
Parallel Mining of Fuzzy Association Rules on Dense Data Sets

Michal Burda, Viktor Pavliska, and Radek Valášek

Abstract— The aim of this paper is to present a scalable
parallel algorithm for fuzzy association rules mining that is
suitable for dense data sets. Unlike most of other approaches, we
have based the algorithm on the Webb’s OPUS search algorithm
[1]. Having adopted the master/slave architecture, we propose
a simple recursion threshold technique to allow load-balancing
for high scalability.

I. INTRODUCTION

S
EARCHING FOR ASSOCIATION RULES [2], [3] is a

broadly discussed, developed and accepted data mining

technique. An association rule is commonly understood as

an expression X → Y , where antecedent X and consequent

Y are conditions – the former usually in the form of

elementary conjunction. Such rules are usually interpreted

as implication “if X is satisfied, then Y is true very often,

too”. Two traditional measures of intensity of an association

rule are often used, support and confidence. A task of

searching for association rules is the task of finding rules

with their support and confidence above some user-defined

thresholds.

The task of searching for association rules fits particularly

well on binary or categorical data and many has been written

on that topic [2], [3], [4], [5].

For association analysis on numeric data, a prior dis-

cretization is proposed by Srikant et al. [6]. Unfortunately,

that may lead to danger of undiscovering important knowl-

edge due to information loss caused by discretization.

The problem of information loss due to discretization is

tightly connected to the fact that quantitative attribute is

transformed to several categories given by crisp boundaries.

A rational request to “soften” these boundaries leads us to

the fuzzy sets theory. The use of fuzzy sets in connection

with association rules has been motivated by many authors

(see [7] for recent overview). By allowing for soft bound-

aries of discretization intervals, fuzzy sets can avoid certain

undesirable threshold effects [8]. Fuzzy association rules are

appealing also because of the use of vague linguistic terms

such as “small”, “very big” etc. [9], [10]. See also [11].

Association rules mining, especially of fuzzy rules where

the amount of attributes multiplies by using different linguis-

tic terms, may be a very computational time demanding task.

The authors are from the University of Ostrava, Institute for
Research and Applications of Fuzzy Modeling, Centre of Excellence
IT4Innovations, 30. dubna 22, 701 03 Ostrava, Czech Republic
(Michal.Burda@osu.cz, Viktor.Pavliska@osu.cz,

Radek.Valasek@osu.cz).
This work was supported by the IT4Innovations Centre of Excellence

project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Devel-
opment Fund and the national budget of the Czech Republic via the Research
and Development for Innovations Operational Programme, as well as Czech
Ministry of Education, Youth and Sports via the project Large Research,
Development and Innovations Infrastructures (LM2011033).

Therefore, a substantial research effort is devoted to design

of parallel algorithms.

Parallel algorithms for association rules focus mainly on

processing large, but sparse categorical data sets. That data

often do not fit into RAM, therefore reading of data from

the disk is the most time consuming task. The approaches

for parallelization are e.g. count distribution [12] where each

processor computes counts of appearance of candidates in

locally stored data set, which are then combined to obtain

global results. The data distribution algorithm [12] partitions

candidate itemsets among the processors. Also combinations

of these approaches exist [13]. All these approaches are based

on candidate-generation technique developed originally in

the Apriori algorithm [3].

Other approaches are based on FP-growth mining algo-

rithm [14], which avoids generating candidate sets. Hu and

Yang-Li [15] propose FP-Forests.

In this paper, we present a novel implementation of fuzzy

association rules mining algorithm, that is based on OPUS

search [16], [1] that is suitable for dense data sets. We

develop a parallel version of OPUS, implement it as a

program suitable to run on a high-performance computing

cluster with the Open MPI parallelization environment [17],

and evaluate its scalability on real data.

The rest of this paper is organized as follows. First, some

theoretical background is presented in section II. Next, we

present the algorithms and implementation details in section

III. A performance analysis is presented in section IV and

some directions of future research are sketched in section V.

II. THEORETICAL BACKGROUND

A. Fuzzy Sets and Fuzzy Association Rules

A fuzzy set F of an universe U is defined by a membership

function that for each element u ∈ U specifies the degree of

membership of u in the fuzzy set. For us, the membership

function is a mapping U → [0, 1]. We will not distinguish

between a fuzzy set and its membership function, that is,

F (u) denotes the degree of membership of the element u in

the fuzzy set F . (Clearly ordinary sets are special cases of

fuzzy sets such that their membership function maps U to

{0, 1}.)

T-norm ⊗ is a generalized logical conjunction, i.e. a func-

tion [0, 1]× [0, 1] → [0, 1] which is associative, commutative,

monotone increasing (in both places) and which satisfies the

boundary conditions α ⊗ 0 = 0 and α ⊗ 1 = α for each

α ∈ [0, 1]. Some well-known examples of t-norms are:

• minimum t-norm: ⊗min(α, β) = min(α, β);
• product t-norm: ⊗prod(α, β) = αβ;
• Łukasiewicz t-norm: ⊗Łuk(α, β) = max(0, α+ β − 1).

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2156

TABLE I

LINGUISTIC HEDGES AND THEIR ABBREVIATIONS, SORTED BY EFFECT

AND SPECIFICITY.

Narrowing effect Widening effect

very (Ve) more or less (ML)
significantly (Si) roughly (Ro)
extremely (Ex) quite roughly (QR)

– very roughly (VR)

T-norms are used for defining the intersection of fuzzy sets

F and G: (F ∩G)(u) := F (u)⊗G(u).
The cardinality of a fuzzy set F is defined as the sum of

the membership degrees: |F | := ∑

∀u∈U
F (u) [18].

Let D be a set of objects for which some properties are

identified by the fuzzy subsets of D that we will call the

fuzzy attributes; let there be n fuzzy attributes. For instance,

if D was a set of people, then t could be a fuzzy subset of D
of people that are “tall”. I.e. for each x ∈ D, t(x) results in

a membership degree of x being “tall”. A fuzzy association

rule is then a rule of the form A → B, where A and B are

sets of fuzzy attributes. For example:

{leading position,middle age} → {high income};

i.e. “middle-aged people working on leading position have

high income very often”.

Let A = {A1, A2, . . . , Am} be a set of m fuzzy attributes.

A support of the set A is the cardinality of the intersection

of all attributes Ak ∈ A:

supp(A) :=

∣

∣

∣

∣

∣

m
⋂

k=1

Ak

∣

∣

∣

∣

∣

=
∑

∀x∈D

(

A1(x)⊗ . . .⊗Am(x)
)

. (1)

Similarly, a support of a rule A → B is defined as a

support of the set A ∪ B:

supp(A → B) := supp(A ∪ B). (2)

A confidence of the rule A → B is given by

conf(A → B) := supp(A → B)
supp(A)

. (3)

Mining for fuzzy association rules means searching for all

rules with support and confidence above some user-specified

thresholds.

B. Evaluative Linguistic Expressions

Evaluative linguistic expressions [19] (or evaluative ex-

pressions, in short) are special expressions of natural lan-

guage that are used for vague evaluation of intensity, in con-

text of range of all reasonable values. Example of evaluative

expression is: very large, extremely hot, more or less correct

etc. Their importance and potential to be mathematically

modelled has been pointed out by L. A. Zadeh, e.g. in [20].

Evaluative expressions keep the following structure:

〈linguistic hedge〉〈atomic evaluative expression〉. (4)

0 20 40 60 80 100

0
.0

0
.4

0
.8

ExSm

Sm

RoSm

0 20 40 60 80 100

0
.0

0
.4

0
.8

RoMe

Me

0 20 40 60 80 100

0
.0

0
.4

0
.8

RoBi

Bi

ExBi

Fig. 1. Shapes of fuzzy sets of evaluative linguistic expressions for context
〈0, 42, 100〉.

Atomic evaluative expression comprises any of the adjec-

tives small (“Sm”), medium (“Me”), or big (“Bi”). Linguistic

hedge is an optional adverb that further determines the

expression. It can have either narrowing effect, e.g. very

(“Ve”), extremely (“Ex”), or widening effect such as roughly

(“Ro”), more or less (“ML”) etc. In our software, we use

linguistic hedges listed in Table I.

Hedges with widening effect are applicable on all three

atomic evaluative expressions (i.e. “Sm”, “Me”, “Bi”),

whereas hedges with narrowing effect are typically used

together with “Sm” and “Bi” only.

The notion of evaluative expression may be used to fuzzify

numeric attributes. Given a numeric attribute A, one may

generate 21 fuzzy attributes of the form

A is 〈evaluative expression〉

by combining evaluative expressions with linguistic hedges

from Table I as follows: ExSm, SiSm, VeSm, Sm, MLSm,

RoSm, QRSm, VRSm, Me, MLMe, RoMe, QRMe, VRMe,

ExBi, SiBi, VeBi, Bi, MLBi, RoBi, QRBi and VRBi.

For fuzzification, a numeric attribute’s context denotes

what value is small, medium, or big, respectively. Context

is a triplet 〈vL, vM , vR〉 ∈ R
3, vL < vM < vR. It may

be set manually or automatically by choosing A’s minimal,

middle, and maximal value of A, respectively. Linguistic

hedges define the shape of the fuzzy sets around these values.

Details on fuzzification are out of the scope of this paper.

Please see [19] for more information. See also Fig. 1 for an

example of fuzzy sets within the context 〈0, 42, 100〉.

2157

Fig. 2. Tree of antecedent combinations traversed by the OPUS search
algorithm [16]. Each box represents a left-hand side of a rule. Hence,
all available right-hand sides have to be added to create a well-formed
association rule. Gray boxes represent tasks, i.e. a single loop through all
available predicates with fixed prefix. Dashed arrows stand for recursive
calls (for non-parallel version), or task enqueuing on master (for parallel
version), respectively.

III. ASSOCIATION RULES MINING ALGORITHM

Searching for fuzzy linguistic association rules requires a

dataset in which rows represent objects and columns features.

For fuzzy rules, the features are in the form of fuzzy sets,

i.e. for each object, a memberhip degree to each fuzzy set is

defined.

Our parallel algorithm for fuzzy association rules mining

is inspirred by Webb’s OPUS algorithm [16], [1], that was

initially developed as non-parallel search algorithm for rules

with crisp antecedents. The details of OPUS adoption to

fuzzy rules and parallelization is described in this section.

A. The OPUS Search

Webb’s OPUS algorithm [16], [1] is based on recursive

depth–first branch and bound search allowing efficient search

space pruning with moderate space complexity, suitable to

process dense data. We assume all data fit into RAM, hence

no repeated disk file read is necessary.

The algorithm traverses a tree of combinations that will

form an antecedent of a rule. Antecedents are recursively

lengthened to obtain more complex rules, until some ending

condition is reached (e.g. running below minimum support

threshold). Pruning an antecedent combination causes not-

evaluating all antecedents that are descendants of the pruned

one – please see Algorithm 1 and compare Fig. 2 with Fig. 3.

Hence, the algorithm is preferably suitable for classification

rules.

A sequential (non-parallel) algorithm starts with the call

SEARCH(allLhs, ∅, allRhs, SEARCH),

Fig. 3. Pruning a node (here: “b”) causes not-evaluating all descendand
nodes of the current task (gray box) that contain pruned value (i.e. pruned
are also: “ba”, “cb”, “cba”, “db”, “dba”, “dcb” and “dcba”).

where allLhs (resp. allRhs) is a set of fuzzy attributes that

may appear in the antecedent (resp. consequent) part of a

rule.

The SEARCH procedure works with a set of attributes that

may appear in antecedent (avail) and consequent (conseq).

It is possible that avail ∩ conseq 6= ∅.

The algorithm iterates through all fuzzy attributes p ∈
avail, creates an antecedent part of a rule (lhs) from p,

and if rules with that antecedent are not prunable, it iterates

through all attributes in conseq to get consequent parts (rhs)

of the rules. Iteration through all attributes in avail is called

a search task (or simply a task). Tasks are depicted as gray

boxes in Fig. 2.

In its basic form, pruning is based on well-known Apriori

condition: if some set A of attributes has support lower

than user-defined threshold s, i.e. supp(A) < s, then for

any attribute a, supp(A ∪ {a}) < s too. Hence, if we are

searching for rules with support above s and supp(A) < s

then we do not need to traverse through supersets of A at

all. Therefore, antecedent A and all its descendants can be

pruned.

All attributes of avail, that are not pruned-out, are used

as a prefix for antecedents that are traversed in a recursive

call. That attributes are then also stored in nextAvail, which

in the recursive call become the set of available antecedent

attributes. Recursive calls are depicted by dashed arrows in

Fig. 2.

There occurs stepFunc parameter in the SEARCH proce-

dure in Algorithm 1. It is a function that is used for steps

into subtree of search tasks. For non-parallel version of the

algorithm, we simply put stepFunc = SEARCH.

2158

Algorithm 1 Non-parallel (recursive) version of the search

algorithm

1: procedure SEARCH(avail, prefix, conseq, stepFunc)
2: nextAvail← ∅
3: for p ∈ avail do

4: lhs← prefix ∪ {p}
5: if lhs is not prunable then

6: nextConseq ← ∅
7: for rhs ∈ conseq do

8: if lhs→ rhs is not prunable then

9: report new rule lhs→ rhs
10: nextConseq ← nextConseq ∪ {rhs}
11: end if

12: end for

13: if nextConseq 6= ∅ then

14: stepFunc(nextAvail, lhs, nextConseq, stepFunc)
15: nextAvail← nextAvail ∪ {p}
16: end if

17: end if

18: end for

19: end procedure

Fig. 4. Master sends tasks to be computed by slaves via the “Compute

task” message. On the other hand, slaves send sub-tasks back to master
(“Enqueue sub-task”) to be enqueued and then re-sent to other slaves. Also
slaves inform master of their availability for next tasks by sending “Task

finished” message. Master uses the “Terminate” message to inform slaves
of the end of the algorithm.

B. Parallelized Version of the OPUS Search

Parallelized search for association rules is driven by the

master/slave architecture and message-passing between them,

see Fig. 4. Master sends tasks to slaves, slaves compute them

and send sub-tasks back to master where the tasks are stored

in a queue and later re-sent back to slaves to be computed.

Task is a triplet 〈avail, prefix, conseq〉 where avail is a

set of fuzzy attributes for antecedent part of the rules, conseq

is a set of attributes for consequent part of the rules, and

prefix is a set of antecedent attributes that will be common

for all rules generated within the task.

Message msg is a record that is sent from master to slave

or vice versa. Parts of a message will be addressed using a

“dot notation” in the algorithm: e.g. msg.type is for the type

of the message, msg.sender is for the ID of the sender of

the message etc.

In detail, master proceeds as follows (see also Algo-

rithm 2). Firstly, a taskQueue is created with a root task

〈allLhs, ∅, allRhs〉 in it. Also a slaveQueue is initialized

and all k available slaves are started. The slaveQueue

contains slaves that are actually not working on any task.

The master’s main loop runs until the taskQueue is empty

and all slaves are not computing. Inside of the main loop,

Algorithm 2 Parallel (1 master, many slaves) version of the

search algorithm

1: procedure MASTER(allLhs, allRhs)
2: taskQueue← {〈allLhs, ∅, allRhs〉}
3: slaveQueue← {s1, s2, . . . , sk}
4: start SLAVE on each slave s1, s2, . . . , sk
5: while taskQueue 6= ∅ or |slaveQueue| < k do

6: while taskQueue 6= ∅ and slaveQueue 6= ∅ do

7: s← pop slave from slaveQueue
8: t← pop task from taskQueue
9: msg.type← “compute task”

10: msg.task ← t
11: send msg to slave s
12: end while

13: msg ← wait for message from some slave
14: if msg.type = “enqueue sub-task” then

15: push msg.task to taskQueue
16: else if msg.type = “task finished” then

17: push msg.sender to slaveQueue
18: end if

19: end while

20: msg.type← “terminate”
21: send msg to each slave in slaveQueue
22: end procedure

23: procedure SLAVE

24: while true do

25: msg ← wait for message from master
26: if msg.type = “terminate” then

27: return

28: else if msg.type = “compute task” then

29: 〈avail, prefix, conseq〉 ← msg.task
30: SEARCH(avail, prefix, conseq, STEPINTO)
31: msg.type← “task finished”
32: send msg to master
33: end if

34: end while

35: end procedure

36: procedure STEPINTO((avail, prefix, conseq, stepFunc))
37: if |avail| < recursionThreshold then

38: SEARCH(avail, prefix, conseq, SEARCH)
39: else

40: msg.type← “enqueue sub-task”
41: msg.task ← 〈avail, prefix, conseq〉
42: send msg to master
43: end if

44: end procedure

as much tasks in the taskQueue as possible are sent to

unoccupied slaves inside of the “compute task” messages.

After that, master waits for a message from some slave,

which could be:

1) “enqueue sub-task” – slave sent a task, which is

put into taskQueue (and possibly re-sent to some

unoccupied slave in the beginning of next main loop’s

iteration);

2) “task finished” – a slave informs master that it has

stopped working, so it is free to be assigned another

task; hence master puts that slave into slaveQueue of

non-working slaves.

After the end of the main loop, master sends a “terminate”

message to all slaves to inform them of the end of the

program.

Slaves wait for a message from master in an infinite loop.

If they receive the “terminate” message, they exit. If they

2159

receive the “compute task” message, they start the SEARCH

procedure as in non-parallel variant, with stepFunc set to

STEPINTO.

As described above, stepFunc is called when it is needed

to compute sub-task, i.e. a task with current antecedent

(lhs) being the prefix to longer antecedents. Non-parallel

version of the algorithm simply calls SEARCH to do that

(i.e. stepFunc = SEARCH).

Parallelized approach either calls recursive SEARCH or

sends the task encapsulated into the “enqueue sub-task”

message to the master. Decision between those variants is

made inside of the STEPINTO procedure.

Why to alternate between both recursion and sending? As

indicaded by our experiments described later, a sufficiently

large amount of slaves processing data with relatively small

number of rows may cause the master to be overwhelmed

by the amount of messages, which destroys scalability of

the whole solution. Therefore, an optimal load of work has

to be given to the slaves in order to not to communicate with

master too often.

In our approach, simple sub-tasks are not sent to the

master, but directly computed. A task is simple, if the

potential search sub-tree is not so large, which is the case

for avail containing relatively small number of attributes. We

use a constant recursionThreshold to decide: if |avail| <
recursionThreshold then a sub-task is computed recur-

sively, else it is sent to the master.

Another approach may use some other criterion of

load-balancing, or somehow dynamically control the

recursionThreshold. We left these advanced techniques for

the future.

IV. PERFORMANCE ANALYSIS

The parallel algorithm was tested on high performance

computer Anselm of the National Supercomputing Center

IT4Innovations (Czech Republic). Each node of the cluster

contains 2x8 CPU cores, 64 GB RAM, nodes are connected

with InfiniBand QDR network and communicate with the

OpenMPI library. Tests were performed on 2 to 64 MPI

nodes (1 master with 1 to 63 slaves).

First, an optimal value for the recursionThreshold was

estimated. With recursionThreshold, amount of work may

be balanced between slaves and task queue that is managed

by master. The higher the recursionThreshold is, the more

search tree branches are computed on a slave within a single

task. Also the less communication is needed with the master,

because instead of enqueuing, many tasks are computed

on slave, recursively. On the other hand, the higher the

recursionThreshold is, the less tasks appear in the task

queue on the master, and therefore many slave nodes may

be unoccupied for a long time (especially during the start

and finish period). Hence an optimal value should balance

the utilization of slave nodes together with the overheads on

the master caused by management of the task queue.

Figure 5 shows overall algorithm run time on sample

data for different values of the recursionThreshold. For

recursionThreshold

ti
m

e
 (

s
)

40

60

80

100

120

0.00 0.05 0.10 0.15 0.20 0.25

Fig. 5. Change of parallel algorithm’s run time in dependence of the value
of recursionThreshold.

recursionThreshold = 0.1, we have reached the short-

est time. Therefore, for the analysis of scalability, the

recursionThreshold was set to that value (with single

exception described below).

Scalability analysis was performed on some data sets from

the UCI Machine Learning Repository [21]. For our interest

in fuzzy rules, we have selected data sets with numerical at-

tributes only. See Table II for details on data sets being used.

First column of that table is for data set name. Next is number

of rows and columns of the original data following with the

number of fuzzy attributes generated from them and used for

antecedents and consequents. Last four columns of Table II

are settings and results of rule mining: minimum support

threshold, maximum allowed length of the rule (i.e. number

of fuzzy attributes in antecedent), recursionThreshold and

average scale ratio rd defined below.

Each numeric attribute of the original dataset was trans-

formed into 7 fuzzy attributes by using linguistic expres-

sions, as described in Section II-B. One numeric attribute

(i.e. 7 fuzzy attributes) was set as a consequent, the rest of

the attributes were used in the antecedent part of the rules.

Figure 6 shows a graph with logarithmic axes, where

an execution time of the parallel algorithm is apparent if

multiplying the number of slave nodes. See also Table II for

average scale ratio rd of a data set d that is computed as

follows:

rd =
1

|n| − 1

|n|−1
∑

i=1

td(ni)

td(ni+1)
,

where n = {3, 5, 9, 17, 33, 64} is a set of numbers of nodes

that were used, and td(ni) is a run time of the algorithm

on data d and ni nodes. (The arrangement of nodes was:

1 master and 2, 4, 8, . . . slaves.)

2160

TABLE II

DATA SETS USED FOR PERFORMANCE TESTING.

Data Set d
Original Generated Fuzzy Attributes Minimum Maximum Recursion Avg. Scale

Rows Columns Antecedents Consequents Support Length Threshold Ratio rd

WDBC 569 32 217 7 0.010 5 0.10 1.9658
Wine 178 13 84 7 0.001 8 0.10 1.7024
Communities 1994 128 889 7 0.050 3 0.10 1.8121
KEGG 53414 24 161 7 0.050 3 0.10 1.8423
YearPredictionMSD 515345 90 623 7 0.050 3 0.10 1.3964
YearPredictionMSD.2 515345 90 623 7 0.050 3 0.05 1.7856

number of nodes

ti
m

e
 (

s
)

5

10

20

50

100

200

500

1000

2000

5 10 20 50

●

●

●

●

●

●

WDBC
Wine

YearPredictionMSD
YearPredictionMSD.2

Communities
KEGG ●

Fig. 6. Scalability of the parallel algorithm. Axes of the graph are
logarithmic. Note that running time nearly halves if doubling the number
of nodes being used, which indicates excellent scalability.

A scale ratio rd = 2 means ideal scaling: doubling the

number of nodes causes halving the run time. As can be seen

in Table II, excellent scale ratio was obtained for WDBC,

KEGG, and Communities data sets. Wine data set scaled

very well, too.

Figure 7 shows the dependency of speedup on the number

of nodes involved in computation. Speedup Sn is defined as

Sn =
T1

Tn

,

where n is the number of nodes, T1 is the execution time of

the sequential algorithm, and Tn is the execution time of the

parallel algorithm with n nodes. Ideal speedup is Sn = n.

Figure 8 shows efficiency of our parallel algorithm on

tested datasets. Efficiency En is defined as

En =
Sn

n
=

T1

nTn

.

Efficiency measures how well are the nodes utilized in

solving the problem, in contrast to the execution time spent

by communication and waiting on locks for exclusive access

to shared resources. Ideal efficiency is En = 1.

number of nodes

s
p

e
e

d
u

p

0

10

20

30

40

50

60

0 20 40 60

●
●

●

●

●

●

●

WDBC
Wine

YearPredictionMSD
YearPredictionMSD.2

Communities
KEGG ●

Fig. 7. Speedup of a parallel algorithm, i.e. a ratio of run time of a
sequential algorithm to run time of the parallel version running on given
number of nodes. Linear speedup (i.e. speedup equal to the number of nodes)
is “ideal”.

As can be seen, YearPredictionMSD scaled rather poorly

for recursionThreshold = 0.1. Therefore, another run

was performed with recursionThreshold = 0.05 which

ended with very good scale ratio of 1.7856. This experiment

indicates the need to somehow dynamically estimate or adjust

the optimal recursionThreshold, which we will address in

the future research.

Rather poor efficiency was observed on 64 nodes for the

Wine dataset. However, Wine dataset is very small, having

very few columns and rows. On 64 nodes, the computation

lasted no more than 3 seconds. It is clear that in contrast to

the association rules mining process itself, a large portion of

execution time was spent by initializing the parallel environ-

ment, starting the slave processes, and so on. Accordingly to

Amdahl’s law, we have reached a maximum speed-up in this

case, and further addition of nodes could not affect the total

execution time significantly.

V. CONCLUSION

In this paper, a novel technique was presented for parallel

search of fuzzy association rules. Based on the OPUS al-

2161

number of nodes

e
ff

ic
ie

n
c
y

0.2

0.4

0.6

0.8

1.0

0 20 40 60

●

●

●

●
●

●

●

WDBC
Wine

YearPredictionMSD
YearPredictionMSD.2

Communities
KEGG ●

Fig. 8. Efficiency measures how well the nodes utilize the execution time
for work on the problem, compared to the time spent on synchronization
and communication. Ideal efficiency is 1.

gorithm [16], [1], we have designed a solution with parallel

master/slave architecture, implemented it with the use of the

OpenMPI framework and tested on the high performance

computer.

Performance analysis shows very good scalability of the

algorithm. We have indicated that load-balancing may be

achieved by setting optimally the recursionThreshold,

whose value was only rough guess in the presented perfor-

mance analysis. Future work will therefore address elabora-

tion of better load balancing by dynamically changing the

recursionThreshold based e.g. on the taskQueue size,

amount of available slaves, average time to compute the task

etc.

REFERENCES

[1] G. I. Webb, “Opus: An efficient admissible algorithm for unordered
search,” Journal of Artificial intelligence Research, vol. 3, pp. 431–
465, 1995.

[2] P. Hájek, I. Havel, and M. Chytil, “The GUHA method of automatic
hypotheses determination,” in Computing 1, 1966, pp. 293–308.

[3] R. Agrawal, T. Imielinski, and A. Swami, “Mining associations be-
tween sets of items in massive databases,” in ACM SIGMOD 1993

Int. Conference on Management of Data, Washington D.C., 1993, pp.
207–216.

[4] A. Berrado and G. C. Runger, “Using metarules to organize and group
discovered association rules,” Data Min. Knowl. Discov., vol. 14, no. 3,
pp. 409–431, 2007.

[5] G. I. Webb, “Discovering significant patterns,” Mach. Learn.,
vol. 68, no. 1, pp. 1–33, 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1265347

[6] R. Srikant and R. Agrawal, “Mining quantitative association rules in
large relational tables,” SIGMOD Rec., vol. 25, no. 2, pp. 1–12, 1996.

[7] H. Kalia, S. Dehuri, and A. Ghosh, “A survey on fuzzy association
rule mining,” International Journal of Data Warehousing and Mining

(IJDWM), vol. 9, no. 1, pp. 1–27, 2013.
[8] T. Sudkamp, “Examples, counterexamples, and measuring fuzzy asso-

ciations,” Fuzzy Sets and Systems, vol. 149, no. 1, pp. 57–71, 2005.
[9] K. C. Chan and W.-H. Au, “Mining fuzzy association rules,” 1997.

[10] V. Novák, I. Perfilieva, A. Dvořák, G. Chen, Q. Wei, and P. Yan,
“Mining pure linguistic associations from numerical data,” Int. J.

Approx. Reasoning, vol. 48, no. 1, pp. 4–22, Apr. 2008. [Online].
Available: http://dx.doi.org/10.1016/j.ijar.2007.06.005

[11] M. Burda, “Fast evaluation of t-norms for fuzzy association rules
mining,” in 14th IEEE International Symposium on Computational

Intelligence and Informatics (CINTI 2013). Budapest: IEEE, 2013,
pp. 465–470.

[12] R. Agrawal and J. C. Shafer, “Parallel mining of association rules,”
IEEE Transactions on Knowledge and Data Engineering, vol. 8, pp.
962–969, 1996.

[13] E.-H. Han, G. Karypis, and V. Kumar, “Scalable parallel data mining
for association rules,” IEEE Trans. Knowl. Data Eng., vol. 12, no. 3,
pp. 377–352, 2000.

[14] O. R. Zaane, M. El-hajj, and P. Lu, “Fast parallel association rule
mining without candidacy generation,” in In ICDM, 2001, pp. 665–
668.

[15] J. Hu and X. Yang-Li, “A fast parallel association rules mining
algorithm based on fp-forest.” in ISNN (2), ser. Lecture Notes in
Computer Science, F. Sun, J. Zhang, Y. Tan, J. Cao, and W. Y. 0001,
Eds., vol. 5264. Springer, 2008, pp. 40–49.

[16] G. I. Webb, “Discovering associations with numeric variables,” in
Knowledge Discovery and Data Mining, 2001, pp. 383–388. [Online].
Available: http://citeseer.ist.psu.edu/rey01discovering.html

[17] E. Gabriel et al., “Open MPI: Goals, concept, and design of a
next generation MPI implementation,” in Proceedings, 11th European

PVM/MPI Users’ Group Meeting, Budapest, Hungary, September
2004, pp. 97–104.

[18] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of

Fuzzy Logic. Massachusetts, USA: Kluwer, 1999.
[19] V. Novák, “A comprehensive theory of trichotomous evaluative lin-

guistic expressions.” Fuzzy Sets and Systems, vol. 159, no. 22, pp.
2939–2969, 2008.

[20] L. A. Zadeh, “The concept of a linguistic variable and its application
to approximate reasoning - I, II, III,” Inf. Sci., vol. 8-9, pp. 199–249,
301–357, 43–80, 1975.

[21] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

2162

