the size
of complex data. We have developed a nonlinear fuzzy clus-
tering model [10] in order to deal with the noisy data which
is an extended model of an additive fuzzy clustering model
[8], [9]. This model is one example of model-based clustering
which is a category of clustering techniques whose essential
feature is the assumption of a structure into data. Through
this feature, the mathematical properties of the obtained
result tend to be clearer when compared with non-model-
based clustering. In this model, we assume that all objects
have some common properties and each common property
is defined as a fuzzy cluster. The similarity between a pair
of objects is defined by using some fuzzy clusters shown as
some common properties. That is, the similarity between a
pair of objects is assumed to consist of some shared common
properties of the objects. The shared common property is
defined as common degree of memberships of a pair of
objects to a fuzzy cluster. Therefore, we do not need to
define the metric to represent the similarity of objects. Since
the difference of the definition of the metric causes the
different clustering results, avoiding any definitions of metric
has a benefit for the clustering. Exploiting this property
has been discussed in certain areas such as genetics which
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have some merit for utilizing this model [18]. Also many
algorithms related with this model have been developed
through several areas [6], [7], [17]. Since this model has been
discussed in a framework of “additive” clustering models,
the common degree of memberships of a pair of objects to
a fuzzy cluster independently contributes to the similarity
between the objects, so the interaction of a pair of objects for
“different” fuzzy clusters cannot be considered. Therefore,
we have taken the perspective of a nonlinear relationship
among fuzzy clusters and have proposed a nonlinear fuzzy
clustering model by extending the additive fuzzy clustering
model for explaining the complexity of the noisy data.

However, in the nonlinear fuzzy clustering model, al-
though the variety of the common degree of memberships
of a pair of objects to “each” fuzzy cluster is adjusted by
using an ordinary aggregation operator, the variety of the
obtained similarity cannot be explained due to the fact that
the aggregation operator is a binary operator and so it cannot
explain the common degree of memberships of a pair of
objects to “all” fuzzy clusters. Since the obtained similarity
has various structures, we must consider the common degree
of membership of a pair of objects over all fuzzy clus-
ters. Therefore in this paper, we propose a general-purpose
clustering model, the universal model which is inclusive
of the adaptable variety defined by the common degree of
memberships of a pair of objects to “all” fuzzy clusters.
In order to represent the common degree of memberships
of a pair of objects to “all” fuzzy clusters, we introduce a
generalized aggregation operator [11] which is defined as
a function on a product space of linear spaces spanned by
all fuzzy clusters and have similar conditions of aggregation
operators.

Such a function has been discussed mathematically as
a metric on the product space considering a probabilistic
space [15], [16]. However, our proposed aggregation operator
dose not have the restriction of metric and so we can
exploit the merit in which we do not need to consider the
difference of the kinds of metric used in the fuzzy clustering
model. In addition, several definitions of multidimensional
aggregation operators [1], [2], [5] have been proposed. How-
ever, mathematical features of these aggregation operators
are unclear. Therefore, we propose generalized aggregation
operator which satisfies conditions similar to those of the
aggregation operator which has suitable conditions for the
clustering model in which it takes advantage of the property
of degree of memberships.

This paper consists of seven sections. The following sec-
tion describes the additive clustering model. Then in section
3, we state an additive fuzzy clustering model. In section
4, a nonlinear fuzzy clustering model is described. Section
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5 proposes a universal fuzzy clustering model. Section 6
shows several numerical examples and section 7 contains
the concluding comments.

II. ADDITIVE CLUSTERING MODEL

The additive clustering model [14] is defined as follows:

sij =
K∑

k=1

wkpikpjk + εij , (1)

where sij (i, j = 1, 2, · · · , n) is a similarity data between
objects i and j, K is the number of clusters, and wk is a
weight representing the salience of the property correspond-
ing to the cluster k. n is the number of objects and εij is an
error. pik shows the status of belongingness of an object i
to a cluster k. If an object i has the property of a cluster k,
then pik = 1, otherwise it is 0. Therefore, pik satisfies the
following condition:

pik ∈ {0.1}, (2)

and the product pikpjk is unity only if both objects i and
j belong to the cluster k. The cluster is defined, in this
model, as a subset of all objects in which the objects included
in the cluster share a common property. When a pair of
objects has some common properties, this model assumes
that these common properties “additively” contribute to the
similarity between the pair of objects. That is, the degree
of contribution of each common property to the similarity
is mutually independent. For example, if a pair of objects
i and j together belong to clusters l1, l2, · · · , lm, then the
similarity sij is represented by the sum of weights of these
clusters as follows:

sij = wl1 + wl2 + · · ·+ wlm + εij . (3)

Therefore, the similarity is represented by the degree of
shared common properties.

III. ADDITIVE FUZZY CLUSTERING MODEL

From equation (3), it can be seen that since the similarity
sij is observed as continuous values, in order to obtain the
better fitness in which εij is substantially small, the number
of clusters tends to increase to explain observed similarity.
In order to solve this problem, the additive fuzzy clustering
model has been proposed. The additive fuzzy clustering
model is defined as follows:

sij = ϕ(ρij) + εij , (4)

where,

ρij = (ρ(ui1, uj1), · · · , ρ(uiK , ujK)) ∈ RK . (5)

Suppose that there exist K fuzzy clusters on a set of n
objects, that is, the partition matrix U = (uik) is assumed to
exist under the following conditions:

K∑
k=1

uik = 1, i = 1, · · · , n, (6)

uik ∈ [0, 1], i = 1, · · · , n, k = 1, · · · ,K, (7)

where uik shows a degree of membership of an object i
to a cluster k. Let ρ(uik, ujk) be a common degree of
membership of a pair of objects i and j to a cluster k, namely,
a degree of shared common property. To state simply, we
assume that if all of ρ(uikujk) are multiplied by α, then the
similarity is also multiplied by α. Therefore, the function ϕ
itself must satisfy the condition “positively homogeneous of
degree 1 in the ρ”, that is,

αϕ(ρij) = ϕ(αρij), α > 0. (8)

We consider the following function as a typical function of
ϕ:

sij = ϕ(ρij)+εij = {
K∑

k=1

ρr(uik, ujk)} 1
r +εij , 0 < r < +∞.

(9)
We will deal with (9) (r = 1) hereafter, that is,

sij =

K∑
k=1

ρ(uik, ujk) + εij . (10)

The degree ρ is the aggregation operator satisfied the
following conditions defined in definition 1.

Definition 1 An aggregation operator (AO) is a binary oper-
ator ρ on the unit interval [0, 1], that is a function ρ: [0, 1]×
[0, 1] → [0, 1], such that ∀a, b, c, d ∈ [0, 1], a, b, c, d ∈ R,
the following conditions are satisfied:

ρ(a, 0) = ρ(0, a) = 0, ρ(a, 1) = ρ(1, a) = a.

ρ(a, c) ≤ ρ(b, d), whenever a ≤ b, c ≤ d.

ρ(a, b) = ρ(b, a).

Where [0, 1]× [0, 1] shows a product space.

The first condition denotes the boundary condition which
means that if one object belongs to a cluster completely,
then the common degree of membership to the cluster equals
the degree of the other object to the cluster, and if one
object does not belong to the cluster, then it is 0. The
second condition shows the condition of monotonicity that
the greater the degree of membership of objects to a cluster,
the greater the common degree of membership of the objects.
The third condition means the condition of symmetry which
is that the common degree of membership of objects i and j
is equivalent to the common degree of objects j and i. T-norm
[4], [12] is a typical example which satisfies the conditions
in definition 1.

Algebraic product is an example of the t-norm, so if we
assume as

ρ(uik, ujk) = uikujk, (11)

then the model (10) is represented as follows:

sij =

K∑
k=1

uikujk + εij . (12)
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In this model, if we put

uik =
√
wkpik, (13)

then the additive fuzzy clustering model shown in equation
(12) is reduced to be the additive clustering model shown
in equation (1). Therefore, the additive clustering model is a
special case of the additive fuzzy clustering model which in
turn is an extended model of the additive clustering model.
Moreover, if we assume equation (13) which shows the
additive clustering model, from equation (2), uik will have
only two values for all i as follows:

uik ∈ {0,√wk}, ∀i. (14)

This means that the flexibility of the representation of the
fuzzy clustering result shown in equation (7) is substantially
reduced to the two values shown in equation (14) when we
use the additive clustering model. Therefore, the additive
fuzzy clustering model can obtain a more flexible result
by using fewer numbers of clusters when compared with
the additive clustering model. This is caused by the change
of the condition from equation (2) to equation (7), which
shows the change from the hard clustering model to the fuzzy
clustering model. Therefore, by introducing the concept of
fuzzy logic to the additive clustering model, we can obtain
a more flexible result.

IV. NONLINEAR FUZZY CLUSTERING MODEL

Since the additive fuzzy clustering model shown in equa-
tion (10) assumes the mutual independence among shared
common properties, the interaction of different fuzzy clus-
ters, which is a degree of shared common properties of
objects to “different” fuzzy clusters, can not be reflected in
this model. Therefore, given the noisy data and the models
lack of power to produce an explanation, the result tends to
be imprecise.

In order to overcome this problem, one simple idea is to
consider

ρ(uik, ujl), k �= l

as a common degree of memberships of a pair of objects i
and j to clusters k and l and put this to the model shown in
equation (4). Then equation (4) may be rewritten as follows:

sij = ϕ(ρ̃ij) + εij , (15)

where,

ρ̃ij = (ρ(ui1, uj1), · · · , ρ(ui1, ujK), · · · , ρ(uiK , uj1),

· · · , ρ(uiK , ujK)) ∈ RK2

. (16)

From equations (5) and (16), it can be seen that

RK ⊂ RK2

.

From the condition shown in equation (8), as a typical
function of ϕ shown in equation (15), the following function
may be considered.

sij = ϕ(ρ̃ij) = {
K∑

k=1

K∑
l=1

ρr(uik, ujl)} 1
r +εij , 0 < r < +∞.

(17)

When r = 1, equation (17) is as follows:

sij =

K∑
k=1

K∑
l=1

ρ(uik, ujl) + εij . (18)

If ρ shows algebraic product, then model (18) is written as
follows:

sij =

K∑
k=1

K∑
l=1

uikujl + εij . (19)

Now, we consider two terms,

uisujt, uitujs, ∃s, t ∈ {1, · · · ,K}, s �= t

in model (19). Both uisujt and uitujs are the product which
shows the common degree of memberships of objects i and j
to clusters s and t, however, the values of these two products
are not always the same. In spite of the above fact, uisujt

and uitujs are mutually independent due to the additivity
over the clusters in model (19). That is, these two terms
act independently with different values to the model, even if
they are the same incidence. Therefore, model (19) is not
adaptable for the inclusion of the interaction of different
fuzzy clusters.

In order to solve this problem, we must consider the
interaction of elements of ρ̃ij shown in equation (16) to
the model. If we assume the interaction between uisujt and
uitujs as follows:

(uisujt)× (uitujs), (20)

then we obtain

ρ(uis, ujt)ρ(uit, ujs) = ρ(uis, ujs)ρ(uit, ujt). (21)

From this equation, we can see that we just need to consider
the interaction of the elements in model (10). Moreover, from
the condition of uik shown in equations (6) and (7),

uisujt, uitujs ∈ [0, 1].

Also, since the algebraic product is a typical t-norm, equa-
tion (20) satisfies the condition of monotonicity shown in
definition 1. That is, even if uisujt is not always equal with
uitujs, both the terms become larger, and then equation
(20) monotonically becomes larger. Therefore, we involve
the nonlinearity among elements of ρij shown in equation
(10) to the model.

By introducing the nonlinearity among elements of ρij
shown in equation (10), a nonlinear fuzzy clustering model
is defined as follows:

sij = φ

(
K∑

k=1

ρ(uik, ujk)

)
+ εij , i, j = 1, · · · , n. (22)

We denote

gρ(ui,uj) ≡
K∑

k=1

ρ(uik, ujk), (23)

ui = (ui1, · · · , uiK), uj = (uj1, · · · , ujK),
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then model (22) can be rewritten as follows:

sij = φ ◦ gρ(ui,uj) + εij , i, j = 1, · · · , n. (24)

Considering inner product on Hilbert space, we introduce
the kernel function κ from RK ×RK to R which satisfy the
following conditions [13]:

κ(ui,uj) = κ(uj ,ui). (25)

n∑
i=1

n∑
j=1

κ(ui,uj)uiuj ≥ 0, u1,u2, · · · ,un ∈ RK . (26)

Then model (24) can be rewritten as follows:

sij = κ(ui,uj) + εij , i, j = 1, · · · , n, (27)

under the condition of

φ ◦ gρ(ui,uj) = κ(ui,uj), i, j = 1, · · · , n. (28)

We call this model (27) a kernel fuzzy clustering model.
Since the function κ satisfy the conditions (25) and (26),
there exists a function Φ which satisfies the following:

κ(ui,uj) = 〈Φ(ui),Φ(uj)〉, ∀ui,uj ∈ RK , (29)

where
Φ(ui) = (φ1(ui), · · · , φM (ui)),

and
Φ : RK → RM , K < M, (30)

where 〈·, ·〉 shows inner product on Hilbert space. An exam-
ple of κ which satisfies equations (25), (26), and (28) is as
follows:

sij = κ(ui,uj)+εij = 〈ui,uj〉α+εij =

(
K∑

k=1

uikujk

)α

+εij ,

(31)
α ≥ 1, i, j = 1, · · · , n.

Notice that the model (31) when α = 2 can consider
the interaction of elements of ρ̃ij shown in equation (20).
When α = 1, equation (31) is equivalent to equation (22)
when ρ(uik, ujk) =

∑K
k=1 uikujk and φ is an identity

mapping. That is, the additive fuzzy clustering model shown
in equation (12) is a special case of equation (31). Therefore,
the additive fuzzy clustering model is a special case of the
kernel fuzzy clustering model and the kernel fuzzy clustering
model is a special case of the nonlinear fuzzy clustering
model. From equation (30), the kernel fuzzy clustering model
can estimate the solution ui in a higher dimensional space.

V. UNIVERSAL FUZZY CLUSTERING MODEL

In the nonlinear fuzzy clustering model shown in equation
(22), since the aggregation operator ρ is defined as a binary
operator on [0, 1] shown in definition 1, the aggregation
operator can only adjust for variety of common degree of
membership of a pair of objects to “each” fuzzy cluster, that
is,

ρ(uik, ujk), i, j = 1, · · · , n, k = 1, · · · ,K,

and it cannot adapt the variety of common degree of mem-
bership of a pair of objects to “all” fuzzy clusters.

So, in the nonlinear fuzzy clustering model, although
we can consider the variability of the common degree of
memberships to “each” fuzzy cluster, we cannot consider it to
“all” fuzzy clusters. In order to consider the common degree
of a pair of objects over all fuzzy clusters, we must consider
a space consisted of all the fuzzy clusters. Therefore, we
assume a linear space spanned by all the fuzzy clusters. Then
generalized aggregation operator is defined as a function on
a product space of the linear spaces as follows:

ρ̃(ui,uj), ui = (ui1, · · · , uiK), uj = (uj1, · · · , ujK),

i, j = 1, · · · , n.
Definition 2 A generalized aggregation operator (GAO) is a
function ρ̃: X × X → [0, 1], such that ∀a, b, c,d,0,1 ∈
X , where a = (a1, · · · , aK), b = (b1, · · · , bK), c =
(c1, · · · , cK), d = (d1, · · · , dK), 0 = (0, · · · , 0), 1 =
(1, · · · , 1), ak, bk, ck, dk ∈ [0, 1], k = 1, · · · ,K, the
following conditions are satisfied:

ρ̃(a,0) = ρ̃(0,a) = 0, ρ̃(a,1) = ρ̃(1,a) = α, α ∈ [0, 1].
(32)

ρ̃(a, c) ≤ ρ̃(b,d), whenever a ≤ b, c ≤ d. (33)

Where the following equivalence relation is assumed:

a ≤ b ↔ ak ≤ bk, k = 1, · · ·K.

ρ̃(a, b) = ρ̃(b,a). (34)

Based on the definition 2, the following theorem is proven.

Theorem 1

The operators shown in equations (36)-(38) are GAO if
the following condition shown in equation (35) is satisfied.

K∑
k=1

ak =
K∑

k=1

bk =
K∑

k=1

ck =
K∑

k=1

dk = 1, 2 ≤ K ≤ n

(35)

• Generalized Algebraic Product:

ρ̃(a, b) = abt. (36)

• Generalized Hamacher Product

ρ̃(a, b) =
abt

a1t + b1t − abt
. (37)

• Generalized Einstein Product

ρ̃(a, b) = abt

21t−(a1t
+b1t−abt

)

= abt

2K−(a1t
+b1t−abt

)
.

(38)

Proof
1) From condition (35),

∑K
k=1 ak = 1, ak, bk ∈ [0, 1].

Therefore, 0 ≤ akbk ≤ ak. Then 0 ≤ ∑K
k=1 akbk ≤∑K

k=1 ak = 1. That is, 0 ≤ abt ≤ 1. In equation
(36), a0t = 0at = 0. From condition (35), a1t =
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1at =
∑K

k=1 ak = 1. Hence, equation (36) satisfies
conditions shown in equation (32).

2) If ak ≤ bk, ck ≤ dk, k = 1, · · · ,K, ak, bk, ck, dk ∈
[0, 1], then

∑K
k=1 akck ≤∑K

k=1 bkdk. Hence, equation
(36) satisfies a condition shown in equation (33).

3)
∑K

k=1 akbk =
∑K

k=1 bkak. Hence, equation (36)
satisfies a condition shown in equation (34).

From the above 1-3, we can prove that a generalized
algebraic product shown in equation (36) is a GAO.

4) From condition (35), 0 ≤ akbk ≤ √
akbk ≤

ak+bk
2 (ak, bk ∈ [0, 1]). Therefore, 0 ≤∑K

k=1 akbk ≤∑K
k=1 ak +

∑K
k=1 bk − ∑K

k=1 akbk. Then 0 ≤
abt

a1t
+b1t−abt ≤ 1. From a0t = 0at = 0, equation

(37) satisfies ρ̃(a,0) = ρ̃(0,a) = 0. From condition

(35), ρ̃(a,1) = a1t

a1t
+11t−a1t = ā =

K∑
k=1

ak

K = 1
K . In

a similar way, we can show that ρ̃(1,a) = 1
K . Hence,

equation (37) satisfies conditions shown in equation
(32).

5) If a ≤ b, c ≤ d is satisfied, then from equation
(35), 0 ≤ ∑K

k=1 akck ≤ 1, 0 ≤ ∑K
k=1 bkdk ≤ 1.

Therefore, 1 ≤ (2−∑K
k=1 akck)(2−

∑K
k=1 bkdk) ≤ 4

and
∑K

k=1 akck −∑K
k=1 bkdk < 0. Then ρ̃(a, c) −

ρ̃(b,d) =

2(

K∑
k=1

akck −
K∑

k=1

bkdk)

(2−
K∑

k=1

akck)(2−
K∑

k=1

bkdk)

< 0. Hence,

equation (37) satisfies a condition shown in equation
(33).

6)

K∑
k=1

akbk

K∑
k=1

ak +

K∑
k=1

bk −
K∑

k=1

akbk

=

K∑
k=1

bkak

K∑
k=1

bk +
K∑

k=1

ak −
K∑

k=1

bkak

. Hence, equation (37)

satisfies a condition shown in equation (34).

From the above 4-6, we can prove that a generalized
hamacher product shown in equation (37) is a GAO.

7)
∑K

k=1 ak +
∑K

k=1 bk − ∑K
k=1 akbk ≡ A. From

0 ≤ A ≤ 2, 2 ≤ K ≤ n, 2K − A ≥
A. Then from equation (35) and the above proof
shown in the 4th item, the following inequality is

obtained. 0 ≤

K∑
k=1

akbk

2K−(

K∑
k=1

ak +

K∑
k=1

bk −
K∑

k=1

akbk)

≤

K∑
k=1

akbk

K∑
k=1

ak +
K∑

k=1

bk −
K∑

k=1

akbk

≤ 1. Therefore, in equation

(38), 0 ≤ ρ̃(a, b) ≤ 1. Also, it is trivial that ρ̃(a,0) =
ρ̃(0,a) = 0 from a0t = 0at = 0. ρ̃(a,1) =

ρ̃(1,a) = ā =

K∑
k=1

ak

K = 1
K . Hence, equation (38)

satisfies conditions shown in equation (32).
8) If a ≤ b, c ≤ d is satisfied, then from

equation (35), 0 ≤ ∑K
k=1 akck ≤ 1, 0 ≤∑K

k=1 bkdk ≤ 1. Therefore, 1 ≤ (2(K − 1) −∑K
k=1 akck)(2(K−1)−∑K

k=1 bkdk) and
∑K

k=1 akck−∑K
k=1 bkdk < 0. Then ρ̃(a, c) − ρ̃(b,d) =

2(K−1)(

K∑
k=1

akck −
K∑

k=1

bkdk)

(2(K−1)−
K∑

k=1

akck)(2(K − 1)−
K∑

k=1

bkdk)

< 0.

Hence, equation (38) satisfies a condition shown in
equation (33).

9)

K∑
k=1

akbk

2K−(

K∑
k=1

ak +

K∑
k=1

bk −
K∑

k=1

akbk)

=

K∑
k=1

bkak

2K−(

K∑
k=1

bk +

K∑
k=1

ak −
K∑

k=1

bkak)

. Hence, equation

(38) satisfies a condition shown in equation (34).

From the above 7-9, we can prove that a generalized
einstein product shown in equation (38) is a GAO.

Then the universal fuzzy clustering model is defined as
follows:

sij = φ ◦ ρ̃(ui,uj) + εij , i, j = 1, · · · , n. (39)

When φ is an identity function and ρ̃ is a generalized
algebraic product shown in equation (36), equation (39) is
the additive fuzzy clustering model shown in equation (12).
Also, when φ is an exponential function such as φ(x) = xα,
and ρ̃ is a generalized algebraic product shown in equation
(36), the universal fuzzy clustering model shown in equation
(39) is the kernel fuzzy clustering model shown in equation
(31). That is, both the additive fuzzy clustering model and
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the kernel fuzzy clustering model are special cases of the
universal fuzzy clustering model.

When ρ̃ is a generalized algebraic product, the following
models are examples of the universal fuzzy clustering model.

sij = 〈ui,uj〉α + εij .

sij =
〈ui,uj〉α

〈ui,1〉α + 〈uj ,1〉α − 〈ui,uj〉α + εij . (40)

sij =
〈ui,uj〉α

2K − (〈ui,1〉α + 〈uj ,1〉α − 〈ui,uj〉α) + εij .

VI. NUMERICAL EXAMPLES

In order to investigate the performance of the universal
fuzzy clustering model, we use several artificially created
data. Since we intend to evaluate the performance of the
universal fuzzy clustering model for noise of data and the
kernel fuzzy clustering model is known as a robust model
for noise [10], we use the kernel fuzzy clustering model as
the contrastive model.

Figures 1-5 show values of random numbers from two
different normal distributions, N(µ1, σ1), N(µ2, σ2). The
variance is 1 for all distributions, however, means are
changed. We generate 50 objects with respect to bivariate for
each distribution. In figures 1-5, abscissa shows the values
of variable 1 and ordinate shows the values of variable 2.

Figure 6 shows a result of the universal fuzzy clustering
model shown in equation (40) when each data shown in
figures 1-5 are applied to this model, respectively. We obtain
similarity sij as sij = 1 − dij/max(dij), where dij is
Euclidean distance between objects i and j and max(dij)
shows the maximum value of dij , i, j = 1, · · · , n. The
number of clusters is assumed to be 2. In this figure, abscissa
shows the objects and the ordinate shows the values of degree
of membership of objects to cluster 1. From the conditions
shown in equations (6) and (7), it is enough to show only the
degree of membership to cluster 1. From this figure, we see
an unclear classification for the data shown in figures 4 and
5, but we can see the data shown in figures 1-3 are classified
into the two clusters.

Figure 7 shows the result of the kernel fuzzy clustering
model (α = 2) shown in equation (31) when each data shown
in figures 1-5 are applied to this model, respectively. From
this figure, we can see the case where the data shown in
figure 1 is classified into two clusters, but this model failed
for the classification for the other data.

From the comparison between the results shown in figures
6 and 7, we can see that the results of the universal fuzzy
clustering model show more adaptable results even if the data
show the noise situation which is an overlapping situation of
the two groups. Although the kernel fuzzy clustering model
is a special case of the universal fuzzy clustering model, by
considering the variety of obtained similarity data structure
with the use of the different generalized aggregation operator,
this comparison shows the capability to handle a variety of
obtained similarity data by the use of the universal fuzzy
clustering model.
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Fig. 1. Data (µ1 = (3, 3),µ2 = (−3,−3))

Figures 8 and 9 show the results of clustering for Breast
Cancer data. The data used in this paper was from the Wis-
consin Diagnostic Breast Cancer (WDBC) in UCI Machine
Learning Repository [19]. The data represents the features
that are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass with a total number of
instances: of 569. Out of 30 real-valued input features 5
significant features were selected. The class distribution of
instances were 357 diagnosed benign and 212 diagnosed as
malignant. We selected 100 instances for each class.

Figure 8 shows the result of the universal fuzzy clustering
model shown in equation (40). Figure 9 shows the result
of the conventional fuzzy clustering method named fuzzy
c-means method [3]. The number of clusters is assumed
to be 2. Each line shows each cluster. The abscissa shows
each instance where 1-100 belong to the class of benign and
101-200 are the malignant instances. The ordinate shows the
degree of memberships of instances to clusters. From these
figures, it can be seen that the universal fuzzy clustering
model can obtain a clearer result when compared with the
result of the fuzzy c-means method. Tables 1 and 2 show
classification rate of both methods. For the calculation of
the ratio, the instances are assigned to one cluster in which
the instances have larger values of degree of memberships.
From these tables, it can be seen that for the benign instances,
both the methods can obtain the correct results, however, for
malignant instances, the universal fuzzy clustering model can
obtain the better result.

TABLE I

CLASSIFICATION RATE OF UNIVERSAL FUZZY CLUSTERING MODEL

FOR BREAST CANCER DATA

Classification Rate Misclassification Rate
Benign 100 % 0 %

Malignant 75 % 25 %

VII. CONCLUSIONS

As a model-based clustering, a universal fuzzy cluster-
ing model is proposed for implementing a general-purpose
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Fig. 2. Data (µ1 = (2, 2),µ2 = (−2,−2))
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Fig. 3. Data (µ1 = (1.5, 1.5),µ2 = (−1.5,−1.5))
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Fig. 4. Data (µ1 = (1.3, 1.3),µ2 = (−1.3,−1.3))

TABLE II

CLASSIFICATION RATE OF FUZZY C-MEANS FOR BREAST CANCER DATA

Classification Rate Misclassification Rate
Benign 100 % 0 %

Malignant 54 % 46 %
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Fig. 5. Data (µ1 = (1.2, 1.2),µ2 = (−1.2,−1.2))
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Fig. 6. Result of Universal Fuzzy Clustering Model

model. The target data of this model is similarity among
objects. The universal fuzzy clustering model is defined to
implement its versatility in order to adapt to the variability of
the similarity data structure using the generalized aggregation
operator. The generalized aggregation operator is defined
as a function on a product space of linear spaces spanned
by all fuzzy clusters, so we can use this operator for
representing the variability of the similarity structure in the
fuzzy clustering model. Several numerical examples show
higher capability for dealing with the noise of data and the
benefits of the use of the universal fuzzy clustering model
when compared with conventional clustering methods.
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