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Abstract— For prosthetic hand manipulation, the sur-
face Electromyography(sEMG) has been widely applied. Re-
searchers usually focus on the recognition of hand grasps or
gestures, but ignore the hand force, which is equally important
for robotic hand control. Therefore, this paper concentrates
on the methods of finger forces estimation based on multi-
channel sEMG signal. A custom-made sEMG sleeve system
omitting the stage of muscle positioning is utilised to capture the
sEMG signal on the forearm. A mathematic model for muscle
activation extraction is established to describe the relationship
between finger pinch forces and sEMG signal, where the genetic
algorithm is employed to optimise the coefficients. The results
of experiments in this paper shows three main contributions: 1)
There is a systematical relationship between muscle activations
and the pinch finger forces. 2) To estimate the finger force,
muscle precise positioning for electrodes placement is not
inevitable. 3) In a multi-channel EMG system, selecting specific
combinations of several channels can improve the estimation
accuracy for specific gestures.

I. INTRODUCTION

THE surface EMG signal is widely used to recognise
human motions[1], [2], [3], [4] and estimate muscular

force[5]. Plenty of achievements have been made in their
respective fields. There is, however, a big gap between these
two issues. Researchers who focus on the hand force usually
do not care about the gesture recognition, vice versa. In
the field of myo-prosthetic hands manipulation, it is equally
important to analyse the hand moving trajectories and also to
study the magnitude of the force[6], [7]. A decent example is
picking up an egg using an sEMG controlled prosthetic hand
for amputees, which is definitely a big challenge, especially
in an open-loop control system (vision feedback excluded).
This paper will focus on the finger force estimation from a
16-channel sEMG sleeve worn on the forearm.

Determining muscle forces through sEMG usually requires
a model of muscle contraction dynamics. Huxley-type mod-
els that estimate the forces in cross-bridges are very complex
and the muscle dynamics are governed by multiple differ-
ential equations, which need to be numerically integrated
and time-consuming in multiple muscles. Therefore, many
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Fig. 1. The electrodes configeration on the forearm

researchers who do large-scale neuromuscular modelling use
Hill-type models[8], which is a phenomenological model
based on experimental facts with no link to the microscopic
physiology[9]. Model-based estimation of muscle forces usu-
ally needs optimisation selected to solve for the equations
describing the musculoskeletal system [5]. Muscle excita-
tions are iteratively updated by an optimisation algorithm
to minimise the tracking error (measured external forces
needed) between experimental data and model predictions
and satisfy additional constraints[5].

It is not a ultimate goal but an intermediate process for
any muscluar dynamics model to estimate the muscular
force. Muscluar dynamics models are usually exploited as
an investigative tool to discriminate between biomechanical
and neural causes of musculoskeletal disorders or diseases
affecting the nervous system[10]. In the applications of
prosthetic control, however, musculoskeletal parameters are
not necessary to be obtained. Leaving out the process of
musculoskeletal parameter estimation can reduce the compu-
tational consumption. More importantly, model-based force
estimation need to pinpoint the specific muscles, which
impede its applications beyond the field of disease diagnosis.

Finger related force prediction is difficult due to the large
amount of muscles on the forearm and the complex hand
structure with more than 20 degrees of freedom. Early in
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1995, Maier, etc. [11], [12], [13] started to explore which
muscles or the combination of muscles (muscular synergies)
is more suitable for finger force estimation than others during
force production in precision grips. Choia, etc., [14] utilise
artificial neural network (ANN) to map the SEMG collected
through six pieces of muscle (ED, APL, FDS, APB, AP) to
the forces. Martin, etc., [15] evaluated the activity pattern of
finger flexor muscle and finger force exertion and the rela-
tionship between keyboard reaction forces and EMGs while
keying. It is suggested that the difference between EMG and
finger force partly results from the amount of muscle load not
captured by the measured applied force[15]. The existence of
enslaving effects [16] in finger force production also increase
the hardness in finger force estimation. The experiment of
Zatsiorsky, etc., [17] shows that no direct correspondence
exists between neural command to an individual finger and
the finger force.

This paper will utilise a 16 channel sEMG system to
capture the sEMG signals on the forearm[18]. It is named
SEMG Sleeve in this paper. All the electrodes are installed in
an elastic sleeve with a fixed configuration in advance. This
paper is expected to address the following questions. Firstly,
whether it is possible to estimate the force dynamic just
through processing sEMG signals without considering any
muscular dynamic model. Secondly, whether it is possible
to estimate the force through multi-channel SEMG Sleeve
(no muscle positioning process included). Thirdly, how to
make the best of the redundant information in multi-channel
SEMG Sleeve to benefit force estimation.

The rest of this paper is organised as follows: Section II
states the materials and methods for sEMG signal acquisition
and the approach for force estimation through sEMG signals.
Section III demonstrates the experimental results and the
discussions. Section IV comes to the conclusions.

II. MATERAILS AND METHOD

A. Apparatus

To measure the surface EMG signal on the forearm, a
16 channel sEMG acquisition system is employed[18]. This
device has a brand new electrodes array aiming to cover the
most part of the muscle area on the forearm. 16 electrodes
are fixed on a flexible sleeve with a certain pattern, as shown
in Fig 1.

Comparing with traditional surface EMG technology that
needs to stick pairs of electrodes on interested muscles, the
system in this paper ignores the muscle positions. There
are mainly 11 pieces of muscle in the forearm controlling
finger and wrist motions according to anatomy. They are
Extensor Carpi Uinaris (ECU), Extensor Digitorum (ED),
Extensor Carpi Radiails Brevis(ECRB), Extensor Digiti Min-
imi (EDM), Flexor Carpi Ulnaris (FCU), Flexor Digitorum
Profundus (FDP), Abductor Pollicis Longus (APL), Extensor
Pollicis Brevis (EPB), Extensor Pollicis Longus (EPL) and
Extensor Indicis (EE). All these muscles are close to their
neighboring muscles, and some pieces of muscles even
overlap the others. Therefore, it is not possible to pinpoint all

Fig. 2. The multi-input and multi-output system structure of 16 channel
EMG acquisition system

the muscle and put corresponding EMG electrodes on them.
Furthermore, crosstalk is a considerable issue in traditional
sEMG technology as reported in [19]. To resolve these
problems, a more general strategy is proposed by usig an
specific electrodes configuration, which takes all muscles as
the sources for each EMG channel, seen in Equation 1.

Ej =

11∑
i=1

aijSi j = 1 · · · 16, (1)

where Ej is the EMG signal measured from channel j, Si

indicates the clean EMG signal of the ith muscle and aij
are the coefficients that demonstrate its weight to Ej from
muscle i. Figure 2 shows the signal composition of multi-
muscle sources.

To extract clean EMG signal from a noisy background,
hardware is designed to amplify the EMG signal as well as
remove various noises from power line interference, baseline
wander, and so forth. The amplifier factor is 5000 with linear
range 20 Hz to 500 Hz. Differential mode amplifiers is
utilised as the first-stage to remove the common mode noises,
and then two Sallen-Key filters are employed to compose the
band pass filter with a bandwidth between approximately 20
Hz to 500 Hz. Furthermore, to suppress the power-line noise,
a notch filter with central cut-off frequency at 50 Hz (UK
power line frequency) is designed in hardware to remove
power line noise.

Analog output from 16 EMG channels are connected to a
micro-controller STM32L151V8 (STMicroelectronics Inc.),
then digitised via a internal 12-bit analog-digital converter
(ADC). The sampling frequency is 1000 Hz.

FingerTPS system (Pressure Profile Systems, Inc. (PPS),
USA) is utilised to capture the tactile force on the finger pulp
with highly sensitive capacitive-based pressure sensors,seen
in Figure 3. The sample frequency is 100 Hz controlled by
the PC clock.

To synchronise the data of EMG system and FingerTPS
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Fig. 3. The subject was asked to wear the FingerTPS sensors on each
finger.

system, both devices are connected to a PC with Windows
XP operating system via USB port, and multi-media timer is
used to generate the synchronisation signal. An application
based on MFC is specially designed to initialise two devices
and record data. When capturing the data, subjects can
observe the wave of signal on the screen.

B. Subjects

Three right-handed university staff (2 males and 1 female)
served as subjects. [age: 30 ± 6 years, mass: 62.5 ± 12.1
kg, height: 168 ± 5.2 cm]. The subjects had no previous
history of neuropathies or traumas to the upper limbs. This
project is approved by the ethic institution of university of
portsmouth.

C. Experimental procedure

Subjects were required to wash their right forearm and
hand using ordinary hand-wash liquid to remove horny and
keeping forearm slightly moisture. Then the subjects were
assisted by an expert to wear the electrodes sleeve in a similar
approach, as seen in Figure 4.

The procedure are as follows. Firstly, make the palm
upwards and identify the label line b1, b2 and b3, which
indicates the wrist angle, elbow and the middle line, respec-
tively. Secondly, wear the sleeve from the end of End2 to
End1, and pull the end of sleeve End2 to the line b2 and
End1 to b1. Meanwhile, keep electrode 0 and electrode 12
on the middle line b3. At last, wear another empty sleeve
that has no electrodes to cover the previous sleeve for the
sake of generating a squeeze to every electrodes towards the
skin. It is suggested to wait 10 minutes to reduce the skin to
electrodes resistance naturally.

Before wearing the FingerTPS sensor, subject need to wear
a plastic glove in advance to isolate the electronic signal from
FingerTPS sensor.

The subjects were seated in a chair beside the experiment
desk facing the computer monitor with the upper arm on the
armband, and the angle between the armband and the forearm
is approximately 45◦, as seen in Figure 5. The wrist and the

Fig. 4. This figure supplies the reference standard for wearing electrodes
sleeve. End1 and end2 are the two end of the sleeve. b1 and b2 indicate
the positions of wrist and elbow, respectively. When the subjects wears the
sleeve, End1 should be pulled to reach b1, and using End2 to reach b2.

Fig. 5. The scene of capturing data from one subject

hand kept a relaxation state, which make the subjects feel the
best comfortable. Then the subjects were asked to repeat four
different finger gestures for 5 times, and between different
gestures, 5 times fast fists were asked to divide different
gestures. The gestures are using the thumb to touch other
finger pulp, and then perform a graded exertion from 0% to
100% of the maximum voluntary contraction (MVC). The
subjects can observe the force curve from the screen while
exerting force on the finger, and they were told to make the
curve as smooth as possible. A piece of data captured from
subject one is demonstrated in Figure 7.
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Fig. 6. Muscle activation dynamics: Transformation from EMG to muscle activation [8]

D. EMG-driven Hill-type Models

Many researchers who do large-scale neuromuscular mod-
elling use Hill-type models, because these models are phe-
nomenological in nature and less computationally time-
consuming [8]. The instantaneous total force, FMT , exerted
by a musculotendon unit is calculated by means of a lumped
Hill-type musculotendon model [20], [21]

FMT (θ, t) = (F̃La · F̃ V · a(t) + FLp) · FoM (2)

where t is time, θ is the angular position of the figures.
F̃La(θ, t) and F̃Lp(θ, t) are respectively the normalised ac-
tive and passive muscle force-length relationships, F̃ V (θ, t)
is the normalised muscle force-velocity relationship, FoM is
the maximum isometric muscle force and a(t) is the muscle
activation[8].

This paper sets the angle of the joint θ to a constant,
and thus the angular velocity is 0, which leads to F̃ V =
1 [20]. In addition, assume that the length of a muscle
does not change while exerting force, thus F̃La(θ, t) and
F̃Lp(θ, t) are constant as well, and the value of them can
be referred in [20]. In addition, this paper assumes that all
gestures are completed at the optimised muscular length, and
therefore F̃La(θ, t) is 1 and F̃Lp(θ, t) is 0. As a result, the
instantaneous total force FMT only depends on the muscle
activation a(t), as seen in Equation 3.

FMT (t) = a(t) · FoM (3)

To obtain the a(t) from raw EMG signal, the basic steps
can be seen in Figure 6. In the first step, the raw EMG
signal will be processed via normalisation, rectification and
filter [8], [20], [21] to extract muscles activation profile,
which is referred as e(t) in this paper. Buchanan [8] , etc.,
states EMG measuring the electrical activity that is spreading
across the muscle, causing it to activate and induce the
production of muscle force. It, however, takes time for the
force to be generated. Thus there exists a time delay for the
muscle activation. This process of transforming e(t) to neural
activation u(t) is called Muscle Activation Dynamics, which
has been approximately obtained by a discrete equation,

u(t) = αe(t− d)− β1u(t− 1)− β2u(t− 2) (4)

where d is the electromechanical delay and , β1 and β2 are
the coefficients that define the second-order dynamics with

constraints of
β1 = γ1 + γ2 (5)

β2 = γ1 × γ2 (6)

|γ1| < 1 (7)

|γ2| < 1 (8)

to guarantee its stability. In addition, to obtain a unit gain,
the following equation must hold true.

α− β1 − β2 = 1 (9)

From neural activation u(t) to muscle activation a(t), it is
a nonlinear map. This paper adopts the nonlinear relationship
below to obtain a(t)

a(t) =
eAu(t) − 1

eA − 1
, (10)

where the constant A is the only a parameter determining
the nonlinear shape factor. It is allowed to vary between -3
and 0 in [8].

E. Adjusting Parameters
Studies of muscle force predictions usually compare mus-

cle loading or activation patterns with EMG data as an esti-
mate of validity. General analysis incorporate the quantifica-
tion of muscle force sensitivity on modelling parameters and
comparisons of muscle forces against direct measurements
of tendon loading[5].

The model of estimating the forces of isometric contrac-
tion from EMG signal is described in the above section. In
the process of gain a(t) from e(t), there are four coefficients
are unknown, d, β1, β2 and A. d indicates the electromechan-
ical delay, which accounts for the delay between the neural
signal and the start of the resulting twitch[8] and it has been
reported to range from 10 ms to about 100 ms. In equation
4, to guarantee stability, −2 < β1 < 2, −1 < β2 < 1.
In addition, the nonlinear relationship constant A is set to
−3 < A < 0, as reported in [8], [21].

Genetic algorithm (GA) is utilised to optimise these four
parameters through minimise the following objective func-
tion,

J(d, β1, β2, A) =

∑
t (a(t)− F (t))2∑
t (a(t)− ¯a(t))2

, (11)

where F(t) is the loading force of the pinch gestures measured
by the fingerTPS tactile sensor on thumb pulp.
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Fig. 7. This figure shows the data structure of raw sEMG signal and its tactile pinch force from subjects one. The signals are recorded continuously in
a period of about 400 seconds. In this period, four types of gestures are performed, and each gesture is repeated five times. Between different gestures,
five-times fist is used to separate each other. The blue wave in the figure is the raw EMG signal, and the red one is the pinch force. To show the EMG
signal and force comparatively, both of them are normalised between -1 and 1.

III. RESULTS AND DISCUSSIONS

Figure 7 shows the raw sEMG signal (from sEMG channel
1, subject 1) and the pinch force. The pattern of pinch
forces and EMG signal are rather complex. Because of
some practical reasons, the MVC are not the same even
for the same gestures. Consequently, the height of the force
peaks varies as well as the amplitudes of sEMG signals. For
instance, the force peak gesture G11 doubles that of G12.
However, several reproducible phenomena can be identified.
The pinch forces obtained from ring finger and little finger
are smaller than that from the index finger and middle finger.
The EMG signal of Gesture 3 is stronger than the other
three. It is also easy to identify that when the sEMG signal
reaches a peak, the force signal reach the peak as well. The
overall trend of sEMG signal and force is consistent, and
thus it is very likely to find the potential relationship between
the EMG signal and the pinch force only through observing
the raw data. Within this study we will concentrate on the
interaction among the sEMG signal and the measured force
during a single gesture.

Table I demonstrates the coefficient of determination
(r2)using the processed sEMG signal to approach the mea-
sured force. Both single channel (C1 to C16) and a combina-
tion of the selected eight channels (Co) are used to estimate
the force. The average r2 of S1, S2 and S3 are 0.80, 0.71 and
0.77, respectively. For S1, the preponderant half channels that
can estimate the force better than the others are C1, C3, C4,
C9, C10, C11, C12, C13, and these channels in S2 and S3
are C1, C4, C5, C6, C7, C8, C11, C13 and C1, C2, C3, C4,
C5, C6, C8, C10, respectively. Among these channels, C1
and C4 appeared in all subjects, thus they can be considered
as stable channels. Related analysis will be discussed later.
Compared r2 of the best single channel (It is C10 in G1, S1.)
with r2 of the combination channel Co, the figures are rather
close to each other with the deviation of 0.42%± 0.0317%.
Therefore, it can be concluded that if the best single channel
can be found, the accuracy of force estimation utilising this
single channel is still very high. However, it is not always the

truth that the selected channel can keep stable in the whole
precess of estimation. Thus, the next aim is to identify the
tradeoff point between channel number and accuracy.

To identify the tradeoff point between the channel number
and accuracy, 16 EMG channels were sorted with descending
order according to the value of r2 before selected. In this
paper, the first one or several channels will be selected to
form a new EMG signal, which ensure the channel with
bigger r2 will be selected first, and then the mean value
of the selected multi-EMG will be calculated to form a new
single EMG channel, seen in Equation 12.

EMG(n, t) =
1

n
×

n∑
i=1

EMGi(t) n = 1 · · · 16 (12)

Figure 8, Figure 9 and Figure 10 demonstrate the changes
of r2 with the increase of the number of selected sEMG
channels, respectively. For most gestures and subjects, it is
easy to notice a trend that r2 increases at the beginning (from
1 to 2 channels), then keeps stable from 2 to 6 channels,
followed by a gradual decrease. So it is suggested to select
2 to 6 sEMG channels to estimate the force for a higher
accuracy. The essential reason is that not all the muscles
play the same role on a specific gesture. But the electrodes
of the sEMG Sleeve cover all of them on the forearm. Some
of them are master muscle and others are slaving muscles.
Thus it is suggested to select the channels that cover the
master muscles, then utilise these channels to estimate force.
In addition, the fault tolerance of a system is related to
the redundant information that the system can supply. The
more EMG channel the system have, the more redundant
the system will be. Therefore, using six channels to estimate
force is more robust than using less channels.

IV. CONCLUSIONS

This paper utilised the sEMG signal captured from a 16
channel SEMG Sleeve to estimate the pinch force of four
gestures. Muscle activations were extracted to approach the
force curve, and GA is used to optimise the coefficients.
In this paper, three questions mentioned in Section I have

1453



TABLE I
REGRESSION ANALYSIS RESULTS OF DATA FOR MUSCLE ACTIVATION AS FORCE EXERTED BY EACH GESTURES WITH EXERTIONS RANGING FROM 0%

MVC TO 100%MVC OF THREE SUBJECTS.

r2 Gs C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 Co
G1 .78 .75 .80 .70 .69 .60 .62 .44 .82 .83 .80 .77 .77 .33 .08 .63 .83

S1 G2 .82 .69 .81 .76 .78 .70 .57 .18 .75 .72 .70 .70 .79 .58 .41 .68 .79
G3 .88 .85 .90 .79 .64 .49 .61 .69 .88 .87 .85 .78 .71 .01 .01 .74 .89
G4 .64 .37 .59 .53 .57 .63 .58 .40 .63 .55 .55 .52 .61 .32 .33 .50 .67
mean .78 .67 .78 .70 .67 .60 .60 .43 .77 .74 .73 .69 .72 .31 .21 .64 .80
G1 .24 - .09 .42 .03 .21 - .22 - - .44 .24 .02 .07 - .25 .44

S2 G2 .61 .64 .61 .87 .86 .80 .80 .77 .74 - .64 .83 .83 .82 .82 .77 .86
G3 .58 .38 .54 .51 .62 .50 .57 .65 .38 - .52 .50 .60 .47 .39 .03 .68
G4 .81 .82 .72 .56 .62 .76 .74 .80 .77 .37 .66 .41 .65 .11 .46 .78 .83
mean .56 .46 .49 .60 .54 .57 .53 .61 .48 .09 .57 .50 .53 .37 .42 .46 .71
G1 .55 - .45 .68 .65 .53 .20 .42 - .79 .20 - - .07 - - .81

S3 G2 .73 .76 .78 .80 .82 .74 .72 .77 .68 .78 .22 .77 .67 .78 .56 .39 .83
G3 .81 .72 - .60 .34 .10 - .01 .61 .43 .56 - - - - - .80
G4 .56 .60 .51 .56 .18 .42 .46 .56 - .61 .19 - - - - - .62
mean .67 .52 .44 .67 .50 .45 .35 .44 .33 .66 .30 .19 .17 .21 .14 .10 .77

Note: G1 is gesture 1 using index finger. G2 is gesture 2 using middle finger. G3 is gesture 3 using ring finger. G4 is gesture 4 using little finger. C1-C16
indicate the sEMG channel one to sEMG channel sixteen. Co indicates the combination of the best eight channels with the mean value of sEMG signal.
The numbers in the table are the Coefficient of determination r2. The symbol ”-” in the table means the GA algorithm cannot reach an optimised output
in a period of time, or the output is a negative.

Fig. 8. The estimated forces change with different channel combination
of subject 1. S1-G1 means Gesture one of first subject, and so forth.

Fig. 9. The estimated forces change with different channel combination
of subject 2. S2-G1 means Gesture one of first subject, and so forth.

Fig. 10. The estimated forces change with the number of channel selected
of subject 3. S3-G1 means Gesture one of first subject, and so forth.

been answered. Firstly, for a task of pure force estimation
from sEMG signal (no physiological factors are considered
), it is practical to estimate the force only using muscular
activations without muscular dynamic models. The process of
muscle activation extraction can refer to Figure 6. Secondly,
the results of this paper have shown that it is able to
estimate the forces through the 16-channel sleeve regardless
of muscle positioning on the forearm. Thirdly, this paper
suggests to utilise six sEMG channels of he sEMG Sleeve to
estimate the forces. These six channels are selected according
to the capability of single channel performance, and the
channels with high accuracy would be selected. Based on
the above three points, a standard procedure for finger force
estimation through sEMG sleeve can be concluded. The
first step is performance evaluation for every single channel.
Then, determine how many and which channels can be used
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to form a combination for every specific gesture. Finally,
utilise the selected channel to evaluate the forces in practical
applications.
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