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Abstract—This paper investigates energy management strate-
gies for a power split hybrid electric transmissions using a
fuzzy design method. Hybrid Electric Vehicles (HEV) is one of
the most promising research topics for developing efficient and
environmentally-friendly transportation solutions. A power split
hybrid combines the advantages of both series and parallel hybrid
configurations by providing a higher degree of freedom to fulfill
the demand of the driver while improving overall fuel efficiency
at the cost of higher complexity and non-linearity in the control
system design. There are two issues that should be addressed
for energy management: torque distribution and battery charge
sustenance. The fuzzy controller controls the torque request for
the internal combustion engine by taking into consideration the
vehicle speed, battery state-of-charge, and the normalized torque
request from either the driver or an automated driving controller.
The controller has several rules to control the internal combustion
engine (ICE) torque request. We show that our rule base provides
greater control over the ICE operation over a wide range of
conditions for optimum fuel consumption. The controller was
tested by integrating with a vehicle model and simulated by
running it for multiple United States Environmental Protection
Agency drive-cycles and then compared to a controller based on
a commercially available HEV system.

I. INTRODUCTION

To meet fuel consumption and emission standards set by
government organizations, there has lately been heavy em-
phasis on HEV transmission development. Unlike traditional
vehicles, which have only internal combustion engine (ICE)
based drivetrains, HEVs utilize ICEs along with electric
motors/generators to propel the wheels of the vehicles. The
addition of electric motors/generators provides flexibility to
the mode of fulfillment of the requested torque to drive the
vehicle.

Some research has been done on the use of computational
intelligence for adaptively controlling HEV vehicles [1], [2],
including systems that focus on plug-in hybrids [3], [4], fuel
cell HEVS [5], [6], and parallel HEVs [7], [8], [9]. The main
contribution of this paper is the application of fuzzy control to
power-split HEV drivetrains, showing that fuzzy control can
improve efficiency and performance.

Power split transmissions stand out when compared to
standalone series or parallel transmissions. Power split trans-
missions provide a higher flexibility to operate the electric
motor and the ICE to fulfill the request torque for vehicle
propulsion. This flexibility provides opportunity to operate the
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Fig. 1. HEV power split transmission block diagram

ICE at points of high efficiency. Power split HEVs like the
Toyota Prius have been successful in the commercial market

due to the advantages that it offers over only series or parallel
hybrids.

II. POWER SPLIT HEV VEHICLE STRUCTURE AND
CONTROL METHOD

A. Power split HEV structure

The power split structure designed here is similar to the
Hybrid Synergy Drive in the Toyota Prius. It consists of two
motor/ generators and one ICE, as shown in Fig. 1. The
motor/ generator 1 (MGl1) is connected to the ring gear. ICE
is connected to the planet carrier and MG1 is connected to
the sun gear. MGI is the primary drive for the wheels and
is mechanically coupled to the wheels through the differential
(by drving the whole gear constellation). There is no physical
coupling between ICE and the wheels; thus, ICE does not
directly drive the wheels. ICE is used merely to provide
electrical charge via MG2 by driving the ring gear. Figure 1
shows a block diagram of the power split hybrid powertrain.
The absence of mechanical coupling between ICE and the
wheels provides high flexibility to operate ICE without direct
correlation to the speed of the vehicle.

The transmission provides the requested torque by several
methods. The requested torque can either be fulfilled by MG1
powered by the battery alone. Or MG1 can be powered by
only ICE which is provides electrical energy to MG1 by using
MG2 as an inverter. When ICE is running, MG2 acts as a
generator, electrically generating the torque supplied by ICE.
The requested mechanical torque is thus supplied by MG1 with
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support from the batteries and/or ICE. ICE provides torque
through MG2, which, through the inverter directs to MGI1
to fulfill the torque request. Thus, this configuration provides
high flexibility to operate ICE at its high efficiency region
whenever it is operated. The mathematical model that we use
in this paper is based on the Prius and is described by the
following equations [7].

(I+p) ne=p-ng+n;
n=0+1/p)=1+p) Ty
Ny, = Ny}

Ty =Tn+Tr =Tn+n- T/(1+p);
Ny =n./K =((1+p) ne—p)/K;

where p is the ratio of the sun and ring gears; 7 is the efficiency
of ICE; (ne,ng, Ny, N, ) and (Te, Ty, Ty, Ty, o) are the
rotational speeds and torques of ICE, MG2, ring gear, MGl,
and drive axle, respectively; K is the final drivetrain ratio. The
system power is computed as
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where (n1,72,73) are the efficiency of MG2, MGI and ICE,

respectively, and (ki, ko) are constants (which are based on

specific configurations of the transmission).

P =

B. Control of power split HEV using fuzzy logic

The goal of a good HEV control strategy is to minimize total
fuel consumption and emissions without making an impact
on performance, reliability, and safety [2]. As it needs to be
carefully monitored, the state of charge (SOC) of the battery
is one of the most important parameters to be controlled.
The limits of operation of the battery and the number of
charge/discharge cycles affect the longevity of the battery;
hence, optimal control of the battery pack is of prime im-
portance. In addition, the power split control must satisfy the
power demand of the driver/robotic controller. It must also
take into consideration the depth of discharging and charging
for the battery since this also plays an important role in the
longevity of the battery pack. So, in summary the overall
performance of the controller is not just based on fuel mileage,
it is also based on battery usage and driver performance. We
will examine all these aspects in our analysis.

III. ENERGY MANAGEMENT FUzZZY CONTROLLER DESIGN

The fuzzy controller takes as input the current vehicle
speed, the battery SOC, and the torque request from the driver
/controller. The output is the ICE torque request. The controller
is non-causal and takes into account only the present states
of the system to determine the required torque for the ICE.
The basic postulation is that greater efficiency can be achieved
from ICE when it is operated consistently at its efficient region
and by avoiding transients that normally occur in traditional
ICE vehicles from sudden acceleration and frequent start-stop
operations [8].
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Fig. 2. MFs for normalized vehicle speed

A. Fuzzification of inputs

1) Vehicle speed: The first input to the fuzzy controller is
vehicle speed. It is normalized to provide greater flexibility
to the controller. The vehicle speed has five membership
functions as shown in Fig. 2: VS (very small), S (small), M
(medium), L (large), and VL (very large). The membership
functions are gaussian with the mean and variances set to pro-
vide good controlling action. For lower speeds, wherein MG1
can provide power to the wheels (provided the other input
conditions are satisfied) VL is more fuzzy (more uncertain)
as to incorporate the effect of MG1 powering the propulsion
without much help from ICE. As the vehicle speed increases,
the membership functions are more certain and closely spaced
to have more control over the different ranges of vehicle speed.
It has been observed that high speed operation of vehicles
result in comparatively higher consumption of fuel by the
ICE and effort has been made to keep this in account. The
membership functions were also formulated by taking into the
probability of the vehicle moving at the given speeds.

2) Battery state of charge: The second input to the fuzzy
controller is the normalized battery SOC as shown in Fig. 3.
This is the most important input to the controller and its value
makes tremendous impact on the controller output and the
overall vehicle fuel consumption. The SOC, being of prime
importance needs to be controlled and kept at optimum levels.
The SOC has five membership function similar to the vehicle
speed but with different mean and variances to provide better
controllability of the controller. In general, extremely low
and high levels of battery SOC are avoided so as to ensure
longevity of the battery pack. Rapid transfer of energy from
the battery system produces heat, reducing longevity [1]. Plus,
keeping a battery pack on a low SOC can reduce the life of
the battery and maximum charge level tremendously. On the
other hand, a very high level of battery SOC, close to 0.90-1 is
not safe and has been known to cause fires. Thus, the battery
SOC range at which we would like to run the battery in normal
conditions is from 0.45-0.85. Membership function VS depicts
the lower end of the SOC. This lies from O to around 0.5. The
higher end of the SOC is depicted by VL which ranges from
around 0.8 to 1. The SOC range in between is depicted by
the S, M and L membership functions. The controller tries
to maintain the SOC between 0.45-0.85 while still trying to
improve the efficiency of the system.

3) Normalized accelerator pedal position: The last input
to the fuzzy controller is the normalized accelerator pedal
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position (APP), for which we developed the MFs shown in
Fig. 4. Accelerator pedal information is used to gauge the
driver torque request. For high torque request, MG1 may not
be able to fulfill the request. In such a scenario, the torque
request is fulfilled with the help of both MGl and ICE.
For low SOC condition, the requested torque is completed
by the ICE since the battery does not have enough energy
to propel the vehicle using MG1. APP has 5 membership
functions. Low torque requests can be handled well by the
MGI1, hence VS is more uncertain than other membership
functions. Fulfillment of the torque request is the primary aim
for any driver controller, and this controller determines when
the ICE operates and helps in the fulfillment of the torque
request.

B. Fuzzy inference system

The Fuzzy Inference System (FIS), illustrated in Fig. 5,
forms the core of the control for the ICE torque request signal.
It takes into consideration the three inputs (vehicle speed,
SOC, and APP). The output is the normalized ICE torque
request. The Mamdani method for fuzzy inference is applied
for the fuzzification and defuzzification. The rule base is
formed and tuned through expert experience and understanding
of HEVs, focusing on the power split transmission design.

C. Defuzzification of output

1) Normalized ICE torque request: The only output from
the fuzzy controller is ICE torque request, for which the output
rules are shown in Fig. 6. The rule table, detailed in Table I,
specifies the conditions and the values for the operation of the
ICE request. These rules were designed from expert intuition
regarding the operation of the power split transmission with
the aims of fuel efficiency, optimal battery state, and driver
performance. We now describe the ideas behind our fuzzy rule
base.
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TABLE I
Fuzzy RULES OUTPUT FOR ICE REVOLUTIONS PER MINUTE

ICE RPM
SOC | APP | VS S M L VL
VS VS | M M L L L
VS S| M M L L L
VS M | M M L L VL
VS L |L M L VL VL
VS VL | VL L VL VL VL
S VS | S S M L L
S S| S S M L L
S M| M S M L VL
S L | M S M L VL
S VL | L M L VL VL
M VS | VWS VVS VVS VVS VVS
M S | VVS VS S M M
M M | VVS VS S M M
M L | VvS S S L M
M VL | VWS S M L L
L VS | VWS VVS VVS VVS M
L S| VVS VVS VVS VS L
L M | VVS VVS VVS VVS VVS
L L | VVS VVS VVS VVS VL
L VL | VVS VVS VVS VVS VL
VL VS | VWS VVS VVS VVS VVS
VL S| VVS VVS VVS VVS VVS
VL M | VVS VVS VVS VVS VVS
VL L | VWS VVS ©VVS VVS VVS
VL VL | VVS VVS VVS VVS VVS




D. Controller operation for different driving scenarios

At lower speeds and low torque requests, electric-only mode
provides good fuel efficiency as the MG1 can provide the
required torque by drawing power from the battery only. This
operation is constrained by the battery SOC because MG1
cannot operate solely on battery energy when the battery is
low on charge. In this case, the ICE is also operated, serving
to charge the battery. A similar situation also arises when the
torque request is small or medium. Contrastively, for high
torque request situations the ICE is operated to aid MGI.
Irrespective of the torque request, when the battery SOC is
low, the ICE is operated to charge the battery, perhaps also
aiding the propulsion (albeit indirectly).

At medium speeds and low torque request, the vehicle is
powered by only MG1 if the SOC is within the required range.
If the SOC is low then the ICE is operated to charge the battery
without supplying the power directly to MGI1. If the torque
request in this case is medium then the ICE operates to also
supply power to MG1 through the inverter. When the SOC is
high, the ICE is not operated and MG1 provides the requested
torque.

At higher speeds and low torque request, the vehicle needs
power not only from MG1 but also from the ICE. The ICE
power is transferred to MG1 through the inverter, considering
the constraint that the SOC is within the required range. If the
SOC is below the permissible limit then the ICE is operated
at a higher torque request so as to redirect its torque to MG1
through the inverter.

IV. SIMULATION RESULTS

The proposed fuzzy controller was incorporated in a simu-
lated vehicle model and made to run through simultaneous
multiple UDDS cycles and the resulting performance was
analyzed. The total duration of the cycle was around 5,500
seconds (1.5 hours) worth of UDDS cycles. This was done
to analyze the functionality and performance of the controller
for long drive cycles wherein the battery SOC could discharge
and recharge multiple times, which can be seen in the resulting
figures.

A. Simulation results for fuzzy controller

Figure 7 shows the results for the fuzzy controller when
the vehicle is driven through multiple simultaneous US EPA
Urban Dynamometer Driving Schedule (UDDS) drive cycles.
The figure displays the system states during the drive cycles.
View (a) shows the normalized vehicle speed; (b) shows the
normalized SOC; view (c) is of the normalized pedal position;
and (d) shows the output of the system, the normalized ICE
torque request. The important system state to be analyzed is
the SOC. Using our controller, the SOC does not undergo
deep charging/discharging over the benchmark driving cycles.
This provides better quality and life of the battery along with
providing a satisfying fuel economy.
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B. Simulation results for standard rule-based controller

To compare with the fuzzy controller, a standard rule-based
controller was designed which mimics, to the best of our
knowledge, a current commercial HEV power split controller.
The results of the controller are included in Fig. 8. The SOC,
in view (b), can be seen to undergo deep charging/discharging
cycles, which illustrates the standard procedure of energy
management. Although this may result in more utilization of
the available energy, it results in shorter battery life which may
lead to replacing the battery, a serious environmental impact.

V. COMPARISON OF FuzzY CONTROLLER AND
COMMERCIAL SYSTEM

The two controllers were compared with the same vehicle
parameters and drive cycles. As the SOC results show in
Figs. 7 and 8, the fuzzy controller is clearly better at maintain-
ing a healthy battery SOC. Furthermore, the fuzzy controller
gave a relatively good improvement in fuel efficiency in
comparison to the standard controller; although, admittedly the
fuzzy controller employs a more sophisticated and complex
rule base for operation. The fuzzy controller gave a fuel
mileage of 72 miles per gallon as compared to 64 miles per
gallon for the standard system. This is more than 10% increase
in fuel economy, which is a very good improvement. Further-
more, this mileage improvement is achieved with having the
battery undergo deep charging and discharging cycles. This
characteristic would in the long term have a big positive impact
on the life span and performance on the battery pack thus
reducing the total cost associated with maintaining the battery.
The reason that the fuzzy controller is more efficient is that
the ICE is strategically switched on and off more frequently,
thus saving fuel consumption. Along with that, the controller
is designed to operate the ICE at its highest efficiency region,
thus aiding fuel economy.

VI. COMPARISON OF FUzZZzY CONTROLLER OPERATION
WITH DIFFERENT BATTERY SIZES

Battery size forms an important part of the HEV design.
There is a trade off between the size of the battery and its cost
and weight. A comparison was made between three different
battery types with different capacities to gauge the operation
of our proposed fuzzy controller with these battery types and
sizes.

Three battery options were simulated: lead acid, nickel
metal hydride (NiMH), and lithium ion (Li-Ion). Each of these
batteries have different characteristics, e.g., capacity, energy
density (energy per weight), voltage rating, and current rating.
The lead acid battery was simulated with a capacity of 5Ah, a
voltage rating of 100V, and current rating of 75A; the NiMH
battery had a capacity of 5Ah, a voltage rating of 300V, and
a current rating of 80A; and the Li-Ion battery had a capacity
of 13Ah, a voltage rating of 300V, and current rating of 167A.
From Figs. 9-11 it is observed that the controller adapts well
to the three types of batteries; although, it does stress the
smaller lead-acid and NiMH batteries by deep charging and
discharging them (though staying within the required range).



o
a
<
el
@
N
©
1S
=
()
c

normalized vehicle speed

normalized APP

normalized vehicle speed

o
in

<
S

e
[o9)

e
)

=]
—

=

1000 2000 3000

Time (sec)

4000

5000

6000

(a) Normalized vehicle speed

—

0.

o)
I

o
o
i

e

| ‘ 7
L T |

1000 2000 3000 4000 5000
Time (sec)

(c) Normalized accelerator pedal position

(=)
[\

o i »

o

6000

Fig. 7. Results of fuzzy controller for multiple UDDS cycles

0.5
04
0.3

N

0.1

2000

1000 3000

Time (sec)

4000 5000 6000

(a) Normalized vehicle speed

—_

e
%
‘

o
o)
i

o
RS

1000 2000

3000
Time (sec)

(c) Normalized accelerator pedal position

4000 5000

0.
IH
00

6000

0.9 1
v}
K
b 0.8 1
(]
N
f_gv 0.7 1
206 ]
0'50 1000 2000 3000 4000 5000 6000
Time (sec)
(b) Normalized state of charge
1 |
o
g |
T 0.8} ‘ , ]
>3
S |
o 0.6r | 1
w
Y
o] 0.4’ 7
i |
202 1
2
00_7 1000 2000 3000 4000 5000 6000
Time (sec)
(d) Normalized ICE torque request
1
O |
o
wv
s |
(]
N
© i
€
S
< .|
0'50 1000 2000 3000 4000 5000 6000
Time (sec)
(b) Normalized state of charge
1
o
&
o 0.8 |
>
o)
2 0.6r |
w
Y
- 04 |
S
g 02 ' 1
g | HMII H\.‘IIH H il H‘. "l
0 1000 2000 3000 4000 5000 6000
Time (sec)

(d) Normalized ICE torque request

Fig. 8. Results of standard rule based controller for multiple UDDS cycles

944



Smaller batteries, being cheaper and lighter, pose a trade off
between deep charging/discharging and their overall cost. A
significant difference in fuel economy was not observed for
the different battery sizes: the lead-acid achieved 70mpg, the
NiMH showed 72mpg, and the Li-Ion achieved 73mpg.

VII. CONCLUSION

Overall, the fuzzy controller provides a good linguistic
approach to the power split hybrid energy management.
Compared to a standard rule-based controller based on a
current HEV power split system, the fuzzy controller performs
significantly better in terms of battery state-of-charge and fuel
economy. Furthermore, we showed that the fuzzy controller
adapts well to different battery configurations. These config-
urations allow the system to use a smaller battery as state-
of-charge condition is maintained at a stricter level than the
standard rule-based controller currently being used. This can
give significant advantage as a smaller battery allows a lower
weight and cost and improves upon the environmental impact
of producing the large batteries necessary for current HEV
systems.

In the future, we will expand on this work to produce a
power split HEV system controller which adapts to the driver’s
intended driving conditions, say by using trip information from
a GPS or predefined route plan. Also, these ideas could be
tied in with intelligent transportation systems, using sensor
information to detect traffic conditions and adjusting the rule-
base as appropriate. We believe that these ideas will enable
big advances in HEV fuel efficiency and performance.
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