
 
 

 

  

Abstract—In this paper, a backstepping based adaptive fuzzy 
control algorithem is presented for a class of uncertain 
nonlinear discrete-time systems in the strict-feedback form. By 
introducing the “minimal learning  parameter (MLP)” 
technique, the proposed scheme is able to circumvent the 
problem of “curse of dimension” for high-dimensional systems. 
Meanwhile, all the virtual control laws and actual control law in 
the system are updated by a novel actual adaptive update law, 
thus the number of parameters updated online for whole system 
is only by one. Takagi-Sugeno (T-S) fuzzy systems are used to 
approximate the unknown system functions. It is shown via 
Lyapunov theory that all signals in the closed-loop system are 
semi-globally uniformly ultimately bounded (SGUUB). Finally, 
a simulation example is employed to illustrate the effectiveness 
and advantages of the proposed scheme. 

Keywords—discrete-time nonlinear systems; adaptive fuzzy 
control; minimal learning parameter (MLP); strict-feedback 
system; 

I. INTRODUCTION 
n the past decades, adaptive fuzzy control schemes have 
been found to be particularly useful for the control of 
nonlinear uncertain systems with unknown nonlinear 

functions since the excellent universal approximation ability 
of the fuzzy logic systems (FLS) is proven [1]. Recently, with 
the help of FLS approximation, much significant 
development of adaptive fuzzy control algorithm has been 
achieved in [2-5] for uncertain nonlinear systems. 

However, the problem of “explosion of learning param 
-eters” which is the well-known “curse of dimensionality” 
exists in aforementioned control design methods. That is, the 
number of parameters to be tuned online in the adaptive fuzzy 
control schemes is very large, especially for high dimensional 
systems. Led to the online learning time tends to become 
unacceptably large when implemented, which is not 
acceptable in real application. This problem has been pointed 
out in [6] and first solved by Yang et al. in their pioneering 
works [7-10], where some kinds of so called “minimal 
learning parameter (MLP)” algorithms containing much less 
online adaptive parameters were constructed. In this years, 
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combine with the backstepping technique, the idea of MLP 
algorithms was extended to adaptive-fuzzy-control schemes 
for both SISO time-delay systems with unknown virtual 
control coefficients in [11], and MIMO uncertain systems in 
[12-13]. More recently, by incorporating the “dynamic 
surface control (DSC)” and “MLP” techniques, the robust 
adaptive tracking control schemes is developed for a class of 
uncertain nonlinear systems [14-16], which both problem of 
“curse of dimension” and “explosion of complexity” inherent 
in conventional backstepping methods are circumvented. 

It is common knowledge that the discrete-time systems 
rather than the continuous-time systems are the closest for 
decribing a real plant. However, in contrast to above 
continuous-time systems, control design for discrete-time 
systems is more difficult due to lack of mathematical tools. 
For instance, noncausal problem will be encountered if we 
directly apply backstepping design to discrete-time systems 
in lower triangular form, since discrete-time systems are 
described by difference equations, which involve state 
variables at different instants. To solve the noncausal 
problem, for discrete-time systems transformable to the 
parametric-strict-feedback and the parametric-pure-feedback 
form, the noncausal problem was elegantly solved in 
backstepping using a time-varying mapping [17], which was 
further extended to cases with time-varying parameters and 
nonparametric uncertainties in [18]. But it is’t simpler to 
extend this technique to more general systems. a class of 
discrete-time nonlinear system transformation using 
prediction functions of future states was studied in [19-20], in 
which adaptive NN backstepping design has been applied to 
the transformed strict-feedback discrete-time systems without 
noncausal problem. Subsequently, many elegant adaptive 
control schemes are studied in [21-30] for discrete-time 
nonlinear systems based on the approximation property of the 
neural network.  

Similarly to continuous-time systems, it is obvious that the 
problem of too many adaptive parameters are needed to be 
tuned for discrete-time nonlinear systems is also exist in the 
above adaptive control approachs [17-30]. More recently, 
several certain results have been achieved to reduce the 
number of the adjustable parameters and lighten the online 
computation burden are studied in [31-36]. However, for 
above control approaches, these works are still suffer from 
the problem of “curse of dimensionality”, eg: the number of 
parameters updated online is needed at last one parameter for 
each subsystems. 

In this paper, motivated by aforementioned works in 
literature, an adaptive fuzzy control scheme, in which the 
“minimal learning parameters (MLP)” technique is 
introduced, is proposed for a class of uncertain discrete-time 
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nonlinear systems in strict-feedback form. The problem of 
“curse of dimensionality” for high-dimensional systems is 
avoided by proposed scheme, i.e., the adaptive mechanism 
with minimal learning parameterization is achieved, no 
matter how many rules are used in fuzzy systems and how 
many input variables exist in the system. In the meantime, all 
the virtual control laws and actual control law in the system 
are updated by only a novel actual adaptive update law, which 
is proposed by merging all virtual update laws with actual 
update law. By this approach, the number of parameters 
updated online for proposed adaptive fuzzy controller is 
reduced to only one. Takagi-Sugeno (T-S) fuzzy systems are 
usd to approximate the un known system functions. By using 
the Lyapunov analysis method, all the signals in the 
closed-loop system are guaranteed to be SGUUB, and the 
tracking error converges to a small neighborhood of the 
origin. One simulation example is utilized to illustrate the 
effectiveness and advantages of the proposed scheme. 

II. PROBLEM FORMULATION AND PROLIMINARIES 

A. Problem Formulation 
Consider the following single-input and single-output 

(SISO) discrete-time nonlinear system in strict-feedback form 
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where iT
ii Rkxkxkxkx ∈= )](,),(),([)( 21 … , 2,1=i  

n… , Rku ∈)(  and Ryk ∈  are the state variables, system 

input and output respectively; ))(( kxf ii  and ))(( kxg ii , 

ni ,,2,1 …=  are unknow smooth functions. 
The control objective is to design an adaptive NN 

controller for system (1) such that: (ⅰ) all the signals in the 
closed-loop system are semi-globally uniformly ultimately 
bounded (SGUUB) and (ⅱ) the system output follows the 
desired reference signal )(kyd . 

In the following , it needs to make the following 
assumptions based on the systems (1). 
Assumption 1. the desired reference signal yd ky Ω∈)( ,  

0>∀k  is smooth and known, where }{: 1xy ==Ω χχ . 

Assumption 2. the signal of ))(( kxg ii , ni ,,2,1 …=  are 

known and there exist constants 0>ig  and 0>ig  such 

that n
niiii Rkxgkxgg ⊂Ω∈∀≤≤ )(,))(( . 

Without losing generality, we shall assume that 
))(( kxg ii  and ))(( kxg nn  are positive in this paper. i.e., it 

is assumed that iiii gkxgg ≤≤ ))(( . 

Definition 1. [19] the solution of (1) is semi-globally 

uniformly ultimately bounded (SGUUB), if for any Ω , a 
compact subset of nR  and all Ω∈)( 0kxn , there exist an 

0>ε  and a number ))(,( 0kxN nε  such that ε<)(kxn  

for all Nkk +≥ 0 . 

B.  Takagi-Sugeno (T-S) Fuzzy Logic Systems 
Here, we birefly describe the structure of T-S type fuzzy 

logic systems (FLS). Generally, the fuzzy system can be 
constructed by the following K ( 1>K ) fuzzy rules: 

iR : IF 1x  is i
h1

Ψ  AND 2x  is i
h2

Ψ  …  AND nx  is i
hn

Ψ  

       THEN iy  is i
hhh n…21,Ω , ,,,2,1 Ki …=  

where i
hhh n…21,Ω denotes an output fuzzy set. If i

hhh n…21,Ω  is a 
singleton fuzzy set, its membership function is 1 only at 

iiy σ=  (an arbitrary unknown constant) and 0 at other 
position, then it is called Mamdani-type fuzzy system. If 

i
hhh n…21,Ω is a function of ninii xaxaxa +++ "2211  with 

ija , Ki ,,2,1 …=  and nj ,,2,1 …=  being constants, 
then it is called Takagi-Sugeno (T-S) type fuzzy system. The 
product fuzzy inference is employed to evaluate the ANDs in 
the fuzzy rules. After being defuzzified by a typical 
center-average defuzzifier, the output of T-S fuzzy system is 
in the vector form 

xAxAxf xx )(),(ˆ ξ=                       (2) 

where )](,),(),([)( 21 xxxx Kξξξξ …=  and 
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h j

Ψ , 

Ki ,,2,1 …= , and 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

KnKK

n

n

x

aaa

aaa
aaa

A

"
####

"
"

21

22212

11211

 

It has been proven that a T-S fuzzy model is a universal 
approximator of any smooth nonlinear system on a compact 
set [37],[38], which is stated as follows. 
Lemma 1: For any given real continuous function )(xf  on a 

compact set nRU ∈  and 0>∀ε , there exists a fuzzy 

system ),(ˆ
xAxf  in the form (2) such that  

ε≤−
∈

),(ˆ)(sup x
Ux

Axfxf                     (3) 

where ε  is called the approximation error and has an upper 
bound ∗ε . 
Remark 1: As pointed out in Remark 2 of [16], for any 
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n -dimensional continuous function )(xf , if 1+iN  input 

fuzzy sets for each variable ix  are used, these will be 

)1(1 +∏ = i
n
i N  IF-THEN fuzzy rules in the fuzzy system. It 

implies that there will be a total of )1(1 +∏ = i
n
i N  

parameters to be updated online in the Mamdani-type fuzzy 
system, and )1(1 +∏ = i

n
i Nn  parameters to be updated in 

the T-S type fuzzy system. On the contrary, only one 
parameter needs to be updated online in the scheme to be 
proposed in this paper. 

III. ADAPTIVE CONTROL DESIGN AND STABILITY ANALYSIS 

Consider the strict-feedback SISO nonlinear discrete-time 
system described in (1). The control objective of this paper is 
formulated as follows. For a known and bounded signal 

)(kyd , design an adaptive control )(ku  for system (1) 

which makes system output ky  follow the desired signal 

)(kyd , while maintaining all closed-loop signals SGUUB. 
The causality contradiction is one of the major problems 

that we will encounter in discrete-time domain when we 
construct a controller for the general strict-feedback nonlinear 
system through backstepping. However, the above problem 
can be avoied if we transform the system equation into a 
special form which is suitable for backstepping design. If we 
consider the original system (1) as a one-step ahead predictor, 
we can transform it into an equivalent maximum n -step 
ahead predictor, which can predict the future states 

)(1 nkx + , )1(2 −+ nkx , … , )1( +kxn , then the 
causality contradiction is avoid when controller is constructed 
based on the maximum n -step ahead prediction [19]. 
Similarly, with the help of the transformation process in [19], 
system (1) is equivalent to  
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where ))(( kxF ni  and ))(( kxG ni  are unknown functions. 

The above equations show that the functions ))(( kxF ni , 

1,,1 −= ni …  are highly nonlinear. The problem of 
causality contradiction does not appear in system (4). It is 
obvious that ))(( kxG ni  satisfies inii gkxGg ≤≤ ))(( , 

Ω∈∀ )(kxn  under Assumption 1. 
For convenience of analysis and discussion, for 

1,,1 −= ni … , let 

))(()( kxFkF nii = ,    ))(()( kxGkG nii = , 

))(()( kxfkf nnn = ,   ))(()( kxgkg nnn = , 

for ni ,,2,1 …= , let  ))(()( kxk nii ξξ = , 

))(()( kxk nii ψψ = , ))(()( kxk nii Φ=Φ , 

they are functions of system states )(kxn  at the k th step. 

Step 1: For )()()( 11 kykxk d−=η , its n th difference is 
given by 

)()1()()(
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d

d

+−−++=
+−+=+η

(5) 

By viewing )1()( 22 −+=∗ nkxkα  as a virtual control 

input for (1), it is obvious that 0)(1 =+ nkη  if we choose 

[ ])()(
)(

1)()1( 1
1

22 nkykF
kG

knkx d +−−==−+ ∗α (6) 

since )(1 kF  and )(1 kG  are unknown function, they are not 

available for constructing a virtual control )(2 k∗α . However, 
according to Lemma 1, a suitable T-S fuzzy system 

),(ˆ
xAxf  with input vector 

nxn Ux ∈ , where 
nxU  is a 

compact set, is proposed here to approximate unknown 
function with nA  being a matrix containing unknown 

contants. Then, we can use T-S fuzzy to approximate )(2 k∗α  
as follows: 

1111

1111112
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vkb
nkyAkkbk d
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+++=∗

ωξ
εξωξα

    (7) 

where 1ε  is the approximation error. Let 11 Ab = , =mA1  

11 bA  and )(111 nkAm += ηω . here, kyAkv d ()( 111 ξ=  

 1) ε++ n , by noticing the bound of 1ε , one has 

)()()( 11min1111 kgnkyAkv T
d ψθεξ ≤++≤    (8) 

where ( )11
1

min1 ,)(max εθ nkyAg d
T += − , and =)(1 kψ  

 )(1 1 kξ+ . It is clear that 1v  is bounded because 1θ  is 

bounded due to the boundedness of )( nkyd +  and 1ε . 

Therefore, )(2 k∗α  can be expressed as 

)()()( 12 kkk Φ=∗ λα                          (9) 

where )(
4
1)(

4
1)( 2

12
1

2
12

1
1 k

l
k

r
k ψξ +=Φ , 1r  and 1l  are 

positive design constants. the parameter )(kλ  will be given 
at the last step. 

Letting λ̂  be the estimate of λ , choose the virtual 
controller 

)1()()(ˆ
)1()()1(

21

222
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Substituting virtual control (10) into (5), the error equation 
(5) is re-written as 
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Adding and subtracting )()( 21 kkG ∗α  on the right-hand 
side of (11), we have 
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Substituting (6) into (12) leads to 
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Step i : For )()()( 1−−= iiii kkxk αη . Its )1( +− in th 

difference is given by 
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Similarly, consider )()( 11 inkxk ii −+= +
∗
+α  as a 

virtual control for (14). It is obvious that 
0)1( =+−+ inkiη  is ture when we choose 
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Similarly, )(1 ki
∗
+α  can be approximated by T-S fuzzy 

system 

iiiii vkbink +=−+∗ ωξα )()(               (16) 

where iε  is the approximation error. Let ii Ab = , =m
iA  

ii bA  and )(kA i
m
ii ηω = . Here, += kyAkv diii ()( 1ξ  

ih
h
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h kAn εαξ ++∑ = )() 2 , by noticing the bound of iε , 
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)(min kgv i
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and )(1)( kik ii ξψ += . It is clear that iv  is bounded 

because iθ  is bounded due to the boundedness of 
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then we obtain the i th step error equation 

)]()()(~)[()1( 1 inkkkkGink iiii −++Φ=+−+ +ηλη  (20) 
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where nε  is the approximation error. Let nn Ab = , =m
nA  

nn bA  and )(kA n
m
nn ηω = . Here, += kyAkv dnnn ()( 1ξ  
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and )(1)( knk nn ξψ += . It is clear that nv  is bounded 

because nθ  is bounded due to the boundedness of 

)( nkyd + , … , )(knα  and nε . 
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), nθ… . nr  and nl  are positive design constants. 
choose the virtual controller and the update law as follows: 

)()(ˆ)( kkku nΦ= λ                          (26) 
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for the n th step error equation 
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Theorem 1: The closed-loop adaptive system consisting of 
plant (1), controller (26) and update law (27) is SGUUB and 
has an equilibrium at 0],,,[ 21 == T

nηηηη … , if )0(nx  is 

initialized in Ω . This guarantees that all the signals include 
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the states ],,,[ 21 nn xxxx …= , the control u  and the design 

parameter iλ̂ , ni ,,2,1 …=  are SGUUB, subsequently, 
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where ε  is a small positive number. 
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12

1

2 )(~)(1)( −

=

Γ+=∑ kk
g

kV
n

i
i

i

λη               (29) 

Noting ,,2,1),(
)(

)1()()(~
1 …=−+=Φ + ik

kG
kkk i
i

i
i ηηλ  

1−n  and 
)(

)1()()(~
kg

kkk
n

n
n

+=Φ ηλ . The first difference of 

(39) along (27) and (28) is given by  

∑

∑

∑

∑

∑

∑

∑

=

−

=
+

=

=

=

=

−−

=

+ΓΦ+−

++

++−=

++ΦΓ+

+Φ−

−+=

Γ−Γ++

−+=Δ

n

i
ii

n

i
ii

n

i
ii

i

n

i
ii

n

i
ii

n

i
ii

i

n

i
ii

i

kkkk

kk

kk
g

kkk

kkkk

kk
g

kk

kk
g

V

1

22

1

1
1

1

22

2

1

1

1

22

1212

1

22

)1()()(ˆ)(2

)()1(2

)]()1([1

)](ˆ)1()([

)](ˆ)1()()[(~2

)]()1([1
)(~)1(~

)]()1([1

ηλλδ

ηη

ηη

λση

λσηλ

ηη

λλ

ηη

 

∑
−

=
++ ++ΦΦ+

1

1
11 )1()1()()(2

n

i
iiii kkkk ηη  

)(ˆ)1()()(ˆ2

)1()1()()(2

)1()1()()(2

22

1

11

2

1
22

kkkk

kkkk

kkkk

n

i
ii

nn

n

i
iiii

λσηλσ

ηη

ηη

Γ++ΓΦ+

++×ΦΦ++

++ΦΦ+

∑

∑

=

−

=
++

…          

Using the facts that 

)1()1()1()1(2

1,,2,1,)()1()()1(2

,,2,1,)(ˆ)(~)(ˆ)(~2

),(ˆ)1()1()()(ˆ2

,)(
,)(

2
1

2
1

2
1

2

1

222

22
2

2

2

+++≤++

−=++≤+

=−+=

++≤+ΓΦ

<ΓΦ
<Φ

++

+
+

kkkk

nikg
g
kkk

nikkkk

kg
g

kKkkk

Kk
Kk

iiii

ii

i

i
ii

i
i

i
i

ηηηη
γ

ηηγηη

λλλλλ

λγσηγηλσ

γ

…

…
 

we obtain 

)(ˆ)1(

)()](1)1([

2

1

1

1

2
1

1

22

kg

kgk
g

k
g

V

n

i
i

n

i

ii
n

i
i

i
i

i

λγσγσσ

γ
ηβηηρ

∑

∑∑

=

−

=

+

=

−−−

++−+−≤Δ
 

where KgnK iγγγρ −−−= 1 , 2σλβ = . 
If we choose the design parameters as follows: 
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It is obvious that 0≤ΔV  once βη nn gk >)( . This 

implies the boundedness of )(kV  for all 0≥k , which 

leads to the boundedness of the tracking error )(knη  and 

will converge to the compact set denoted by R⊂Ωη , 

where { }βχχη ng≤=Ω : . Form the boundedness of 

)(knη , the boundedness of the extra term 
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γ
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be seen from the above design procedures that )(kiη  and 

)(kxi  are bounded, 1,,2,1 −= ni … . 
The adaptation dynamics (27) can be written as 
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(32) 

where 

)()()()(1 21

1
2 kkgkGkB nn

n

i ii ΦΓ−ΓΦ−Γ−= ∑ −

=
σ , 

function )(kGi  and )(kgn  are bounded form Assumption 

2, and the boundedness of )(knη  is proved in above. Similar 

to the proof in [22], )(~ kλ  is bounded in a compact set 
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denoted by 1λΩ , and hence the boundedness of )(ˆ kλ  is 
assured.  

Based on the procedure above, we can conclude that 
Ω∈+ )1(kxn  and )(ku  are bounded if Ω∈)(kxn . 

Finally, if we initialize Ω∈)0(nx , and choose the design 

parameters according to (31), there exsits a ∗k , such that all 
errors asymptotically converge to nΩ . This implies that the 

closed-loop system is SGUUB. Then Ω∈)(kxn  and λ̂  

will hold for all 0>k . 

IV. SIMULATION EXAMPLES 
In this section, the effectiveness and merits of the proposed 

scheme are demonstrated by considering the following two 
second-order uncertain strict-feedback nonlinear systems: 

In simulation, define five fuzzy sets, which are 
characterized by the following membership functions: 

])1(exp[ 2
1 +−= x
hiAμ ,   ])5.0(exp[ 2

2 +−= x
hiAμ , 

]exp[ 2
3 x
hiA −=μ ,            ])5.0(exp[ 2

4 −−= x
hiAμ , 

])1(exp[ 2
5 −−= x
hiAμ . 

The discrete-time SISO plant described by  

),(
),())(()1(

),(3.0))(()1(

1

222

2111

kxy
kukxfkx

kxkxfkx

k =
+=+

+=+
            (33) 

where 
)(1

)())(( 2
1

2
1

11 kx
kxkxf

+
=  , 

 
)()(1

)())(( 2
2

2
1

1
22 kxkx

kxkxf
++

= .  

It can be checked that Assumption 1 and 2 are satisfied. 
The tracking objective is to make the output ky  following a 
desired reference signal: 

2)20sin(2)30sin()( ππ kkkyd += . 
The initial condition for system state is 

Tx ]04.0[)0( = and the adaptive laws are 1.0)0(ˆ =λ . 
Other controller parameters are 1.0=Γ , 01.0=σ , 

25.021 == rr , 25.021 == ll . The simulation results are 
presented in Fig.1, 2 and 3.  

From Fig.1, we can see that the better tracking performance 
is obtained. Fig.2 illustrates the trajectories of the systems’ 
actual control and the virtual control. The estimation of 
parameter is shown in the Fig.3. it can be observed from the 
simulation results that they are bounded. 

 
Fig. 1 Tracking performance of Example 1 

 
Fig. 2 Actual and virtual control of Example 1 

 
Fig. 3 The parameter estimation of Example 1 

V. CONCLUSION 
In this paper, the adaptive fuzzy control problem has 

considered for a class of strict-feedback uncertain 
discrete-time nonlinear systems. by incorporating the MLP 
technique into the controller design procedures, a fuzzy logic 
systems based adaptive control algorithm has been 
developed. The main feature of the proposed scheme is that 
the adaptive mechanism with minimal learning 
parameterizations is achieved, i.e., the number of parameters 
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updated online for whole system is reduced to only one. The 
computation load of proposed adaptive fuzzy controller is 
reduced and the learning time tends to much shorter, thus, this 
algorithm is much easier to be implemented in applications. It 
is shown that the closed-loop system is SGUUB via the 
Lyapunov theory. One simulation example has been 
presented to demonstrate the performance and the 
effectiveness of the proposed algorithm. 
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