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Abstract—In this paper, we develop an intelligent neuro-fuzzy
controller by using adaptive neuro fuzzy inference system (ANFIS)
techniques. We begin by starting with a standard proportional-
derivative (PD) controller and use the PD controller data to train
the ANFIS system to develop a fuzzy controller. We then propose
and validate a method to implement this control strategy on
commercial off-the-shelf (COTS) hardware. Using model based
design techniques, the models are implemented on an embedded
system. This enables the deployment of fuzzy controllers on
enthusiast-grade controllers. We evaluate the feasibility of the
proposed control strategy in a model-in-the-loop simulation.
We then propose a rapid prototyping strategy, allowing us to
deploy these control algorithms on a system consisting of a
combination of an ARM-based microcontroller and two Arduino-
based controllers.

I. INTRODUCTION

Quadrotors (also called quadcopters) are flying vehicles
with four vertically-mounted rotors that are typically found
in a “plus” or a “X” frame. The four arm-mounted motors
provide four thrust vectors to the system. The mechanical
simplicity of the system is contrasted by the complexity of the
problem of controlling these systems. Being under-actuated,
and having no redundancy, the control problem is of utmost
importance. Quadrotors have multiple uses; they’re highly
maneuverable and have the ability to reach places that might be
dangerous to humans. Quadrotors can also be used as remote
sensor pods. In disaster areas, Quadrotors can provide a high
quality information bridge between the disaster zone and the
rescue teams. They can also help in automated inspection of
infrastructure. These platforms can also provide soldiers with
high-quality, timely information in a combat situation. The low
cost, high maneuverability, and easy of manufacturing make
these machines very interesting.

Quadrotors are under-actuated, i.e., they have four motors
to control six degrees of freedom (DOF). This makes the
control problem quite complicated in many cases. In this paper,
we first briefly discuss the dynamics of the quadrotor. For a
detailed description of the system dynamics consult reference
[1]. It must be noted that the Quadrotor dynamics here do not
consider the coupling in very high speed maneuvers—we are
primarily interested stable platforms for remote-sensing use.

We then introduce our proposed control strategy. We dis-
cuss how we developed this strategy using an ANFIS system
[2]. We show that the ANFIS system is very useful in creating
fuzzy controllers when the dynamics of the system are well

known. With the vast amount of theory available for tuning
PID controllers, a PD controller tuned to control the dynamic
system can be used to initially train the fuzzy controller. We
then show that by modifying the training data, we can improve
the performance of the controller and incorporate features like
robustness. Tuning a quadrotor is a difficult process when using
PID controllers. We hope to reduce the tuning problems with
the proposed fuzzy control strategy.

This paper also investigates a hardware implementation
of our proposed fuzzy controller on an ARM-based micro-
controller. To cut development time, we propose a method
to rapidly develop fuzzy control algorithms and then imple-
ment these algorithms on COTS ARM-based components. We
show that an enthusiast grade controller—the APM 2.5/APM
2.6—can be augmented to incorporate the more complicated
controller. A system is developed where these Arduino-Mega
based controllers can communicate over user datagram pro-
tocol (UDP) to ARM-based boards. The ARM-based chips
handle the heavy processing, while the Arduinos are used as
end actuators that provide the pulsewidth modulation (PWM)
control signals.

We conclude by showing results of the fuzzy control
strategy and comparing it with a PD controller. We then
show the viability of the hardware implementation and propose
method for hardware-in-the-loop simulator testing [3].

II. QUADROTOR DYNAMICS

We begin by deciding upon a dynamic system model for the
quadrotor system. The frame that is taken into consideration
for developing our control strategy is shown in Fig. 1. It must
be noted that the z-axis is taken in the downward direction—
toward the ground or into the paper. This is especially impor-
tant since it follows the aerospace convention. The directions
for the motors are also as shown in Fig. 1. Reference [1]
explains the dynamics frame in more detail. We follow the
same expressions in [1] for rolling torque and pitching torque.

Consider the frame shown in Fig. 1. The vehicle has a
thrust in the upward direction, the negative direction of the
z axis. Let us denote the motor thrusts as Ti, the speed of
each motor as ωi, b is the lift constant, and i ∈ {1, 2, 3, 4}
represents the labels for the motors. Hence, the thrust from
each motor can be calculated as

Ti = bω2
i , i = 1, . . . , 4.
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Fig. 1. ’Plus’ quadrotor frame—x-axis points forward, y-axis to the right,
and z-axis points down toward ground (into the paper in this figure)

This upward thrust is opposed by the force of gravity acting
in the downward direction, i.e., Fg = mg. So for a vehicle of
mass m, the dynamics are given by

Ft = mg −
4∑

i=1

Ti.

In order to rotate or yaw the vehicle, the controller uses a
pairwise difference in the thrust of motors 1 and 3. In order to
roll the vehicle, a correspondingly difference of force is input
to motors 2 and 4.

Consider r is the distance between the center of the
airframe, as seen in Fig. 1. We now define two torque values,
τx and τy , as the rolling torque and pitching torque acting
along the x and y axis respectively:

τx = rb(ω2
4 − ω2

2); (1a)
τy = rb(ω2

1 − ω2
3). (1b)

Now, we consider the aerodynamic drag, denoted as D, that
acts to oppose thrust. The drag component corresponding to
every Ti is denoted as Di. The factor k depends on factors
similar to the lift constant b. Thus, aerodynamic drag is defined
as

Di = kω2
i .

This aerodynamic drag creates a reaction torque that acts
to oppose the intended motion of each of the motors. This
reaction torque is given by

τz = D1 −D2 +D3 −D4. (2)

As you can see, (1) and (2) describe the torque along each of
the three axes of the vehicle given the four motor speeds.

Given a total torque vector

ξ = (τx, τy, τz)
T ,

the rotational equations of motion given by

Iȧ+ a× Ia = ξ, (3)

where I is the inertia matrix and a is the angular velocity
vector around each axis. I is diagonal for an ideal quadcopter

model,

I =

[
Ixx 0 0
0 Iyy 0
0 0 Izz

]
.

Now consider ωT as the motor speed vector, we state the
matrix A as

A =

 −b −b −b −b
0 −rb 0 rb
rb 0 −rb 0
k −k k −k

 ,

We define ωT as

ωT =

 ω2
1

ω2
2

ω2
3

ω2
4

 ,

and γ as the thrust/torque vector

γ =


∑4

i=1 Ti
τx
τy
τz

 .

ωT = A−1γ (4)

The position is x, y and z and the pitch, roll and yaw angles
are denoted as θr θp and θy The vehicle under-actuated - we
need to generate a pitch angle- θp to create a forward velocity;
Control over θp and θr enables control of the quadrotor.
Modern enthusiast controllers like APM 2.5 (Arducopter)
output a state vector. Note that, in order to calculate the x, y,
z positions one has to calculate the appropriate rotation matrix
<. More can be read about the dynamics of this vehicle in [1].
The final state vector of the vehicle is

x = (x, y, z, θr, θp, θy, ẋ, ẏ, ż, θ̇r, θ̇p, θ̇y), (5)

where (x, y, z, θr, θp, θy) is the 6 DOF pose of the vehicle (i.e.,
position and rotation) and (ẋ, ẏ, ż, θ̇r, θ̇p, θ̇y) are the rates of
change in each of the 6 DOF pose variables. In our real-world
system, the state vector is provided to the controller by an
inertial measurement unit (IMU) or some other collection of
pose-estimate sensors.

III. CONTROL STRATEGY DESIGN

A. Traditional control strategy

To stabilize the quadrotor system, the typical strategy is
to have three PID control loops that continuously measure
the current pitch, roll and yaw; given by (θr, θp, θy) and
the change in the respective quantities (θ̇r, θ̇p, θ̇y) relative
to some desired pose. The request for the change in attitude
is by the user in the form of remote control commands, by a
radio, or predefined flight-plan. [4] Tuning the parameters is a
very difficult task, for this under-actuated system. Although it
might be theoretically possible to analytically tune the gains of
the PD controller for the quadrotor, reforming this analysis for
every new configuration of the quadrotor becomes difficult and
tedious. Modified tuning techniques can also be used to tune
the PD controller [5]. In our application, the PD controller is
tuned using classical tuning methods for optimal response as
described in [1].
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Fig. 2. Overall Control Loop

B. PD Controller

As noted in II, we need to control the roll, pitch, yaw; stated
as (θr, θp, θy), and (θ̇r, θ̇p, θ̇y). We define the Proportional
gain values for roll, pitch, yaw as (Kpr

,Kpp
,Kpy

) and deriva-
tive gain values as (Kdr ,Kdp ,Kdy ). Note that a feedforward
constant C is added to the altitude controller to balance the
weight of the quadrotor against the force of gravity. This is
then given as

C =

√
mg

4b
. (6)

The control equations are given as

τx = Kpr
(θ̂r − θr) +Kdr

(
ˆ̇
θr − θ̇r); (7a)

τy = Kpp
(θ̂p − θp) +Kdp

(
ˆ̇
θp − θ̇p); (7b)

τz = Kpy
(θ̂y − θy) +Kdy

(
ˆ̇
θy − θ̇y); (7c)

T = KpZ
(Ẑ − Z) +KdZ

(Z − Ż) + C. (7d)

C. Control splitting

The outputs generated by the four controllers above are
split among the four motors. This is called control splitting.
Let the contribution of each be denoted by fr, fp, fy and fz
respectively for roll, pitch, yaw and altitude.fx; x = r, p, y, z
are all rpm values.

ω1 = fp + fy + fz (8a)
ω3 = −fp + fy + fz (8b)
ω2 = −1(−fr − fy + fz) (8c)
ω4 = −1(fr − fy + fz) (8d)

Note that the output of the altitude controller is added equally
to all the pairing of motors here; this allows the roll and pitch
of the vehicle. This control splitting block is the same for
the PD controllers well as the Fuzzy controller desribed in
section III-D. In Fig. 2 we show the placement of the control
splitting block.
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Fig. 3. Experimental (x, y, z) signals

D. Fuzzy control strategy

In this section, we develop a fuzzy control strategy to
control the quadrotor as described in Sec. II. We propose
a strategy based on the ANFIS system [2]. We first set up
an experiment, collect data from this experiment and then
create a controller from the training data obtained. The derived
controller is used to control the quadrotor.

1) Experimental Setup: The goal of the experiment is to
create a closed loop scenario, in which we can test control
algorithms against an approximate dynamics model described
in Sec. II. We define x, y and z coordinates, the set (x, y, z)
is where we could like our quadrotor to go. In the absence
of Radio Control (RC) commands, these serve as a good
replacement. For illustration, consider Fig. 3; here we keep
the value of x constant and request changes in the y and z
coordinates. Various input conditions are investigated in an
effort to create better controlling data as explained.

2) Generating training data: We first log data from the
experiment set up above. The experiment is first run for the
z controller, in this case, we first train the system to go from
a height of 0 to a maximum step height, thus simulating the
step response. We log data for z, dz and rpm change due to
the z controller.

A similar process is repeated for the attitude control and
yaw control of the vehicle. Data logged from this process is
then fed into the ANFIS system.

3) Learning controller from training data: ANFIS com-
bines a neural network with fuzzy logic and thus achieves a
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Fig. 4. Surface view: Height controller

learning mechanism for a fuzzy rule base. It is widely regarded
as an universal estimator [6]. We propose that the controller
only has to learn once, in a simulation or a hardware-in-loop
test, and the code deployed to the embedded hardware would
perform well compared to a PD or PID controller. In this effort,
we collect training data from the above experiment and feed
it into the ANFIS system [2]. The follow parameters are used
in the ANFIS system:

• number of inputs: 2

• number of outputs: 1

• number of rules: 25

• type of membership functions: Gaussian Bell func-
tions

• fuzzy inference system: Sugeno

• intersection: product

• union: max

• defuzzification : weighted average

Figures 4–7 show the surface views for the four learned
controllers. The ANFIS system has the ability to leverage
neural networks and fuzzy rules to create a fuzzy inference
system. We do this for all our sets of the training data, and
create the rule bases for our controllers.

While ANFIS systems are very good at producing high
quality fuzzy rule bases (as a universal estimator), they are
computationally complex. However, hybrid learning algorithms
[7] could be used to produce good control rule bases more
efficiently.

IV. HARDWARE IMPLEMENTATION

In this section we investigate a proposed hardware im-
plementation for the control strategy described above. The
Arduino Mega based Arducopter system [8] cannot process
a complex controller like this one; thus, we implemented
a hardware solution by having an additional microcontroller
board, the GUMSTIX Overo FIRESTORM COM. This is a
dual core ARM Cortex A8 board with 512MB of memory.
Figure 8 illustrates a schematic of the implementation on the
proposed hardware.
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A. Challenges in hardware implementation

Fuzzy controllers are fundamentally more complex to im-
plement or process; Most enthusiast grade microcontrollers
work on Arduino-based boards. Top of the line Arduino Boards
do not have the ability to implement a fuzzy controller; this
limitation is due to the memory and the processor architecture.
Our initial experiments on the APM 2.5 (Arduino-Mega de-
rived flight controller) showed that the APM 2.5 board failed
to implement fuzzy controller.

To address this, we first attempted an implementation on
the Raspberry Pi. The Pi performs well with a single fuzzy
controller (e.g., the height controller), but struggles to keep
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Fig. 8. Hardware Implementation

up when all four controllers are implemented. The Gumstix
system was found to be better performing; this is due to it
being a dual core chip, in addition to that it is also clocked
higher.

The method of communication between the Arduino and
the Gumstix is decided upon to be User Datagram Protocol
(UDP). The reasons for this is as follows. The GPIO pins of the
Gumstix can only read and write logical values, they are not
useful for sending IMU information. The MATLAB implemen-
tation for both microcontrollers supports UDP; hence, UDP is
decided upon for its universal nature and fast processing.

Programming various types of microcontrollers in various
languages leads to a huge development overhead. This time
can be cut down by a rapid prototyping strategy. We use a
strategy based on that proposed in [9]. Similar strategies are
used in automobiles for programming Electronic Control Units
[10].

B. Rapid implementation strategy

A workflow [10] is developed to implement the control
algorithm on hardware. First, we develop the control algorithm
in Matlab/Simulink. We generate C/C++ code using code gen-
eration capabilities within Matlab. After the code is generated,
the native code is exported to the microcontrollers. The build
system for Arduinos required modification to be used with
Arducopter [8]. The Gumstix code was generated directly from
Matlab. Note that with this process, three microcontrollers
are programmed to perform various tasks. These are listed as
below and illustrated in Fig. 8. More can be read about such
a strategy in [9].

1) Gumstix Overo FIRESTORM – heavy processing,
filtering, processing fuzzy controller;

2) Arduino UNO – basic relay between APM 2.5 [8]
and Gumstix microcontroller;

3) Arduino Ethernet Shield – UDP packet bridge be-
tween Gumstix and Arduino.

C. Data-flow

A custom build Arduino Board with an onboard IMU
(APM 2.5) [8] generates the Yaw, Roll, and Pitch, and the
difference in all those quantities per time step. These data
are sent to the Arduino UNO board, and the Arduino UNO
board acts as a relay between the APM controller and the
Gumstix Microcontroller. We use the Arduino Ethernet Shield
to transfer the data from the APM to the Arduino. The Arduino
then sends the data via UDP to the Gumstix microcontroller.
The Gumstix microcontroller returns the control data via the
reverse loop, enabling us to send commands to the APM
controller. The APM controller is connected to the speed
controllers. Figure 8 shows this process.

D. Hardware actuation

The motor control hardware consists of the APM 2.5
controller. This board has an onboard IMU unit in addition
to all the features provided by an Arduino Mega board. The
motor speed controllers are connected to the analog output
channels of the APM 2.5 board. Hence, the end speed control
request is sent to the speed controllers over the analog output
channel of the APM 2.5 board. The motors are connected to
these speed controllers, controlling the thrust of the vehicle.
At this, the (roll, pitch, yaw) and difference in roll, pitch, yaw
(droll, dpitch, dyaw) are noted, this information is sent back
to the Arduino, which sends it back to the Gumstix, the fuzzy
controllers takes this input, and the process repeats.

V. RESULTS

A. Controller evaluation

We first evaluate the performance of our controller in
simulation. The ANFIS derived fuzzy controller performs just
as well as a fully tuned PD controller when it is given the
same goals. The viability of the control strategy to control
the quadrotor is established. Both the PD controller and the
ANFIS-derived fuzzy controller show very similar rise time,
and similar overshoots. The fuzzy controller for z control has
a lower overshoot compared to the PD controller. The results
prove that the fuzzy controller is easily capable of controlling
the quadrotor. Furthermore, the controller is automatically
tuned, as opposed to the PD controller which was manually
tuned for optimal operation.

B. Hardware implementation testing

The computational complexity of an ANFIS system is the
major hurdle in implementing these controllers on embedded
hardware. We solved this problem by creating an architecture
as seen in Fig. 8. We verify these results by implementing the
four fuzzy controllers on the Gumstix hardware and communi-
cating between the three microcontrollers. In our preliminary
hardware test, we were able to show that the Gumstix can
efficiently implement the FIS rule base and communicate with
the other microcontrollers; the next step would be to create a
true hardware-in-loop test [3]. We save this analysis for the
sequel to this paper.

The result is a fuzzy controller that has the ability to train
from look-up tables and PD controller data. The concepts are
seen widely in robotics, especially industrial robotics, where
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Fig. 9. Fuzzy vs PD Height Controller
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robots are taught a motion, and they repeat it. In our case,
however, by building the controller, we can not only mimic
previous motions, but also very well approximate new goals.
The next goal is to add a pre-filter to the reference input and
improve the transient response of our baseline controller. This,
in addition to filtering the jitter in the output signal, should
generate better training data, helping us to outperform the PD
controller.

Quadrotors are very sensitive to weight. One can design
very complicated and sophisticated controllers, but fail to
implement them due to logistical challenges. Our choice of ma-
terials includes the fiberglass frame—280g, Turnigy Aerodrive
Sk3 motors (brush-less DC), each one weighs 31g, Lithium-
Polymer batteries - 2200mAh 3S batteries, which weigh 163g
each. The Arduino Uno board; and the Gumstix controller
together weigh in at about 70g. Given the current battery setup,
we have a flying time of about 15 to 20 minutes. The trade-off
here is between weight and processing capability, a challenge
in any power and weight limited robotics problem.

VI. CONCLUSION

In this paper, we developed a fuzzy controller for con-
trolling a quadrotor UAV using the ANFIS technique. We
evaluated the performance of the learned controller and verified
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Fig. 11. Fuzzy vs PD Roll Controller
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Fig. 12. Fuzzy vs PD Yaw Controller

its satisfactory performance. At this point, the fuzzy controller
is as good as the PD controller, and is able to outperform the
PD controller in certain conditions. With minor modifications
to the training data, and addition of control logic, we should see
an improvement in controller performance. We also proposed
a hardware implementation of the controller, investigated its
feasibility and implemented the hardware fuzzy controller on
a dual-core ARM Cortex A8 board. We then evaluated a
strategy where we can implement these controllers on ex-
isting enthusiast-grade hardware. The controller performance
is found to be good in a preliminary hardware-in-loop test
(Gumstix Overo connected to a Simulink model). [11] confirms
that this strategy will work with real hardware.

In summary, our system provides a flexible hardware im-
plementation for controlling multicopter aircraft. The hardware
we have proposed is proved feasible and, furthermore, is flight-
worthy as it is small, light, and exhibits low power usage.
The next steps in our investigation to focus on improving
the controller performance, tweaking the implementation, and
finally performing flight tests.
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