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Abstract— We propose a dynamic feedback linearization of a
car-like robot as a non-holonomic system with a piecewise bilin-
ear (PB) model. The approximated model is fully parametric.
Input-output (I/O) dynamic feedback linearization is applied
to stabilize PB control system. We also apply a method for
a tracking control based on PB models to the car-like robot.
Although the controller is simpler than the conventional I/O
feedback linearization controller, the control performance based
on PB model is the same as the conventional one. Examples are
shown to confirm the feasibility of our proposals by computer
simulations.

I. INTRODUCTION

This paper deals with the tracking control of a car-

like robot using dynamic feedback linearization based on

piecewise bilinear (PB) models. Wheeled mobile robots are

completely controllable. However they cannot be stabilized to

a desired position using time invariant continuous feedback

control [1]. The wheeled mobile robot control systems have a

non-holonomic constraint. Non-holonomic systems are much

more difficult to control than holonomic ones. Many methods

have been studied for the tracking control of wheeled robots.

The backstepping control methods are proposed in (e.g. [2],

[3]). The sliding mode control methods are proposed in

(e.g., [4], [5]), and also the dynamic feedback linearization

methods are in (e.g., [6], [7], [8]). For non-holonomic robots,

it is never possible to achieve exact linearization via static

state feedback [9]. It is shown that the dynamic feedback

linearization is an efficient design tool to solve the trajectory

tracking and the setpoint regulation problem in [6], [7].

In this paper, we consider PB model as a piecewise

approximation model of the car-like robot dynamics. The

model is built on hyper cubes partitioned in state space and is

found to be bilinear (bi-affine) [10], so the model has simple

nonlinearity. The model has the following features: 1) The

PB model is derived from fuzzy if-then rules with singleton

consequents. 2) It has a general approximation capability

for nonlinear systems. 3) It is a piecewise nonlinear model

and second simplest after the piecewise linear (PL) model.

4) It is continuous and fully parametric. The stabilizing
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conditions are represented by bilinear matrix inequalities

(BMIs) [11], therefore, it takes long computing time to obtain

a stabilizing controller. To overcome these difficulties, we

have derived stabilizing conditions [12], [13], [14] based

on feedback linearization, where [12] and [14] apply input-

output linearization and [13] applies full-state linearization.

We propose a dynamic feedback linearization for PB

control system and apply the tracking control [15] to a car-

like robot system. The control system has the following

features: 1) Only partial knowledge of vertices in piecewise

regions is necessary, not overall knowledge of an objective

plant. 2) These control systems are applicable to a wider class

of nonlinear systems than conventional I/O linearization. 3)

Although the controller is simpler than the conventional I/O

feedback linearization controller, the tracking performance

based on PB model is the same as the conventional one.

Wheeled robot dynamics has some trigonometric functions.

The trigonometric functions are smooth functions and of

class C∞. The PB models are not of class of C∞. In the car-

like robot control, we have to calculate the third derivatives

of the output. Therefore the derivative PB models lose some

dynamics. Thus we propose the derivative PB models of the

trigonometric functions.

This paper is organized as follows. Section II introduces

the canonical form of PB models. Section III presents a

dynamic feedback linearization of the car-like robot. Section

IV proposes a tracking controller design using dynamic

feedback linearization based on PB model of the car-like

robot. Section V shows examples demonstrating the feasibil-

ity of the proposed methods. Finally, section VI summarizes

conclusions.

II. CANONICAL FORMS OF PIECEWISE BILINEAR

MODELS

A. Open-Loop Systems

In this section, we introduce PB models suggested in

[10]. We deal with the two-dimensional case without loss

of generality. Define vector d(σ, τ) and rectangle Rστ in

two-dimensional space as d(σ, τ) ≡ (d1(σ), d2(τ))
T

,

Rστ ≡ [d1(σ), d1(σ + 1)]× [d2(τ), d2(τ + 1)].

σ and τ are integers: −∞ < σ, τ < ∞ where d1(σ) <
d1(σ+1), d2(τ) < d2(τ +1) and d(0, 0) ≡ (d1(0), d2(0))

T .

Superscript T denotes a transpose operation.
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For x ∈ Rστ , the PB system is expressed as




ẋ =
σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)fo(i, j),

x =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)d(i, j),

(1)

where fo(i, j) is the vertex of nonlinear system ẋ = fo(x),




ωσ
1 (x1) = (d1(σ + 1)− x1)/(d1(σ + 1)− d1(σ)),

ωσ+1
1 (x1) = (x1 − d1(σ))/(d1(σ + 1)− d1(σ)),

ωτ
2 (x2) = (d2(τ + 1)− x2)/(d2(τ + 1)− d2(τ)),

ωτ+1
2 (x2) = (x2 − d2(τ))/(d2(τ + 1)− d2(τ)),

(2)

and ωi
1(x1), ω

j
2(x2) ∈ [0, 1]. In the above, we assume

f(0, 0) = 0 and d(0, 0) = 0 to guarantee ẋ = 0 for x = 0.

A key point in the system is that state variable x is also

expressed by a convex combination of d(i, j) for ωi
1(x1) and

ωj
2(x2), just as in the case of ẋ. As seen in equation (2),

x is located inside Rστ which is a rectangle: a hypercube

in general. That is, the expression of x is polytopic with

four vertices d(i, j). The model of ẋ = f(x) is built on a

rectangle including x in state space, it is also polytopic with

four vertices f(i, j). We call this form of the canonical model

(1) parametric expression.

Representing ẋ with x in Eqs. (1) and (2), we obtain the

state space expression of the model found to be bilinear

(biaffine) [10], so the derived PB model has simple nonlinear-

ity. In PL approximation, a PL model is built on simplexes

partitioned in state space, triangles in the two-dimensional

case. Note that any three points in three-dimensional space

are spanned with an affine plane: y = a + bx1 + cx2. A

PL model is continuous. It is, however, difficult to handle

simplexes in the rectangular coordinate system.

Note that any four points in three-dimensional space are

spanned with a biaffine plane: y = a+ bx1 + cx2 + dx1x2.

In contrast to a PL model, a PB model as such is built

on rectangles with the four vertices d(i, j), on hypercubes

in general dimensional space, partitioned in state space;

it matches the rectangular coordinate system well, so PB

models are applicable to control purposes.

B. Closed-Loop Systems

We consider a two-dimensional nonlinear control system.

{
ẋ =fo(x) + go(x)u(x),

y =ho(x).
(3)

The PB model (4) is constructed from a nonlinear system

(3).

{
ẋ =f(x) + g(x)u(x),

y =h(x),
(4)

where 


f(x) =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)fo(i, j),

g(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)go(i, j),

h(x) =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)ho(i, j),

x =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)d(i, j),

(5)

and fo(i, j), go(i, j), ho(i, j) and d(i, j) are vertices of the

nonlinear system (3). The modeling procedure in region Rστ

is as follows:

1) Assign vertices d(i, j) for x1 = d1(σ), d1(σ+1), x2 =
d2(τ), d2(τ + 1) of state vector x, then partition state

space into piecewise regions.

2) Compute vertices fo(i, j), go(i, j) and ho(i, j) in equa-

tion (5) by substituting values of x1 = d1(σ), d1(σ+1)
and x2 = d2(τ), d2(τ + 1) into original nonlinear

functions fo(x), go(x) and ho(x) in the system (3).

The overall PB model is obtained automatically when all

vertices are assigned. Note that f(x), g(x) and h(x) in

the PB model coincide with those in the original system at

vertices of all regions.

III. DYNAMIC FEEDBACK LINEARIZATION OF CAR-LIKE

ROBOT

We consider a car-like robot model.

ẋ
ẏ

θ̇

ψ̇


 =




cos θ
sin θ

1
L
tanψ
0


u1 +



0
0
0
1


u2, (6)

where x and y are the position coordinates of the center of

the rear wheel axis, θ is the angle between the center line

of the vehicle and the x axis, ψ is the steering angle with

respect to the car. The control inputs are represented as

u1 =vs cosψ

u2 =ψ̇,

where vs is the driving speed. Fig 1 shows the kinematic

model of car-like robot. The steering angle ψ is constrained

by

‖ψ‖ ≤M, 0 < M < π/2.

The constraint [8] is represented as

ψ =M tanhw,

where w is an auxiliary variable. Thus we get

ψ̇ =Msech2wµ2 = u2,

ẇ =µ2

2466



x

y

(x, y)

θ

ψ

L

0

Fig. 1. Kinematic model of car-like robot

We substitute the equations of ψ and w into the car-like robot

model. The model is obtained as

ẋ
ẏ

θ̇
ẇ


 =




cos θ
sin θ

1
L
tan(M tanhw)

0


u1 +



0
0
0
1


µ2 (7)

In this case, we consider η = (x, y)T as the output, the time

derivative of η is calculated as

η̇ =

(
ẋ
ẏ

)
=

(
cos θ 0
sin θ 0

)(
u1
µ2

)
.

The linearized system of (7) at any points (x, y, θ, w) is

clearly not controllable and the only u1 affects η̇. To proceed,

we need to add some integrators of the input u1. Using

dynamic compensators as

u̇1 =ν1, ν̇1 = µ1,

the car-like robot model (7) can be dynamic feedback lin-
earizable. The extended model is obtained as















ẋ
ẏ

θ̇
ẇ
u̇1

ν̇1















=















u1 cos θ
u1 sin θ

u1
1

L
tan(M tanhw)

0
ν1
0















+















0
0
0
0
0
1















µ1 +















0
0
0
1
0
0















µ2 (8)

The time derivative of η̇ is calculated as

η̈ =

(
L2
fh1

L2
fh2

)
=

(
ν1 cos θ − u21

1
L
tan(M tanhw) sin θ

ν1 sin θ + u21
1
L
tan(M tanhw) cos θ

)
,

where (h1, h2) = (x, y). Since the controller (µ1, µ2) doesn’t

appear in the equation η̇, we continue to calculate the time

derivative of η̈. Then we get

η(3) =L3
fh+ LgL

2
fhµ

=

(
L3
fh1

L3
fh2

)
+

(
Lg1L

2
fh1 Lg2L

2
fh1

Lg1L
2
fh2 Lg2L

2
fh2

)(
µ1

µ2

)
, (9)

where

L3
fh1 =− 3ν1

1

L
{tan(M tanhw)}u1 sin θ

− u31

(
1

L
tan(M tanhw)

)2

cos θ,

L3
fh2 =3ν1

1

L
{tan(M tanhw)}u1 cos θ

− u31

(
1

L
tan(M tanhw)

)2

sin θ,

Lg1L
2
fh1 =cos θ, Lg1L

2
fh2 = sin θ,

Lg2L
2
fh1 =− u21

1

L

∂

∂w
{tan(M tanhw)} sin θ,

Lg2L
2
fh2 =u21

1

L

∂

∂w
{tan(M tanhw)} cos θ,

g1 =(0, 0, 0, 0, 0, 1)T , g2 = (0, 0, 0, 1, 0, 0)T .

Equation (9) shows clearly that the system is input-output

linearizable because state feedback control

µ = −(LgL
2
fh)

−1L3
fh+ (LgL

2
fh)

−1v

reduces the input-output map to y(3) = v.

The matrix LgL
2
fh multiplying the modified input (µ1, µ2)

is non-singular if u1 6= 0. Since the modified input is

obtained as (µ1, µ2), the integrator with respect to the input v
is added to the original input (u1, u2). Finally, the stabilizing

controller of the car-like robot system (6) is presented as a

dynamic feedback controller:{
u̇1 =ν1, ν̇1 = µ1,

u2 =Msech2wµ2

(10)

IV. PB MODELING AND TRACKING CONTROLLER

DESIGN OF THE CAR-LIKE ROBOT MODEL

A. PB Model of the Car-Like Robot Model

We construct PB model of the car-like robot system (8).
The state spaces of θ and w in the car-like robot model (8) are
divided by the 13 vertices x3 ∈ {−π,−5π/6, . . . , π} and the
13 vertices x4 ∈ {−3.0,−2.5, . . . , 3.0}. The state variable
is x = (x1, x2, x3, x4, x5, x6)

T = (x, y, θ, w, u1, v1)
T .

ẋ=



































σ3+1
∑

i3=σ3

wi3
3
(x3)f1(d3(i3))x5

σ3+1
∑

i3=σ3

wi3
3
(x3)f2(d3(i3))x5

σ4+1
∑

i4=σ4

wi4
4
(x4)f3(d4(i4))x5

0
x6

0



































+















0
0
0
0
0
1















µ1 +















0
0
0
1
0
0















µ2. (11)

We can construct PB models with respect to f1(x), f2(x)
and f3(x). The PB model structures are independent of the

vertex positions x5 and x6 since x5 and x6 are the linear

terms. This paper constructs the PB models with respect to

the nonlinear terms of x3 and x4.

Note that trigonometric functions of the car-like robot (8)

are smooth functions and are of class C∞. The PB models
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are not of class C∞. In the car-like robot control, we have

to calculate the third derivatives of the output y. Therefore

the derivative PB models lose some dynamics. In this paper

we propose the derivative PB models of the trigonometric

functions (see Appendix I).

B. Tracking Controller Design Using Dynamic Feedback

Linearization Based on PB Model

We define the output as η = (x1, x2)
T in the same manner

as the previous section, the time derivative of η is calculated

as

η̇ =

(
Lfph1
Lfph2

)
=

(
ẋ1
ẋ2

)
=

σ3+1∑
i3=σ3

wi3
3 (x3)

(
f1(d3(i3))x5
f2(d3(i3))x5

)

where the vertices are f1(d3(i3)) = cos d3(i3) and

f2(d3(i3)) = sin d3(i3). The time derivative of η doesn’t

contain the control inputs (µ1, µ2). We calculate the time

derivative of η̇. We get

η̈1 =L2
fp
h1 =

σ3+1∑
i3=σ3

wi3
3 (x3)f1(d3(i3))x6

+

σ3+1∑
i3=σ3

wi3
3 (x3)f

′
1(d3(i3))

σ4+1∑
i4=σ4

wi4
4 (x4)f3(d4(i4))x

2
5,

η̈2 =L2
fp
h2 =

σ3+1∑
i3=σ3

wi3
3 (x3)f2(d3(i3))x6

+

σ3+1∑
i3=σ3

wi3
3 (x3)f

′
2(d3(i3))

σ4+1∑
i4=σ4

wi4
4 (x4)f3(d4(i4))x

2
5,

where f3(d4(i4)) = tan(M tanh d4(i4))/L. The vertices

f ′1(d3(i3)) and f ′2(d3(i3)) are given in Appendix I. We

continue to calculate the time derivative of η̈. We get

η
(3)
1 =L3

fp
h1 + Lg1L

2
fp
h1µ1 + Lg2L

2
fp
h1µ2

=x35

σ3+1∑
i3=σ3

wi3
3 (x3)f

′′

1 (d3(i3))

(
σ4+1∑
i4=σ4

wi4
4 (x4)f3(d4(i4))

)2

+3x5x6

σ3+1∑
i3=σ3

wi3
3 (x3)f

′

1(d3(i3))

σ4+1∑
i4=σ4

wi4
4 (x4)f3(d4(i4))

+

σ3+1∑
i3=σ3

wi3
3 (x3)f1(d3(i3))µ1

+x25

σ3+1∑
i3=σ3

wi3
3 (x3)f

′
1(d3(i3))

σ4+1∑
i4=σ4

wi4
4 (x4)f

′
3(d4(i4))µ2,

η
(3)
2 =L3

fp
h2 + Lg1L

2
fp
h2µ1 + Lg2L

2
fp
h2µ2

=x35

σ3+1∑
i3=σ3

wi3
3 (x3)f

′′

2 (d3(i3))

(
σ4+1∑
i4=σ4

wi4
4 (x4)f3(d4(i4))

)2

+3x5x6

σ3+1∑
i3=σ3

wi3
3 (x3)f

′

2(d3(i3))

σ4+1∑
i4=σ4

wi4
4 (x4)f3(d4(i4))

+

σ3+1∑
i3=σ3

wi3
3 (x3)f2(d3(i3))µ1

+x25

σ3+1∑
i3=σ3

wi3
3 (x3)f

′
2(d3(i3))

σ4+1∑
i4=σ4

wi4
4 (x4)f

′
3(d4(i4))µ2.

The vertices f
′′

1 (d3(i3)), f
′′

2 (d3(i3)) and f
′

3(d4(i4)) are also

given in Appendix I. The controller of (11) is designed as

(µ1, µ2)
T =− (LgL

2
fp
h)−1L3

fp
h+ (LgL

2
fp
h)−1v

=−

(
Lg1L

2
fp
h1 Lg2L

2
fp
h1

Lg1L
2
fp
h2 Lg2L

2
fp
h2

)−1(
L3
fp
h1

L3
fp
h2

)

+

(
Lg1L

2
fp
h1 Lg2L

2
fp
h1

Lg1L
2
fp
h2 Lg2L

2
fp
h2

)−1

v

where v is the linear controller of the linear system (12).{
ż =Az +Bu,

y =Cz,
(12)

where z = (h1, Lfph1, L
2
fp
h1, h2, Lfph2, L

2
fp
h2)

T ∈ ℜ6,

A=




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



, B=




0 0
0 0
1 0
0 0
0 0
0 1



, C=




1 0
0 0
0 0
0 1
0 0
0 0




T

.

If x5 6= 0, there exists a controller (µ1, µ2)
T of the car-like

robot model (11) since det(LgL
2
fp
h) 6= 0.

In this case, the state space of the car-like robot model is

divided into 13×13 vertices. Therefore the system has 12×12
local PB models. Note that all the linearized systems of these

PB models are the same as the linear system (12).

In the same manner of (10), the dynamic feedback lin-

earizing controller of the PB system is designed as


ü1 =µ1,

u2 =Msech2x4µ2,(
µ1

µ2

)
=L3

fp
h+ LgL

2
fhv.

(13)

The stabilizing linear controller v = −Fz of the linearized

system (12) is designed so that the transfer function C(sI −
A)−1B is Hurwitz.

Note that the dynamic controller (13) based on PB model

is simpler than the conventional one (10). Since the nonlinear

terms of controller (13) contain not the original nonlinear

terms (e.g., sinx3, cosx3, tan(M tanhx4)) but the piece-

wise approximation models.
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C. Tracking Control for PB System

We apply a tracking control [15] to the car-like robot

model (6). Consider the following reference signal model{
ẋr =fr,

ηr =hr.

The controller is designed to make the error signal e =
(e1, e2)

T = η − ηr → 0 as t → ∞. The time derivative

of e is obtained as

ė =η̇ − η̇r =

(
Lfphp1
Lfphp2

)
−

(
Lfrhr1
Lfrhr2

)
.

Furthermore the time derivative of ė is calculated as

ë =η̈ − η̈r =

(
L2
fp
hp1

L2
fp
hp2

)
−

(
L2
fr
hr1

L2
fr
hr2

)

Since the controller µ doesn’t appear in the equation ë, we

calculate the time derivative of ë.

e(3) =η(3) − η(3)r

=

(
L3
fp
hp1

L3
fp
hp2

)
+ LgL

2
fp
h

(
µ1

µ2

)
−

(
L3
fr
hr1

L3
fr
hr2

)

The tracking controller is designed as


ü1 =µ1,

u2 =Msech2x4µ2,(
µ1

µ2

)
=L3

fp
h− L3

fr
hr + LgL

2
fp
hv.

(14)

The linearized system (12) and controller v = −Fz
are obtained in the same manners as the previous sub-

section. The coordinate transformation vector is z =
(e1, ė1, ë1, e2, ė2, ë2)

T .

Note that the dynamic controller (14) based on PB model

is simpler than the conventional one on the same reason of

the previous subsection.

V. SIMULATION RESULTS

We consider two tracking trajectories as the reference

signal models. Although the controllers are simpler than

the conventional I/O feedback linearization controllers, the

tracking performance based on PB model is the same as the

conventional one [8].

A. Circle-shaped reference trajectory

Consider a circle-shaped reference trajectory [8] as the

reference model. (
xr1
xr2

)
=

(
R sin(ωt)
R cos(ωt)

)
,

where R = 15 and ω = 0.01π. The feedback gain is
calculated as

F =

(

0.0316 0.2035 0.6387 0 0 0
0 0 0 0.0316 0.2035 0.6387

)

.

The initial positions are set at (x, y) = (0, 0) and (xr, yr) =
(R, 0). In this simulation, the constraint of the steering angle

is M = π/3 and the wheel base is L = 1. Fig 2 shows the

trajectories of x-y plane. The solid line is the state response

(x, y) of the PB control system and the dotted line is the

reference signal. Fig 3 shows the errors of the trajectories.

Fig 4 shows the control inputs (u1, u2) and the steering angle

ψ. These results confirm the feasibility of the tracking control

performance and the constraint of the steering angle.

B. Eight-shaped reference trajectory

Consider an eight-shaped reference trajectory [7] as the

reference model. (
xr1
xr2

)
=

(
sin t

10
sin t

20

)

The feedback gain is calculated as

F =

(
0.3162 1.011 1.456 0 0 0

0 0 0 0.3162 1.011 1.456

)
.

The initial positions are set at (x, y) = (−1,−1) and

(xr, yr) = (0, 0). We set that the constraint of the steering

angle is M = π/3 and the wheel base is L = 1. Fig 5

shows the trajectories of x-y plane. The solid line is the state

response (x, y) of the PB control system and the dotted line is

the reference signal. Fig 6 shows the errors of the trajectories.

Fig 7 shows the control inputs (u1, u2) and the steering angle

ψ. These results also confirm the feasibility of the tracking

control performance and the constraint of the steering angle.

Although the controller (14) and the PB model (11) are

simpler than the conventional dynamic feedback linearization

controller and model [7], the control performance based on

PB model is the same as the conventional one [8].

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

x

y

Fig. 2. Circle-shaped trajectories on the x-y plane

VI. CONCLUSIONS

We have proposed a dynamic feedback linearization of a

car-like robot as a non-holonomic system with PB models.

The approximated model is fully parametric. I/O dynamic
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Fig. 7. Control inputs (u1,u2) and the steering angle ψ

feedback linearization is applied to stabilize PB control

system. PB modeling with feedback linearization is a very

powerful tool for analyzing and synthesizing nonlinear con-

trol systems. We also have applied a method for tracking

controller to the car-like robot. Although the controller is

simpler than the conventional I/O feedback linearization

controller, the tracking performance based on PB model

is the same as the conventional one. Examples have been

shown to confirm the feasibility of our proposals by computer

simulations.

APPENDIX I

DERIVATIVE PB MODELS OF TRIGONOMETRIC FUNCTIONS

Trigonometric functions are smooth functions and are of

class C∞. The PB models are not of class C∞. In the car-

like robot control, we have to calculate the third derivatives

of the output y. Therefore the derivative PB models lose

some dynamics. In this paper we propose the derivative PB

models of the trigonometric functions (cosx3, sinx3 and

tan(M tanhx4)/L).
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The PB models of these trigonometric functions are con-

structed as

ξ1 =

σ3+1∑
i3=σ3

ωi3
3 (x3)f1(d3(i3)), ξ2 =

σ3+1∑
i3=σ3

ωi3
3 (x3)f2(d3(i3)),

ξ3 =

σ4+1∑
i4=σ4

ωi4
4 (x4)f3(d4(i4)),

where f1(d3(i3)) = cos(d3(i3)), f2(d3(i3)) = sin(d3(i3)),
f3(d4(i4)) = tan(M tanh d4(i4))/L, i3 = σ3, σ3 + 1, i4 =
σ4, σ4 + 1.

The derivative PB models ξ1, ξ2 and ξ3 are defined as

∂ξ1
∂x3

:=

σ3+1∑
i3=σ3

ωi3
3 (x3)f

′
1(d3(i3)),

∂ξ2
∂x3

:=

σ3+1∑
i3=σ3

ωi3
3 (x3)f

′
2(d3(i3)),

∂ξ3
∂x4

:=

σ4+1∑
i4=σ4

ωi4
4 (x4)f

′
3(d4(i4)),

where f ′1(d3(i3)) = − sin(d3(i3)), f ′2(d3(i3)) =
cos(d3(i3)), f

′
3(d4(i4)) = −M(tan2(M tanh d4(i4))/L

2 +
1)(tanh2 d4(i4)− 1)/L.

The derivative PB models ∂ξ1/∂x3 and ∂ξ2/∂x1 are also

defined as

∂2ξ1
∂x23

:=

σ3+1∑
i3=σ3

ωi3
3 (x3)f

′′

1 (d3(i3)),

∂2ξ2
∂x23

:=

σ3+1∑
i3=σ3

ωi3
3 (x3)f

′′

2 (d3(i3)),

where f
′′

1 (d3(i3)) = − cos(d3(i3)), f
′′

2 (d3(i3)) =
− sin(d3(i3)).

Table I shows a part of PB models with respect to

f1(d3(i3)) and f2(d3(i3)). Table II shows a part of PB model

with respect to f3(d4(i4)).

TABLE I

A PART OF PB MODELS WITH RESPECT TO f1 AND f2

d3(d3(i3)) −π/3 −π/6 0 π/6 π/3

f1(d3(i3)) 0.5 0.866 1 0.866 0.5

f ′
1
(d3(i3)) 0.866 0.5 0 -0.5 -0.866

f
′′

1
(d3(i3)) -0.5 -0.866 -1 -0.866 -0.5

f2(d3(i3)) -0.866 -0.5 0 0.5 0.866

f ′
2
(d3(i3)) 0.5 0.866 1 0.866 0.5

f
′′

2
(d3(i3)) 0.866 0.5 0 -0.5 -0.866

TABLE II

A PART OF PB MODEL WITH RESPECT TO f3 (M = π/3, L = 1)

d4(d4(i4)) -1.0 -0.5 0 0.5 1.0

f3(d4(i4)) -1.025 -0.5256 0 0.5256 1.025

f ′
3
(d4(i4)) 0.9015 1.051 1.047 1.051 0.9015
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