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Uncertain Nonlinear Time Delay Systems Fast and Large
Disturbance Rejection Based on Adaptive Interval Type-2 Fuzzy PI
control

Tsung-Chih Lin'

ABSTRACT

In this paper, adaptive interval type-2 fuzzy
proportional integral (PI) control scheme to attenuate fast
and large disturbance for a class of uncertain nonlinear
time delay systems is proposed. By incorporating
adaptive interval type-2 time delay fuzzy logic controller
(AT2DFLC) with PI controller, not only the typical
switching law chattering can be significantly attenuated
but also the instability resulting from system time delay
can be overcome. Based on the Lyapunov theory of
stability, the free parameters of the AT2DFLC and PI
controller coefficients can be tuned on-line by output
feedback adaptive laws derived from Lyapunov function
with time delays. Simulation results show that the
chattering phenomena can be attenuated and the
prescribed tracking performance can be preserved
simultaneously by the advocated control scheme.

Keywords: Time delay system, PI control, interval type-2
FLS, Lyapunov theory.

L INTRODUCTION

Owing to time delays are the main source of the
instability and lead to wunsatisfactory performances,
control system design with uncertain time delays has been
an active area of research. Over the past years, a number
of different researches have been invested in the stability
analysis and robust controller design of uncertain systems
with delay [19]-[24]. Moreover, robust H™ control
methods for linear systems with time delay [18] and a
class of nonlinear time delay systems control [19]-[23]
have been proposed for many years. Unfortunately, in
reality, system uncertainties and external disturbance
input are unpredicted, i.e., may be both large and fast. A
PI adaptive fuzzy control scheme for a class of uncertain
nonlinear systems is introduced in [6]-[8], [12] to handle
large and fast but bounded external disturbances and
uncertainties.

In the past several decades, based on universal
approximation theorem [1]-[5], a significant adaptive
fuzzy neural network (FNN) control structure [6], [7], [9]
has been proposed to incorporate with the expert
information systematically and the stability can be
guaranteed. For the systems with high degree of nonlinear
uncertainty are very difficult to control using the
conventional control theory, such as chemical process,
aircraft, and so on. But human operators can often
successfully control them. A globally stable adaptive
FNN controller is defined as an FNN logic system
equipped with an adaptation algorithm thanks to the fact
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that FNN logic systems are capable of uniformly
approximating a nonlinear function over a compact set to
any degree of accuracy. On the other hand, interval type-2
fuzzy logic system (FLS) [16], [17] which is an extension
of type-1 FLS is introduced to overcome the limitations
thanks to type-1 FLS cannot fully handle the linguistic
and high level uncertainties [10], [13]-[15].

In this paper, a PI controller incorporated into an
adaptive interval type-2 TDFLC constructed by adaptive
time delay FNN is proposed to deal with large and fast
external disturbance, system uncertainties and system
time delay which is a source of instability.

This paper is organized as follows. Problem
formulation is given is Section II. A brief description of
adaptive interval type-2 time delay fuzzy neural network
(TDFNN) is described in Section III. Section IV provides
adaptive interval type-2 fuzzy proportional integral (PI)
control scheme. Simulation example to illustrate the
performance of the proposed control structure is shown in
Section V. Section VI concludes the effectiveness of the
advocated design methodology.

1L PROBLEM FORMULATION
Consider the nth-order nonlinear dynamical time delay
system of the form

X =X
X, =X
2 3 (1)
X, =f(xx(t—7)x(1-7,))
y=x
or equivalently the form
x(n) — f(x, )’C’.._’x(ml))
+g(x,x, - x"u+d, y=x )
x(t)=E(t),te[—¢,,0]
where fand g are unknown but bounded functions, Z(¥)
is the continuous function, 7,(i =1,2,...,7) is the time

delay, and ¢, = max{z, |l <i<r}.Moreover u€ R and
Y€ R are the control input and output of the system,
respectively and d is the external bounded disturbance,
|d(t)| <D, D is a positive constant. Let f(x,7) = f(x,
x(t—7)x(t-7.)) and g(x,7)=g(x(t-7)x(t—-7,)),
(2) can be rewritten in state space representation as
x=Ax+B(f(x,7)+g(x,)u+d)

y=C'x 3)



where
[0 1 0 0 1 (0]
0 0 1 0 0
A= , B=li]
0 0 0
1 0 0 0 | 1]
1
0
C=|: “4)

T
T : _ .
and )_c=[xl,x2,---,xn] ={x,x,---,x(” ”} €R" is the

state vector. In order for (2) to be controllable, it is
required that g(x,7)#0 for x in certain controllability
region U, c R". Without loss of generality, we assume
that g(x,7) >0
the system output y to follow a given bounded reference
signal y_, under the constraint that all signals involved

forxe U, . The control object is to force

must be bounded.
To begin with, the reference signal vector y —and the

tracking error vector ¢ will be defined as
J n— r n
Zrz[yyaym'"’yi l)] ER )

— _ ; n-n1F n
Q—y_lc— eae;”'ae ER

Zr

Let k, = [kf,k;,---,k;'f € R" to be chosen such that all

roots of the polynomial p(s)=s"+k's"" +---+k' are
in the open left half-plane. If the functions f(x,7) and
g(x,7) are known and the system is free of external

disturbance d, then control law of the certainty equivalent
controller is obtained as [13]-[15]

. 1 T

= [0+ 9" +k e
g(x,7) [ J

Substituting (5) into (2), we have [9]

e +ke" Vo +kfe=0

u

&)

which is the main objective of control, lime(z)=0.

Therefore, there exists a positive definite symmetric
nXn matrix P which satisfies the Lyapunov equation

(A=Bk() P+ P(A-Bk,)=-0 ©)
where Q is an arbitrary positive definite symmetric nxn
matrix. However, f(x,7) and g(x,7) are unknown,
the equivalent controller (5) is unavailable. The interval
type-2 adaptive time delay FNN system structure
described in next section will be developed to
approximate f(x,7) and g(x,7).

I11. DESCRIPTION OF INTERVAL TYPE-2

TIME DELAY FNN
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The adaptive time delay FNN system structure is shown
in Fig.1.
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Fig. 1. The interval type-2 adaptive time delay FNN
system structure.

Layer 1 is the input layer. The nodes in this layer transmit
input values and delay input values to the next
layer.

Layer 2 is the membership layer. In this layer, each node
expresses the terms of respective linguistic
variables and the Gaussian function is adopted as
the membership function.

Layer 3 is the rule base and inference layer. The structure
of this layer incorporates the fuzzy rules and the
fuzzy inference. By fuzzy rules and inference to
obtain fuzzy output, each node is corresponding
to a fuzzy rule. The input links and the output
links of each node express the preconditions of
the corresponding rule and the firing strength of
the corresponding rule, respectively.

Layer 4 is the output layer. Due to fuzzy inference output
is a fuzzy value. We must use defuzzification to
get a crisp value.

FNN was proven that has the characteristic of

approaching a nonlinear function. In this paper, we
construct the adaptive time delay fuzzy logic system to

approach fuzzy system function f'(x,7)and g(x,7) as

P
f(zc,f|6’,~,m,»,0,»)=Z[Hizlﬂﬁ/ (x,7,m;,0, Jeﬁ
j=l1

Z[HLI’UF,’ (7, m./i’o-ﬁ):|

Where 'LlF/ @9 T’ mﬁ s O-_/l) = lLlF_/ (E’ mﬁ 2 O-/’)

)

,UFI_/ (x(t-1), mﬁ9o-ﬁ)"'/'lFi/ (E(t_rr)smﬁao-ﬁ .

P
Let Hi:lﬂf;/ (E’T’mﬁ’o-ﬁ)/z[ni:lﬂf;/ (E)T’mﬁzo-ﬁ)}
Jj=1

:§T(E7T’m70 )7
1 7207

Hence, System function f(x,7) (7) can be rewritten as

f(3_CJ|9f-,mf,o'f)=



O

®

Similarly, system function g(x,7) can be expressed as

%g()—c’f’mf’o-f)afr +%§(£’T’mf’af)

g(y_c,r|l9g,mg,0'g) =

%gg (I’T’mg’o-g)egr +%§g (z’T’mg’Gg)egl (9)

Iv. ADAPTIVE INTERVAL TYPE-2 FUZZY P1

CONTROLLER DESIGN

An indirect adaptive FNN controller uses FNN system
to model the plant and constructs the controller assuming
that the FNN systems represent the true plant. However,
in reality, the knowledge used to construct FLS is often
uncertain such as linguistic uncertainty and noisy training
data. In the meantime, time delays are always the main
source of the instability and lead to unsatisfactory
performances. In order to overcome the limitations from
type-1 FLS and the instability resulting from system time
delay, the interval type-2 time delay FNN is constructed
to approximate system functions f(x,7) and g(x,7).

Furthermore, PI control structure is developed to handle
fast and large but bounded external disturbances. The PI
error feedback structure is defined as

(K, K, ]le" PB, [ ¢ PBdr) |gTPB| <y

p(e'PBl6,)=1 . .
D, sgn(e’ PB) |g PB| >y
(10)
where P is the matrix given in (6), [K,,K,]=6) is the
PI parameter vector to be adapted,

[¢' PB, [ PBdi] =g(¢'PB). D, = D+Qis an estimate

of D,=D+Q _ D and Q are the disturbance bound
and the minimum approximation error of the interval
yupe-2 time delay FNN, respectively. The thickness of the
boundary layer ¥ is a compromise between chattering
attenuation and accelerating the speed of convergence.
Therefore, the control effort (5) can be rewritten as

1

g(1,1|9g,mg,0'g)

[~/ (x.7[6,m,.0, )~ p(e" PBl6,)+ " ~kle]

u=

(11)

where f(5,1|9f,m‘/.,0'f) and g()_c,z'|9g,mg,0'g) are the

interval type-2 time delay FNN outputs which
described in (8) and (9) as follows:

f()_c,z'|9‘,.,mf,0",.):

arc

0

%g(z’r’m./"df)eﬁ‘ +%§(£’Tamf,a/') n

g(g,r|l9g,mg,0'g)=

%5(%7””‘/"0} )‘9gr +%§(§’T’mﬂo—f )‘9g1

By using (11) into (3), the error dynamic equation can be
expressed as

= (a=887)er B/ (5.0) 1 (s50,m,.0, )
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+B(g(g,r)—g()_c,1'|9g,mg,0'g))u
+B(d(x,0)-p(' PBJ6,)) (12)

Applying double Taylor series expansion and let

Hﬁzaf*r_eﬁ 1, m:’r_m/’ra&fyzo';,_o'f,,
éﬂ = 0,1 -0, . nﬁ,, =m, mg ’6'11 O';, —0
~g’ - 0;’ a 98’ i nN/lé” = m; My, 6-gr = O'; Oy >
ég’ = 0;1 - egl > nN/lgI = m:zl —my,0y 0-;1 -0,
6 =6-6, D, =D, —D_, we have

S0~ f(x7)6,,m,,0,)

= _% ¢, (xrm,.0,)-m¢, (x.7.m,.0,)

-0,&,, (xt.m,,0.)10, +(m,¢,. (x,7,m,.0,)

+6,8,, (x.1.m, .0, )0, +m, &, (x.7.m,.0, )é [
+0,¢, (x.t.m,.0,)0,+[¢, (x.7.m,.0,)

MG (1’ ,m,,0, ) =080 (5’ T,m,,0, )]éﬂ

+(m,<,, (L T,m,,0, ) +6,8,, (f’ T,m,,0, ))6’/,
+myé, (x.7.m,,0,)0,+0,,, (x.7.m,.0,)6,} (13)
and

g0 -g(x7

eg’mg’o-g)

_% { [é’” (z’ 7 mgf ’ O-g’ ) - mgrgmgr (E’ 7 mgr ’ O-g" )

_O-grgﬁgr (i’ 7 mgr ? O-gf' )]égr' + (rhgrgmgr (ﬁ’ 7 mgr ? O-gr )

+O-gr éfgr (l’ 7 mgr ’ O-gl' ))agr + m;’r gmgr (z’ 7 mg/' ’ O-gr ) égr
+G;r§o'gr (E’ 7, mgV s o.gr )égr + [gg/ (E’ 7 mgl ’ O-é" )
(

o

gl> gl

) - O-gl ogl (E’ (B mgl ’ O-g/ )]égl

+(’;hgl mgl (Ia 7, mg, O-gl ) + 6-gl§Ggl (L 7z, m,, O-gl ))Hgl

_mglgmgl X, T,m

+m;§mgl (E’ T’ mgl 2 O-gl ) égl + G;I§Jg1 (1’ T’ mgl s Ggl ) égl } (14)

where

6, =arg BIEE% E:l]g‘f@,ﬂﬁ/.,m/ ,O'/)—f(x,T)} (15)
g =arg ggrgr‘vli[fgg‘g@,T|¢9g,mg,0'g)—g(x,z')} (16)
i =arg. min swp|el6, om0 )= fee) | (17)
m, = arg gggiRI; :.TRI? gx,7\6,,m,,0,)—g(x, T): (18)
o, =arg 5}11[}3, :TRp f(5’7|‘9f’mfﬂo-f)_f(x’f): (19)
0'; =arg grilkr% :ilRp g(g,2'|6g,mg,0'g)—g(x, 2'): (20)

In order to simplify all formulas, the following notations
are defined as

Ty (x,7,m,,0,)= [fﬁ (x,7,m;,0,



_m,/‘régm,, (x,7,m;,0,)— Gﬁfa,,_ (x,7,m;,0, )j| 21)
T,(x,7,m,,0,)=

(7,8, (x.7m,.0,)+6,, (xt.m,.0,)] (22)
T, (x,z,m,;,0,)= [éﬂ (x,7,m;,0,)

MG, (x,7,m,,0,)=0, o (x,7, mﬂ’o./l):l (23)
Ty (x,7,m,,0,)=

[';lﬂfmﬂ (x,7,m;,0,)+6,¢, (x,7.m,.0, ] (24)
T, (xt.m,.0,)=[£ (x.7.m,.0,)

-m, &, (x,7,m,.0,)-0,¢ (x7m,.0,)] (25
T,.(x.7,m,,0,)=

[m ¢, (wx.tm,.0,)+6,& (x.1.m,.0, )] (26)
T, (x.7,m,.0,)=[&,(x.7,m,.0,)

-m,&, (x.7.m,,0,)=0,& (x,7.m,.0,)] (27)
Tg,2 (x,7, m,, O'g,) =

(1,8, (xtm,.0,)+6,E, (x.T.m,.0,)] (28)

By using (13) ~ (28), the error dynamics (12) can be
re-expressed as

. 1 ~
€= (A—Bk:)§+B{—5[Tm(E,T,mﬁ,dﬁ)er

+1,.(x,7m,,0,)0, + T, (x,7,m

)0,

a2
~ 1 ~

+T/"r2 (E: 7, mg, O-/r)g r]} + B{_E[Tgrl (E: 7, m,., O-gr)egr

+T,,(x,7,m,,0,)0, +T,(x,7,m,,0,)0,

)-ole i)

(29)

ar? gl

. (T, 0,06, u+ B(p(¢ PB

er?
+B(d (x,1)-p(c'PB|6; )+ Bo
where @ is the bounded minimum approximation error

W <Q

1 . N =
0= _E {(mﬁ (gﬂl/r (Ea 7, mg., G/r ) + 6050-”, (Ea 7, mﬁ ) Gﬁ ))0 3

of the interval type-2 time delay FNN; i.e.,

+m, (&, (x.7,m,,0,)+0,8, (x,7,m,,0,)8,
+(m,, &, (x.z.m,,0,)+ 0';5% (x,7,m,,0,))0,

o, €, (im0, )+ 0, (x,T.m,, 0,00, (30)

Following the preceding consideration, the following

theorem is declared to show that the proposed overall
control scheme is asymptotically stable.
Theorem: Consider the nth-order nonlinear dynamical
time delay system in the form of (1) with the control law
in (11), the all design parameters are adjusted by the
adaptive laws (31)-(39)

G, == [é:f’ (x.7.m;,0,)-m,&, (X,7,m,,0,
T
~0,¢, (x.tm,.0,) | (B'Pe) (31)

Hﬂ == |:§/1 (Es T, mﬂ 5 0-/1 ) - mﬂfm” (Es T, mﬂ 5 O-ﬂ
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~0,&, (xm,, aﬂ)]T (B Pe) (32)
0, =-n& xom,.0)-mé, (x,7m,.0,)
—O'g,é’% (x,7, mgr,O'gr)JT (BTPe)u (33)
0,=-r]& xm,,0,)-méE, (x.7.m,.0,)
—O'glf% (x,7, mgl,O'gl)]T (BTPe)u (34)
i, ==1,6,&, (x,7,m,,0,)(B' Pe) (35)
i, =10, (x,7,m,,0,)(B"Pe) (36)
m, ==1,0,&, (x,7,m,.0,)(B Pe)u (37
i, = =10, (x,7,m,,0,)(B' Pe)u (38)
6, =-18,5, (x.7,m,,0,)(B Pe) (39)
6, ==1,0,$ (x,7.m,,0,)(B" Pe) (40)
6, =—h0,5 (x,7.m,,0,)(B Pe)u (41)
6, =-1,0,¢, (x.7.m,,0,)(B Pe)u (42)
6, =-1,0,¢ (x.7.m,,0,)(B Pe)u (43)
6, =7, PBS(c'PB), D, =7, PB| (44)

where 7 >0,i=1~14, based on the Barbalat’s lemma
[11], the tracking error e(f) will be asymptotically
approaches to zero, i.e., lime(r)=0.

Proof:

To begin with, the Lyapunov function candidate is
defined as

L I or I 5.5
V=—e Pe+— e (Weydv+—286,6,
2 2;."[—1, 47/1 fr S
| [ I |
+—0"'0 +—670 +—070 +—m "
4y, o 4y, o Ve 4y, o el 4y, g
+ 1.,;1ﬂ,;1;+ 1 ~g,~;+L”~1g1”~1:1 +L5—ﬂ5—;
4% dy, T Ay T 4y,
+—41 5/,&;+—41 agﬁ;+—4l 6,60 +——676
7/10 }/11 }/12 2]/13
B (45)
27,

Differentiating (45) with respect to time ¢ along the
trajectory (29) we obtain

V= lngPg +lgTng+L6’~/.,T6’L/., +L6’~ﬂ79;ﬂ

27 2y,
+L0~gf§gr +L¢9~gf§g, +Ln;1ﬁn~1; +Lr;zﬂn~1;
27, 27, 27 2%,
+Lrhén”1§ +er1g,;%; +Lo;'ﬁo”'; +L5'/,o”';
2y, 2% 2%, 0
| I 1 . . 1 ~,% 1 &
+—06,6, +—06,6,+—0,/6,+—D,
2% 2%, Vs Na

#5203 3¢ - e)ei-) (46)



Substituting (29) into (46), V' can rewritten as

;1 1 N
V=E{(A—ka)g+B{—E[Tm(g,r,mﬁ,aﬁ)er

+T,,(x.7,m,,0,)0+T, (x,7,m,,0,)0,

1 ~
/12 (x 7, mﬂ’o-/l)gﬂ]_ 2|: grl(x 7, mgr’o-gr )6gr
)9,

-p(e'PBl6))

+1,,(x,7,m,,0,)0, + T, (x,7,m,,0,

er?

+7;,2(§,T,mg,,0'g,)6g1}u}+B(p(g PB|o;)
+Ba)+B(d(X,t)—p(gTPB|0:))}TPe

1 1 1 ~
+E§TP{(A_Bk:)€+§B{_2[ T, (x,7,m,,0,)0,

+7,,(x,7,m,,0,)0, +T,(x,7,m,,0,)0,
+T/I2 (Es Tsm/lao-ﬂ )0/1] [ grl('x’T5 mgr’o-gr )ng
+1,.(x,7,m,,0,)0, + g“(x T,y 0,)0,

+T,,(x,7,m,,,0,)0, lu+ B( p(¢' PB6;) -

)

+—0 TB +—0 T6 +—6)ng6’£,
7 S A 4

p(e'PBl9,))

+Ba)+B(d(x,t)—p(_T

+—6 T6
2}/4 “

~T LT
gr mgr + 2_mgl mgl
%

I -
mm+—

Va 277

|
+—m, "

m, +—
A
27;

2%

6,6, +—
27

10

T+ % 6,60 + % 6,67,
7 I

11 12

+_
9

o7 A 1
5,010, 5 0,0, +5 Zeomo

2’_‘/]3 al3

—%Zéa—z)ga—m @7)

<21 (©-rDe

i

+07 | - (x T,m,,0 )(B Pe)——H }

1

T 1.
+0,| T (x,7.m,, 0, (BTPg)—r—Hﬂ}
L 2
. 1.
+6, | -T, (x,7, mgr,O'gV)(BTPg)u——ﬁgr}
£
I 1.
+9T gll(x B mgl’o-gl)(BTPQ)u__egl:|

7

+ _fiﬂ,(laf,mﬂ: /:)9 (B Pe) lm/r:|’hr

£ (x,7,m,,0,)0,
f ’%

(B" Pe)—imﬂ}h;

[ [
+ —f):gr x,z,m,,0,)0, (BTPg)u——mg,}mT_

n
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I 1. .
+ —é’m,(x t,m,,0,)8, (BTPg)u—rmgl}m;
8

-, (x,7.m,,0,)0, (BTPg)—%o" }&j

o

I 1. |
* _é::n(i’r’mﬂ’o-ﬂ)eﬂ (BTPQ)__O-ﬂ}O-.;

[ 1.
+ =& (x.7,m,,0,)0, (B Pe)u-—0o, }GT

h

+

|
_f‘:gl (E’ 7 mgl’o-gl)agl (BTPg)u _r_o-gl :| O-;

12

+07 [gTPBg“ (¢"PB) —iép}r gTPB|D

13
+le' PB|D, —leDm +e PBw
Na
Substituting adaptive laws (31)-(44) into (48) we have

(48)

V< —%eT (O—-rle+e' PBw (49)

Since @ is the bounded minimum approximation error,
Q and r can be determined such that

. 1
VS—EeT(Q—rI)e+gTPBa)<O . Therefore, by the

Barbalat’s lemma [11], the tracking error e(#) will be
asymptotically approaches to zero, i.e., %irg e(t)=0. The

proof is completed.

V. SIMULATION EXAMPLE

In this section, we will apply our adaptive interval
type-2 fuzzy PI controller for a
single-machine-infinite-bus  (SMIB) power system
described by delay differential equations (DDE). The
equation governing the motion of this DDE is given as
follows.
X

1:x

X, =—2x,—2sinx, +5sin5¢ +3sin(5(x, (t — 7)) + u(t) + d(¢)
where 7=0.002sec is delay time, external disturbance
d =4cos(5xt) and training data are corrupted by white

2

Gaussian noise with signal-to-noise ratio (SNR) 20 dB.

The reference trajectoryis y, = 3—71(-)sin(t) .

The output and reference trajectories are given in Fig.2
and the control effort obtained by (11) is shown in Fig. 3.
We can see that the chattering phenomena can be
attenuated and the prescribed tracking performance can
be preserved simultaneously. Also, the 3D tracking
performance is shown in Fig. 4 and the PI parameters

adaptation and K, are described in Fig. 5.

KP
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VL CONCLUSIONS

In order to provide robustness in the presence of fast
and large disturbance and to eliminate the instability
resulting from system time delay, adaptive interval type-2
fuzzy PI control scheme is proposed by incorporating
AT2DFLC with PI controller. Interval type-2 time delay
FNN is constructed so as to fully handle the linguistic and
high level uncertainties and to estimate the behaviors of
the system functions. Simulation results show that not
only the prescribed tracking performance can be
preserved by the advocated control scheme bust also the
controller of type2 is more stable in critical point than

typel.
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