2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

A Novel Adaptive Fuzzy Control for a Class of Discrete-Time
Nonlinear Systems in Strict-Feedback Form

Xin Wang, Tieshan Li, and Bin Lin

Abstract—In this paper, a backstepping based adaptive fuzzy
control algorithem is presented for a class of uncertain
nonlinear discrete-time systems in the strict-feedback form. By
introducing the “minimal learning parameter (MLP)”
technique, the proposed scheme is able to circumvent the
problem of “curse of dimension” for high-dimensional systems.
Meanwhile, all the virtual control laws and actual control law in
the system are updated by a novel actual adaptive update law,
thus the number of parameters updated online for whole system
is only by one. Takagi-Sugeno (T-S) fuzzy systems are used to
approximate the unknown system functions. It is shown via
Lyapunov theory that all signals in the closed-loop system are
semi-globally uniformly ultimately bounded (SGUUB). Finally,
a simulation example is employed to illustrate the effectiveness
and advantages of the proposed scheme.

Keywords—discrete-time nonlinear systems; adaptive fuzzy
control; minimal learning parameter (MLP); strict-feedback
system;

I. INTRODUCTION

n the past decades, adaptive fuzzy control schemes have

been found to be particularly useful for the control of

nonlinear uncertain systems with unknown nonlinear
functions since the excellent universal approximation ability
of the fuzzy logic systems (FLS) is proven [1]. Recently, with
the help of FLS approximation, much significant
development of adaptive fuzzy control algorithm has been
achieved in [2-5] for uncertain nonlinear systems.

However, the problem of “explosion of learning param
-eters” which is the well-known “curse of dimensionality”
exists in aforementioned control design methods. That is, the
number of parameters to be tuned online in the adaptive fuzzy
control schemes is very large, especially for high dimensional
systems. Led to the online learning time tends to become
unacceptably large when implemented, which is not
acceptable in real application. This problem has been pointed
out in [6] and first solved by Yang et al. in their pioneering
works [7-10], where some kinds of so called “minimal
learning parameter (MLP)” algorithms containing much less
online adaptive parameters were constructed. In this years,

Xin Wang is with the Navigation College, Dalian Maritime University,
Dalian, PR China (corresponding author to provide e-mail: 18941190675@
yeah.net).

Tieshan Li is now with the Navigation College, Dalian Maritime
University, Dalian, PR China (e-mail: tieshanli@126.com).

Bin Lin is with the Department of Information Science and Technology ,
Dalian martime university, Dalian, PR China (e-mail: binlin@dlmu.edu.cn).

This work was supported in part by the National Natural Science
Foundation of China (Nos.51179019; 61001090; 51309041), the Program for
Liaoning Excellent Talents in University of (LNET) (Grant No.LR2012 016),
the Applied Basic Research Program of Ministry Transport of China (No.
2013329225270) and the Scientific Research Foundation of Graduate School
of Dalian Maritime University (2014YB04).

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 727

combine with the backstepping technique, the idea of MLP
algorithms was extended to adaptive-fuzzy-control schemes
for both SISO time-delay systems with unknown virtual
control coefficients in [11], and MIMO uncertain systems in
[12-13]. More recently, by incorporating the ‘“dynamic
surface control (DSC)” and “MLP” techniques, the robust
adaptive tracking control schemes is developed for a class of
uncertain nonlinear systems [14-16], which both problem of
“curse of dimension” and “explosion of complexity” inherent
in conventional backstepping methods are circumvented.

It is common knowledge that the discrete-time systems
rather than the continuous-time systems are the closest for
decribing a real plant. However, in contrast to above
continuous-time systems, control design for discrete-time
systems is more difficult due to lack of mathematical tools.
For instance, noncausal problem will be encountered if we
directly apply backstepping design to discrete-time systems
in lower triangular form, since discrete-time systems are
described by difference equations, which involve state
variables at different instants. To solve the noncausal
problem, for discrete-time systems transformable to the
parametric-strict-feedback and the parametric-pure-feedback
form, the noncausal problem was elegantly solved in
backstepping using a time-varying mapping [17], which was
further extended to cases with time-varying parameters and
nonparametric uncertainties in [18]. But it is’t simpler to
extend this technique to more general systems. a class of
discrete-time  nonlinear system transformation using
prediction functions of future states was studied in [19-20], in
which adaptive NN backstepping design has been applied to
the transformed strict-feedback discrete-time systems without
noncausal problem. Subsequently, many elegant adaptive
control schemes are studied in [21-30] for discrete-time
nonlinear systems based on the approximation property of the
neural network.

Similarly to continuous-time systems, it is obvious that the
problem of too many adaptive parameters are needed to be
tuned for discrete-time nonlinear systems is also exist in the
above adaptive control approachs [17-30]. More recently,
several certain results have been achieved to reduce the
number of the adjustable parameters and lighten the online
computation burden are studied in [31-36]. However, for
above control approaches, these works are still suffer from
the problem of “curse of dimensionality”, eg: the number of
parameters updated online is needed at last one parameter for
each subsystems.

In this paper, motivated by aforementioned works in
literature, an adaptive fuzzy control scheme, in which the
“minimal learning parameters (MLP)” technique is
introduced, is proposed for a class of uncertain discrete-time



nonlinear systems in strict-feedback form. The problem of
“curse of dimensionality” for high-dimensional systems is
avoided by proposed scheme, i.e., the adaptive mechanism
with minimal learning parameterization is achieved, no
matter how many rules are used in fuzzy systems and how
many input variables exist in the system. In the meantime, all
the virtual control laws and actual control law in the system
are updated by only a novel actual adaptive update law, which
is proposed by merging all virtual update laws with actual
update law. By this approach, the number of parameters
updated online for proposed adaptive fuzzy controller is
reduced to only one. Takagi-Sugeno (T-S) fuzzy systems are
usd to approximate the un known system functions. By using
the Lyapunov analysis method, all the signals in the
closed-loop system are guaranteed to be SGUUB, and the
tracking error converges to a small neighborhood of the
origin. One simulation example is utilized to illustrate the
effectiveness and advantages of the proposed scheme.

II. PROBLEM FORMULATION AND PROLIMINARIES

A. Problem Formulation

Consider the following single-input and single-output
(SISO) discrete-time nonlinear system in strict-feedback form

% (k+1) = fi(x; (k) + g (X, (k)x;,, (h),

i=12,....,n—1 0
x,(k+1) = f,(x,(k)) + g, (X, (k)u(k)
Ve =x(k)

where ¥ (k) = [x,(k), x,(k),....x, (k)] € R, i=12
...n, u(k)e R and Y, € R are the state variables, system
input and output respectively; f;(X;(k)) and g,(X,(k)),
i=12,...,n are unknow smooth functions.

The control objective is to design an adaptive NN
controller for system (1) such that: ( 1) all the signals in the

closed-loop system are semi-globally uniformly ultimately
bounded (SGUUB) and (ii) the system output follows the

desired reference signal y, (k).

In the following , it needs to make the following
assumptions based on the systems (1).

Assumption 1. the desired reference signal y,(k)e Q,,
Vk >0 is smooth and known, where € := {,’{|,1’ =x}.
Assumption 2. the signal of g,(X,(k)), i=12,...,n are
known and there exist constants g, >0 and g, >0 such
that g; < |gz()_cz(k))| <g,vx,(k)e Qc R".

Without losing generality, shall that
g.(x,(k)) and g, (X, (k)) are positive in this paper. i.e., it

w¢e assume

is assumed that g, < g.(X,(k)) < g.,.
Definition 1. [19] the solution of (1) is semi-globally
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uniformly ultimately bounded (SGUUB), if for any £, a

compact subset of R" and all X, (k)€ €, there exist an
€ >0 and a number N(&,X,(k,)) such that ||X, (k)” <&

forall k2 k, + N .

B.  Takagi-Sugeno (T-S) Fuzzy Logic Systems

Here, we birefly describe the structure of T-S type fuzzy
logic systems (FLS). Generally, the fuzzy system can be
constructed by the following K (K > 1) fuzzy rules:

R.:TF x is P, AND x, is ¥, ... AND x, is P,
THEN y, is Q) , ., i=12,....K,

where Q;ll sy, denotes an output fuzzy set. If Q;ll P RL

n

singleton fuzzy set, its membership function is 1 only at
Y; =0, (an arbitrary unknown constant) and O at other
position, then it is called Mamdani-type fuzzy system. If
+---+a,x, with

in""n

i . .
€2, 5, is a function of @,x, +a,,x,

a,, i=L2,..,K and j=L2,...,n being constants,

then it is called Takagi-Sugeno (T-S) type fuzzy system. The
product fuzzy inference is employed to evaluate the ANDs in
the fuzzy rules. After being defuzzified by a typical
center-average defuzzifier, the output of T-S fuzzy system is
in the vector form

S A)=E@)Ax @
where c.!g(x) = [gl (X), 4:2 (X), T c.!ZK (X)] and
&i(x)= H ’;:1/‘;;_, (xj)/z zK:I[H I}:llu/i_, (xj)] , are

called fuzzy basis functions, ,u,? are the membership
J

functions corresponding to the antecedents ‘P,i ,
J
i=12,...,K , and
a, ap a,
A= ap dy a.Zn
gy Qgy gy

It has been proven that a T-S fuzzy model is a universal
approximator of any smooth nonlinear system on a compact
set [37],[38], which is stated as follows.

Lemma 1: For any given real continuous function f(x) ona
compact set U € R" and V& >0, there exists a fuzzy
system f(x,A,) in the form (2) such that

sup

f)=f(x,4,) 3)
xeU
where £ is called the approximation error and has an upper

bound £ .
Remark 1: As pointed out in Remark 2 of [16], for any

<€




n -dimensional continuous function f(x), if N, +1 input
fuzzy sets for each variable X; are used, these will be
H (N, +1) IF-THEN fuzzy rules in the fuzzy system. It
implies that there will be a total of Hf;l(Nl. +1)

parameters to be updated online in the Mamdani-type fuzzy
system, and nH » (N, +1) parameters to be updated in

the T-S type fuzzy system. On the contrary, only one
parameter needs to be updated online in the scheme to be
proposed in this paper.

. ADAPTIVE CONTROL DESIGN AND STABILITY ANALYSIS

Consider the strict-feedback SISO nonlinear discrete-time
system described in (1). The control objective of this paper is
formulated as follows. For a known and bounded signal

vy,(k), design an adaptive control u(k) for system (1)
which makes system output ), follow the desired signal

v, (k) , while maintaining all closed-loop signals SGUUB.

The causality contradiction is one of the major problems
that we will encounter in discrete-time domain when we
construct a controller for the general strict-feedback nonlinear
system through backstepping. However, the above problem
can be avoied if we transform the system equation into a
special form which is suitable for backstepping design. If we
consider the original system (1) as a one-step ahead predictor,
we can transform it into an equivalent maximum 7 -step
ahead predictor, which can predict the future states

x(k+n), x,(k+n-1), ..., x,(k+1), then the

causality contradiction is avoid when controller is constructed
based on the maximum 7 -step ahead prediction [19].
Similarly, with the help of the transformation process in [19],
system (1) is equivalent to

X (k +n) = F(X, (k) + G (%, (k) x,(k + n—1),

x,(k+2)=F_(x,(k)+ G, (X,(k)x,(k+1), 4)
x,(k+1) = f,(x,(k))+ g, (x,(k))u(k),

Vi =x,(k)

where F(X,(k)) and G,(X,(k)) are unknown functions.
The above equations show that the functions F;(X,(k)),

i=1,...,n—1 are highly nonlinear. The problem of
causality contradiction does not appear in system (4). It is
obvious that G,(X,(k)) satisfies g, <G.(X (k))<g, ,
Vx, (k)€ € under Assumption 1.
For convenience
i=1,...,n—1,1let
Fi(k) = F(x,(k)), G, (k)=Gi(x,(k)),

1,0 = £,(x,(k)), g,(k)=g,(%,(k),

of analysis and discussion, for
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for i=1,2,....,n,let &(k)=E(X,(k)),
v, (k) =y,(x,(k)), ®,(k)=P,(x,(k)),
they are functions of system states X, (k) at the & th step.

Step 1: For 11,(k) = x,(k)— y,(k),its n th difference is
given by
m(k+n)=x(k+n)—y,(k+n)

5

= () + G (k) (k4 n=1) =y, (k+m)

By viewing @, (k) =x,(k+n—1) as a virtual control
input for (1), it is obvious that 77,(k +n) =0 if we choose

1
6w [F (k) -y, (k+m)](©)

since F{(k) and G, (k) are unknown function, they are not

x,(k+n-1)=c;(k)=—

available for constructing a virtual control ¢, (k). However,
according to Lemma 1, a suitable T-S fuzzy system

f(x,A4) with input vector X,€ U, , where U, is a
compact set, is proposed here to approximate unknown

function with A4, being a matrix containing unknown

contants. Then, we can use T-S fuzzy to approximate 0{; (k)
as follows:

o, (k) =b¢& (k) + & (k) Ay, (k+n)+ ¢
=bg (k)a +v,
where & is the approximation error. Let b, = ”Al”, A"
A /b, and @ = A", (k +n) . here, v, = & (k) Ay, (k
+n) + &, by noticing the bound of &, one has
Ml <l Ay, e+ m)+ ] < gnnbwi () ®)
where 8] =g max(“Alyd (k+n) 81”), and Y, (k) =
l+||a§,"'1 (k)” It is clear that ||V1|| is bounded because G, is

(7

b

bounded due to the boundedness of y,(k +n) and &,.

Therefore, &, (k) can be expressed as

o, (k) = A(k)®, (k) ©)

1 2 1
where (I)l(k):4—r12||§1(k)|| +4—1121//12(k), 7 and [, are

positive design constants. the parameter A(k) will be given
at the last step.

A

Letting A be the estimate of A, choose the virtual
controller

x,(k+n-1)=a,(k)+n,(k+n-1)
= Ak)D, (k) +17,(k +n—1)

Substituting virtual control (10) into (5), the error equation
(5) is re-written as

10)



1 (k +n) = F,(k) + G,(k)[A(k)®@, (k)
+i(k+n—=1D]=y,(k+n)
Adding and subtracting G,(k)cr, (k) on the right-hand
side of (11), we have
1k +n) = Fy (k) = y, (k +n) + G, () [A(k)®, (k)

+11,(k +n—1) = A(k)@, (k)] + G, (k)a, (k)
Substituting (6) into (12) leads to
1 (k +n) =G (k)[A(kK)D, (k) +17,(k +n—1)]

(11)

(12)

(13)

Step i For 1,(k) = x.(k)— e, (k,_,) . Its (n—i+1)th
difference is given by

nk+n—i+)=x(k+n—-i+1)—c,(k)

= F()+G,(k)x, (k+n—i)  (14)
— (k)
Similarly, consider o, (k)=x, (k+n—i) as a
virtual control for (14). It is obvious that

n.(k+n—i+1)=0 is ture when we choose

£

X (k4 n—i) = 0l (k) = ——[F.() - e, ()] (15)

G, (k)
Similarly, ¢, (k) can be approximated by T-S fuzzy

system

o) (k+n—i)=bS,(k)w, +v, (16)

where &; is the approximation error. Let b, = ”A,” LA =

A /b, and @ = A", (k) . Here, v, =& (k) Ay, (k+

n)+ z ', EA a, (k) + &, by noticing the bound of £, ,
one has

[V < 80w (R

where 8/ =g max(”A,.lyd (k+n)

(17
a0 J).
and ¥, (k) =1+i||éfl.(k)||. It is clear that ”vl” is bounded

sesey Py

because @, is bounded due to the boundedness of
y,(k+n), - o (k) and €.
Therefore, ¢;,,(k) can be expressed as
a;,, (k) = A(k)®, (k)

4lel//i2(k) .7, and [, are

(18)
1
where @, (k) =&, (k)| +

positive design constants.
choose the virtual controller as follows:

xi+1(k+n _l) = ai+1(k) +77i+1(k+ n —l)
= AV, (k) +7,,,(k +n—i)

then we obtain the i th step error equation

(19)
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Mk +n—i+1) =G (AP, (k) +7,,,(k +n—1i)] (20)

For 17,(k)=x,(k)—a,(k=1) , its first
difference is given by

1,(k+1)=x,(k+1)-a, (k)

Step n :

21
- L)+ g, k) -,y
It is obvious that 77, (k +1) =0, if we choose
. 1
k)= K=—— k) — k 22
W= (5=~ =, E] e

Similarly, #"(k) can be approximated by T-S fuzzy
system

u'(k)=b,8,(K)w, + &, (k) 4,y,(k +n)

2 b0 Aa, )+, @)
=b,6,(ka, +v,
where £, is the approximation error. Let b, =4, [, 4" =

A,/b, and @, = AT, (k). Here, v, =& (k) Ay, (k +
n)+ Z " & (k)A'a, (k) + &, , by noticing the bound of

&, , one has

v, S guinb ¥, (K) (24)
where 67 = g, max (| 4Ly, (k + m)|....| drer, () e, ).
and ¥, (k) =1+ n|&, (k)| . 1t is clear that |v,|| is bounded

because 6, is bounded due to the boundedness of
y,(k+n), ..., (k) and €, .
Therefore, u” (k) can be expressed as
u' (k) = Ak)®, (k) (25)
where =g | max(b>,0%) , b=max(b,b,,...,b,) ,

®, (k) =~ |&, () +-L 2 (k) and 6 =max(6,.6,,

e R
4r? 41’

...,0,). r, and [ are positive design constants.

choose the virtual controller and the update law as follows:

u(k) = A(k)®, (k) (26)
Ak +1)= A(k)=T[Y." ®,(k),(k + 1)+ oA(k)] 27)
for the 7 th step error equation

n,(k+1)=g,(k)A(k)D, (k) (28)

Theorem 1: The closed-loop adaptive system consisting of
plant (1), controller (26) and update law (27) is SGUUB and

has an equilibrium at 77 =[77,,7,,...,77,1" =0, if X,(0) is

initialized in €2 . This guarantees that all the signals include



the states X, =[X,,X,,...,X, |, the control # and the design
parameter /7; ,1=1,2,...,n are SGUUB, subsequently,
lim|yk —Va (k)| s&€
k—oo
where € is a small positive number.
Consider the Lyapunov function candidate as follows:

V= L)+ B

i=l &i

Noting A (k)®, (k) = % o (k)i=12,.,

(29)

n—1 and /T(k)(l)n (k)= M(Z)l) . The first difference of

(39) along (27) and (28) is given by

AV =Y L[k ) - n2 (b))

i=l &i

+ A (k+ DI = 22 (or!

= ) = (6]
22 @, (K (k + DoAK)]

+ r[i @, (k)1.(k +1) + oA(k) T

n

2

i=1

ey +n2a

i

+ S ok + 1, ()

i=1

— 280 (k) A(k) + ircpf (o (k +1)

+ ril 20,(k)®,,, (k)n,(k+Dn,,, (k+1)

i=1
n-2

+3°20,(K)®,,, (k) (k + D)1, , (k+1)
i=1

bt 20, ()@, (k) x7,(k + D)7, (k +1)

+> " 20A(K)T®, (k)n,(k +1) + o° T2 (k)
i=1
Using the facts that
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(k)< K,
I'd (k) < K,

2T DY (+1) < @ +3 TR k),

200Uk = )+ Bk)- 2, i=12,...n

=2 —_ 2
okt (k) < ZEERD  BI0) y_y
; V4
2n.(k+ ), (k+1) <17 (k+1)+17, (k+1)
we obtain

n 2
=1 &

g,
4

nf(k+1)—éﬂf(k)]+ﬁ+i

1

~o(-07- Y gonE (k)

where p=1-y-7K —ng K , B =0k .
If we choose the design parameters as follows:

! ,0<
1+K+" ngK 1+ 8)7
n, (k) >/g,B . This
implies the boundedness of V' (k) for all k>0, which
leads to the boundedness of the tracking error 77, (k) and

Y <

€2))

It is obvious that AV <0 once

will converge to the compact set denoted by Q” CR,

where €, = {Z;{S 1/§nﬂ}. Form the boundedness of
n.(k) , the boundedness of the extra term
— 2
n- (k) .
Ll(),l =1,2,... n—1 isreadily obtaine. Then it can
/4

be seen from the above design procedures that 77,(k) and

X, (k) are bounded, i =1,2,...,n—1.
The adaptation dynamics (27) can be written as

Ak +1)=A(k)~TTY." @, (k),(k +1)
+0A (k) + 0A]

= B(k)A(k)-Y." T®,(k)G,(k)n,,, (k)
—oT'A

(32)

where
B=1-ol -3 T®}(k)G,(k) - Tg,(k)®; (k)
function G,(k) and g, (k) are bounded form Assumption

>

2, and the boundedness of 77, (k) is proved in above. Similar

to the proof in [22], A (k) is bounded in a compact set



denoted by €2, and hence the boundedness of i(k) is

assured.
Based on the procedure above, we can conclude that

X,(k+1)e Q and u(k) are bounded if X, (k)e Q .
Finally, if we initialize X, (0)€ €2, and choose the design
parameters according to (31), there exsits a k *, such that all
errors asymptotically converge to €2 . This implies that the
closed-loop system is SGUUB. Then X, (k)€ €2 and A
will hold for all £>0.

IV. SIMULATION EXAMPLES

In this section, the effectiveness and merits of the proposed
scheme are demonstrated by considering the following two
second-order uncertain strict-feedback nonlinear systems:

In simulation, define five fuzzy sets, which are
characterized by the following membership functions:

Hy =expl~(x+1)°], u,. =exp[~(x+0.5)],
f =exp[—x"], #,s =exp[~(x—0.5)],
My = exp[—(x—1)"].

The discrete-time SISO plant described by
x,(k+1) = £.(x,(k)) + 0.3x, (k),

X (k+1) = f,(%, (k) +u(k),
yk = xl(k)o

(33)

where f,(x,(k)) = % ,
- _ x, (k)
L&) =17 k) + 2 (k)

It can be checked that Assumption 1 and 2 are satisfied.
The tracking objective is to make the output y, following a

desired reference signal:
v, (k) = sin(kzr/30)/2 + sin(k7/20)/2.

The initial condition for system  state is

x(0)=[0.40]" and the adaptive laws are 2(0) =0.1.
Other controller parameters are ' =0.1 , 0 =0.01,
r=1r,=0.25,1 =1,=0.25. The simulation results are
presented in Fig.1, 2 and 3.

From Fig.1, we can see that the better tracking performance
is obtained. Fig.2 illustrates the trajectories of the systems’
actual control and the virtual control. The estimation of

parameter is shown in the Fig.3. it can be observed from the
simulation results that they are bounded.
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Fig. 3 The parameter estimation of Example 1

V. CONCLUSION

In this paper, the adaptive fuzzy control problem has
considered for a class of strict-feedback uncertain
discrete-time nonlinear systems. by incorporating the MLP
technique into the controller design procedures, a fuzzy logic
systems based adaptive control algorithm has been
developed. The main feature of the proposed scheme is that
the adaptive mechanism with minimal learning
parameterizations is achieved, i.e., the number of parameters



updated online for whole system is reduced to only one. The
computation load of proposed adaptive fuzzy controller is
reduced and the learning time tends to much shorter, thus, this
algorithm is much easier to be implemented in applications. It
is shown that the closed-loop system is SGUUB via the

Lyapunov theory.
presented

One simulation example has been

to demonstrate the performance and the

effectiveness of the proposed algorithm.
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