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Abstract— This paper presents a new defuzzification algo-
rithm for interval type-2 fuzzy sets. The algorithm exploits
the fact that we can treat an interval type-2 fuzzy set as two
type-2 fuzzy sets. We suggest in this paper that monotonicity
is an important property for defuzzifiers and so we provide
a definition of monotonicity for type-2 defuzzifiers based on
previous work by Runkler. The research reported here shows
that our new operator is monotonic and provides a defuzzified
value that lies within the interval computed by the popular
Karnik-Mendel algorithm.

I. INTRODUCTION

It is well known that defuzzification in interval type-2
fuzzy logic systems is problematic [1], [2]. In particular,
the result of inferencing in a type-2 fuzzy logic system is
a (usually) non-normal, non-convex type-2 fuzzy sets that
by its very nature has a complex structure. To reduce this
type-2 set (in either the interval or general case) to a single
number is computationally and mathematically demanding.
There are a number of algorithms reported in the literature
including the exhaustive approach [3], KM [4], sampling [5],
geometric[1], [6], the collapsing method [7], alpha-cuts [8],
Nie-Tan [9] and Wu-Mendel [10]. They all take different
approaches, are of differing complexities and produce dif-
ferent solutions (e.g. [11], [12]). It is our assertion that the
complexities of most algorithms mean that to produce a new,
simple algorithm is a significant contribution. The results of
most of these algorithms is both a final defuzzified value and
an interval associated with that value.

There seems to be a view that we need to have this
interval associated with final defuzzified value and some
authors attribute this to the uncertainty associated with the
final defuzzified value. We take the view that the jury is still
out on whether this interval actually in any way represents
the uncertainty around the defuzzified value. Depending on
the algorithm used to arrive at the defuzzified value it may,
or may not represent some uncertainty about the defuzzi-
fied value. However, given that the most widely adopted
algorithm for defuzzification is the Karnik-Mendel algorithm
(KM) [4] we thought it would be interesting to see how the
result of our algorithm related to the interval provided by the
KM algorithm.

The rest of the paper is structured as follows: in Section
II we provide the related material necessary to explain our
algorithm including the notation and discussion about mono-
tonicity; Section III describes our new algorithm including
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its properties, and Section IV provides a conclusion and
discussion.

II. RELATED MATERIAL

To enable us to explain our algorithm we provide some
definitions. First, we define a type-1 fuzzy set.

Definition 1: A type-1 fuzzy set, A we define as a map-
ping between the universal set X and an interval [0, 1]:

Ã : X → [0, 1] (1)
The defuzzification algorithm in this paper is for interval
type-2 fuzzy sets only. There are a number of definitions
in the literature using different notations but we extend the
type-1 definition above.

Definition 2: An interval type-2 fuzzy set, Ã we define as
a mapping between the universal set X and an interval set
within [0, 1]:

Ã : X → [0, 1]→ {0, 1} (2)
Along the lines of [13] we define the general case of a
defuzzifier as:

Definition 3: For a given type-1 fuzzy set, A, we define
a defuzzifier as follows where, as usual, X is the universal
set:

A−1 : A→ X (3)

For a type-2 fuzzy set (general or interval) we have the
following definition for a defuzzifier for Ã:

Ã−1 : Ã→ X ×X (4)
To explain monotonicity for interval type-2 fuzzy sets we
need to provide a definition that shows whether one interval
is smaller than another:

Definition 4: Given two intervals A,B and a, a′ ∈ A,
b, b′ ∈ B then we define

A < B ≡ ∀a ∃b|a < b ∧ ∀b′∃a′|a′ ≤ b′ (5)
There are a number of properties that a defuzzifier should
have (see [13] for a discussion for the type-1 fuzzy case). In
this paper we explore the relationship between the Karnik-
Mendel algorithm [4] and ours and what we believe to be the
most important property of any defuzzifier - monotonicity1.

Monotonicity [13] has the following properties:
1) If you decrease the membership grade on the right hand

side of the centre then the centre will move to the left
2) If you decrease the membership grade on the left hand

side of the centre then the centre will move to the right
3) If you increase the membership grade on the right hand

side of the centre then the centre will move to the right

1A journal article will explore in detail the type-2 defuzzifiers and the
properties as discussed in [13]
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4) If you increase the membership grade on the left hand
side of the centre then the centre will move to the left

We explain this more formally using the notation above:

Ã′−1 < Ã−1where

Ã′ = {u|u = Ã(x) ∀ x < Ã−1, u ≤ Ã(x) ∀x > Ã−1} (6)

Ã′−1 > Ã−1where

Ã′ = {u|u = Ã(x) ∀ x > Ã−1, u ≤ Ã(x) ∀x < Ã−1} (7)

Ã′−1 > Ã−1where

Ã′ = {u|u = Ã(x) ∀ x < Ã−1, u ≥ Ã(x) ∀x > Ã−1} (8)

Ã′−1 < Ã−1where

Ã′ = {u|u = Ã(x) ∀ x > Ã−1, u ≥ Ã(x) ∀x < Ã−1} (9)

So, in this Section we have provided the necessary definitions
and notation to enable the description of our algorithm. We
also have discussed monotonicity of a type-2 defuzzifier and
provided the properties needed for a type-2 defuzzifier to be
monotonic.

III. A NEW SIMPLE DEFUZZIFICATION ALGORITHM

It is a widely accepted fact that the inferencing process,
prior to defuzzification, of an interval type-2 fuzzy system is
identical to the the inferencing process of two independent
type-1 fuzzy system operating in parallel [14]. Implementing
a type-2 interval system in this way greatly reduces the
computational complexity of the system and introduces a
simple opportunity to introduce parallel execution if should
wish to do so.

In this paper we propose to carry this notion of parallel
type-1 systems one step further into the type-reduction phase
of the inference process. Here, we propose a new, simple
type-reduction algorithm for interval type-2 fuzzy sets. Es-
sentially we treat the upper and lower membership functions
as type-1 fuzzy sets and calculate the centroid of each of
these to give us an interval. So, given an interval type-2
fuzzy set Ã we have Ã as the upper membership function
and Ã.

CL = Ã ∧ Ã (10)

CR = Ã ∨ Ã (11)

Ã′−1 = [CL, CR] (12)

The KM algorithm has been shown to be essentially a
Newton-Rapheson root finding approach [15] which finds the
maximum (minimum) of a particular function. The functions
that contain the left endpoint of the centroid and the right end
have values from the upper and lower membership functions.
This means when the KM algorithm calculates the left end
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Fig. 1. The Interval Type-2 Fuzzy Set Ã.

point by finding the minimum value of this function the
value obtained must be less than or equal to the minimum of
the centroid of the upper and lower membership functions.
Also, the right endpoint obtained by KM is greater than
the maximum of the the centroid of the upper and lower
membership functions.

An essential property of a type-reducer we believe is that
of monotonicity as described above. Runkler [13] stated
that the most common type-1 defuzzifiers (centre of area
and centre of gravity) satisfy monotonicity. Since our type-
reducer relies on type-1 defuzzifiers then our new approach
is also monotonic. We also believe the KM algorithm to be
monotonic but this is much more complex to demonstrate and
is for future work. The left and right endpoint calculations
(type-1 centroid) are monotonic and this property allows us
to state that the interval obtained by our new method lays
within the interval obtained by KM. We now demonstrate
this point with an example.

Consider the interval type-2 fuzzy set Ã depicted in figure
1. We now perform type-reduction on this set which has been
discretised in to 11 points starting at 0 with an interval of 1.
If we consider the KM algorithm it operates by identifying
the minimum of the function l(x) to give the left end point
and identifies the maximum of the function r(x) to give the
right end point. The functions l(x) and r(x) are depicted in
figures 2 and 3 respectively. The domain of these functions
is the switch-point used in the KM algorithm, the point at
which use of the upper or lower membership function is used
in the centroid calculation. Most importantly from the point
of view of the current discussion the follow is clear:

• l(0) is the centroid of the upper membership function.
• l(10) is the centroid of the lower membership function.
• r(0) is the centroid of the lower membership function.
• r(10) is the centroid of the upper membership function.

Since the centroids of both the upper and lower membership
functions lay on both functions l(x) and r(x) the interval of
our new type reducer must lay inside the interval produced
by KM. Proof of this is simple to obtain. First consider the
left end point of the new type-reducer which lays inside the
KM interval.

CKM
l ≤ Ã ∧ Ã ≤ CKM

r (13)

We know that CKM
l cannot be greater than Ã ∧ Ã since
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Fig. 2. The Function l(x).
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Fig. 3. The Function r(x).

CKM
l is the minimum of a function on which both Ã and

Ã lay. We know that CKM
r cannot be less than Ã∧ Ã since

CKM
r is the maximum of a function on which both Ã and

Ã lay. Therefore the end points given in equations 10 and
11 must lay inside the KM endpoints.

IV. RESULTS

In order to characterise the properties of our new type-
reduction operator we compare the defuzzification with that
of range of other defuzzifiers using the experiment carried
out in [12]. This experiment requires an output surface to be
created for a particular problem. We use the same rule fuzzy
inference system used by Coupland and John, given below:

• Rule 1: IF x1 is F̃1 THEN y is G̃1

• Rule 2: IF x2 is F̃2 THEN y is G̃2

where y is some output variable, G̃1 and G̃2 are two interval
type-2 fuzzy sets as depicted in Figure 4. We are not
concerned with the rule inputs or antecedents. This is because
to produce an output surface only the rule consequents and a
range rule firing strengths are required. To make the results in
this paper comparable to those in [12] we shall use exactly
the same parameters to create the output surface, namely

1
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µ

Fig. 4. The Interval Type-2 Fuzzy Sets G̃1 and G̃2.

rule firing strengths of 0 to 1 at intervals 0.01 plotted as a
contoured surface where the contours have intervals of 0.25
from 3 to 14.

We now give surface plots using our new type-reducer
where the rule implication has been performed by the min-
imum and product t-norms. Figure 5 gives the surface plot
from our new type-reducer under minimum whilst figure 6
and figure 7 are the surface plots produced using Karnik-
Mendel type-reduction [16] and geometric defuzzification
[17], [1] respectively. Figure 8 gives the surface plot from our
new type-reducer under minimum whilst figure 9 and figure
10 are the surface plots produced using Karnik-Mendel type-
reduction and geometric defuzzification respectively.

We now state our observations from these surface plots.
For both minimum and product we find that the general prop-
erties of the new defuzzifier follows that of Karnik-Mendel
type-reduction. The overall topography of the new approach
and Karnik-Mendel appear to be more similar with each other
than they are with the geometric defuzzifier. Under product
Karnik-Mendel and the new approach appear to be very
similar indeed. However, there are subtle differences under
minimum. The new approach obtains the extreme values (3
and 14) considerably less often than Karnik-Mendel. This
make sense when the operational differences are considered.
Karnik-Mendel is using sets (non-triangular) which are more
extreme i.e. to the left or right than our new approach. There
is another difference which can be observed in the plateau
in the top right hand corner of all the surface plots obtained
with minimum. The value at this plateau as obtained by our
new type-reducer is slightly higher than both the Karnik-
Mendel type-reducer and the geometric defuzzifier. We are
unable to offer a suggestion on why this should be so. More
work will need on our new approach to fully understand it’s
properties, however it has strong and clear similarities to the
properties of Karnik-Mendel type-reduction.

V. CONCLUSIONS

Defuzzification algorithms for an interval type-2 fuzzy set
have been defined by a number of researchers - all with their
strengths and weaknesses. In this paper we have presented
a new, simple, algorithm for defuzzifying an interval type-2
fuzzy set that works with the upper and lower membership
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Fig. 5. Output Surface of the New Type-Reduction System Using The
Minimum T-norm.

Fig. 6. Output Surface of the Type-Reduction System Using The Minimum
T-norm. Reproduced from [17].

Fig. 7. Output Surface of the Geometric Defuzzfier System Using The
Minimum T-norm. Reproduced from [17].

Fig. 8. Output Surface of the New Type-Reduction System Using The
Product T-norm.

Fig. 9. Output Surface of the Type-Reduction System Using The Product
T-norm. Reproduced from [17].

Fig. 10. Output Surface of the Geometric Defuzzfier System Using The
Product T-norm. Reproduced from [17].
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functions. We show that the algorithm satisfies a monotonic-
ity property and produces an interval that lies within the
interval of the defuzzified solutions using the well regarded
KM algorithm. Future work will investigate our and others
algorithm against the properties one would expect of any
defuzzifier.
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