
SNAC Based Near-Optimal Controller for Robotic

Manipulator with Unknown Dynamics

Samrat Dutta∗ and Laxmidhar Behera

Abstract—A near optimal control technique for robotic manip-
ulator with completely unknown dynamics is described in this
work. Obtaining the optimal control law u∗ depends on solving
Hamilton Jacobi Bellman equation but getting an analytic solu-
tion is not possible for unknown models. It is shown that instead
of solving HJB equation analytically, the optimal control law can
be obtained through learning of a Single Network Adaptive Critic
(SNAC). The generic nonlinear model of manipulator dynamics
is represented as Takagi-Sugeno-Kang fuzzy combination of local
linear models. A stabilizing fixed gain controller is designed
for the TSK fuzzy system using an unconventional Lyapunov
function that is used to represent the value function. Stable
Lyapunov P(l) matrices are selected using the Genetic Algorithm
(GA) Toolbox in Matlab. This approach avoids the learning of
initial cost that can be accumulated by an existing controller. The
critic is trained to approximate the optimal cost J∗ by renewing
the policy in iterations. Validation of the proposed technique is
done through simulation on a robotic manipulator model. Results
show the effectiveness of the presented work.

Index Terms—single network adaptive critic, system identi-
fication, fuzzy Lyapunov function, nonlinear systems, genetic
algorithm.

I. Introduction

Importance of robotic manipulators is increasing rapidly

in modern life. Humans are replaced by the robots where

accuracy, precision or repeatability are the foremost criterion

to execute certain tasks. Real time pick and place jobs where

sequence of sub tasks are needed to be accomplished within

a specified time, robotic manipulators making their presence

increasingly. Optimal control of robotic manipulators could be

very helpful for such problems.

It is well known that dynamic programming technique

provides the most comprehensive formulation to solve non-

linear optimal control problem in state feedback form [1]

[2]. In dynamic programing, a multistage decision problem

is solved and the goal is to minimize a cost function over

time. The control action has to be decided at each time instant

based on the present system states, in order to minimize the

function in long run. To stay on the optimal trajectory, the

control solution has to satisfy Hamilton-Jacobi-Bellman (HJB)

equation. However, solving the associated HJB equation is

easier for linear dynamic systems. But the HJB equation of

Samrat Dutta is doctoral student at Department of Electrical Engineering,
Indian Institute of Technology Kanpur, PIN 208016, Uttar Pradesh, India
(email: samratd@iitk.ac.in)

Laxmidhar Behera is professor, Department of Electrical Engineering,
Indian Institute of Technology Kanpur, PIN 208016, Uttar Pradesh, India
(email: lbehera@iitk.ac.in)

a nonlinear dynamical system is a differential equation where

the solution is not straight forward and requires knowledge of

the system dynamics. Moreover, solving such HJB equation

demands huge computation and data storage facility [3]. This

problem is resolved by introducing approximate dynamic pro-

gramming (ADP) where authors [4] solve for a near optimal

solution instead of exact solution. This formulation is known

as Adaptive Critic (AC) network. In general AC formulations

deal with two Neural Networks which work as actor and

critic and utilize system dynamic information during initial

training. An adaptive reinforcement learning-based solution

is found in [5] where two neural networks are used to

solve infinite-horizon optimal control problem of constrained-

input continuous-time nonlinear systems. While this approach

deals with two networks, [6] uses single network to get the

approximate solution for a class of systems. It is shown that if

the partial knowledge about the system dynamics is available

for a input affine system, single network adaptive critic can ef-

ficiently solve the optimal control problem. However, most of

the approaches discussed above are for discrete time systems.

A critic based optimal controller for continuous time system

is proposed by [7] where advantage updating is introduced by

the author to train the neural network. Single network adaptive

critic is used by [8] to obtain the optimal solution in continuous

time. However, the methodology presented here, leads to an

underdetermined system and least square technique is used to

get the optimal solution. [9] overcomes the problem where

the critic network learns the value function using optimal

policy. However, all the techniques cited here, use at least

partial knowledge of the system. This motivates us to work

for an algorithm that gives a near optimal solution for a

optimal control problem even if the dynamic information is

unavailable.

SNAC is used to solve an optimal control problem of a

robotic manipulator where the input matrix of the system is

known [10]. The methodology presented here, approximates

initial value function using a TSK fuzzy network. The fuzzy

network is then learnt to approximate the optimal cost by up-

dating optimal policy. However, it is experienced that finding

stable weight matrices is not very straight forward for highly

nonlinear systems like robotic manipulators. There could be

number of solutions of weight matrices for which the network

training error is minimum but it is not necessary that each

solution will lead to a stable controller unless we choose them

wisely. This motivates us for the current work where Genetic

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 98

Algorithm is used to select the stable weight matrices.

Rest of the paper is arranged in the following manner: sec-

tion II describes the formulation of optimal control problem.

Proposed solution methodology is discussed in section III.

Findings of the present work is discussed in section IV and

the conclusion is given in section V.

II. Problem description

Robotic manipulators are inherently nonlinear and involve

multi-body dynamics. Let us consider an m-link robotic ma-

nipulator model in state space form

ẋ =

[

0 1

0 −M−1(θ)C(θ)

]

x +

[

0

M−1(θ)

]

u

= Ax + Bu (1)

here M(θ) ∈ ℜm×m represents the mass matrix which is real

and positive definite for a m-link manipulators, C(θ, θ̇) ∈ ℜm×m

contains centrifugal and Coriolis force related terms, u ∈ ℜm

represents the combination of applied joint torque and torque

due to gravity, acting on the joints and θ ∈ ℜm represents

the joint angles of the arm. On the other hand, A ∈ ℜ2m×2m,

B ∈ ℜ2m×m and x = [θ θ̇]T defines the system states.

Thus, we formulate the optimal control problem as the fol-

lowing. Given a continuous time nonlinear system represented

by (1), design a controller u = f (x) that stabilizes the system

(1) and minimizes the infinite-horizon cost (2) without the

knowledge of system dynamics.

J(x(t0),u(t0)) =

∫ ∞

t0

(xTQx + uTRu) dt

=

∫ ∞

t0

ϕ(x,u), (2)

here, Q ∈ ℜ2m×2m is positive semi definite, R ∈ ℜm×m is

positive definite matrices.

III. Solution methodology

Starting with a completely unknown system (1) we first

learn system dynamics as a TSK fuzzy system in state space

form of local linear models from input-output data.

ẋ = A(x)x + B(x)u, (3)

where A and B are fuzzy representation of system and

input matrix respectively. Learning of initial value function

might be difficult when the system is highly nonlinear, since

there exists many solution of weight matrices of Lyapunov

function. Thus we are motivated to design an initial stable

fixed gain controller which helps us to avoid initial value

function learning and to start with stable weight matrices.

We design a stable fuzzy controller u0(x) = f0(x) for system

(3) and eventually achieve a near optimal controller for the

nonlinear system using single network adaptive critic. The

Hamiltonian of the above optimal control problem can be

expressed as

H(x, λ,u) = ϕ(x,u) + λT (Ax + Bu), (4)

where λ = ∂J
∂x

is the co-state vector of the system. The control

law u is optimal when it satisfies the necessary condition,

∂H(x, λ∗,u)

∂u
=
∂ϕ

∂u
+ λ
∗T ∂

∂u
(Ax + Bu) = 0. (5)

The following expression for the control law u can be obtained

by solving (5).

u∗ = −
1

2
R−1BT

λ
∗, (6)

where co-state vector λ∗ = ∂J
∗

∂x
is along the optimal trajectory

in the state space and J∗ is the optimal cost. It’s well known

that the optimal cost satisfies the Hamilton-Jacobi-Bellman

equation:
∂J∗

∂t
+min

u
H(x, λ∗,u) = 0. (7)

Equation (7) completes the solution of optimal control prob-

lem of system (1). However, obtaining an analytical solution of

the optimal control problem of such a system (1) is a difficult

task since the solution depends upon J∗. We take a different

approach where the optimal cost is learnt over time instead of

searching for an analytical solution.

We propose the design of near optimal controller in three

stages as the following:

• Identification of system dynamics as TSK fuzzy model.

• Design of stabilizing controller.

• Policy Iteration (PI) based learning of optimal control

law.

A. Identification of system dynamics as TSK fuzzy model

We represent the system in n-dimensional state space model

where the states are controlled by m-dimensional control

input. Since we are interested in the dynamic model of the

system, we consider a Takagi-Sugeno-Kang fuzzy logic based

parametric system identification technique [11], where the

system is represented with minimum number of rules. Thus,

fuzzy rule base of L rules that defines the system dynamics

(1), can be stated as the following

lth rule:

IF x1(t) is Γl
1

AND · · · AND xn(t) is Γln THEN

ẋ(l)
= A(l)x + B(l)u (8)

where

Al
=

al
11

al
12
. . . al

1n

al
21

al
22
. . . al

2n
...

...
. . .

...

al
n1

al
n2
. . . alnn

Bl
=

bl
11

bl
12
. . . bl

1m

bl
21

bl
22
. . . bl

2m
...

...
. . .

...

bl
n1

bl
n2
. . . blnm

Overall model is be given by

ẋ =
Σ
R
l=1

w(l)Al

Σ
R
l=1

w(l)
x +
Σ
R
l=1

w(l)Bl

Σ
R
l=1

w(l)
u (9)

= Ax + Bu (10)

99

where A and B are the fuzzy aggregated system matrices and

Γ
l
j
, j = 1, 2, · · · , n, is the jth fuzzy set of the lth rule. The rule

membership degree w(l), associated with the lth rule is defined

as

w(l)
=

n
∏

j=1

µlj(x j), (11)

where µl
j
(x j) is the membership value of the fuzzy set Γl

j
,

l = 1, 2, · · · , L. In this work, we consider Gaussian function

as Γl
j
.

B. Design of stabilizing controller

The controller we design for stabilization of system (10),

is conceptually a fixed gain state feedback controller [12].

The use of this controller is to get starting P(l) matrices of

Lyapunov function for the system. Since, our main objective

is not designing a fuzzy controller, we choose to design a fixed

gain controller. Thus, the stabilizing controller can be given

by

u0 = Kx (12)

Control law (12) gives the closed loop system dynamics as

following

ẋ =

L
∑

l=1

σl
(

A(l)
+ B(l)K

)

x (13)

Here σl is the membership grade of lth rule that follows
L

∑

l=1

σl = 1 and is defined by

σl =
w(l)

L
∑

l=1

w(l)

2
(14)

1) Conditions for stabilization: We select a fuzzy function

(15) [13]

V(x(t)) = 2

∫ x0

0

⊖(s) · ds (15)

Here, s ∈ ℜn and ⊖(s) = [Ψ1(s),Ψ2(s), ...,Ψn(s)]
T . However,

V(x(t)) to be considered as a Lyapunov function, it should be

independent of state trajectory, i.e.

∂Ψi(x)

∂xj
=
∂Ψ j(x)

∂xi
(16)

for i, j=1,2,...,n ;

Let us choose a fuzzy function ⊖(s) such that

lth rule:

IF x1(t) is Γl
1

AND · · · AND xn(t) is Γln THEN

⊖(l)(x) = P(l)x (17)

for l=1,2,...,L. Here, P(l) ∈ ℜn×n is symmetric positive definite

matrix and fuzzy aggregation of (17) is given as

⊖(x) = P(x)x =
Σ
L
l=1

w(l)P(l)

Σ
L
l=1

w(l)
x (18)

Thus, the following theorem can be stated from [13].

Theorem 1: V(x) is a Lyapunov function candidate if there

exists P(l)
= P̂ + D(l) > 0 such that

P̂ =

0 p12 . . . p1n

p12 0 . . . p2n

...
...
. . .

...

p1n p2n . . . 0

(19)

and

D(l)
=

d
(l)

11
0 . . . 0

0 d
(l)

22
. . . 0

...
...
. . .

...

0 0 . . . d
(l)
nn

(20)

The off diagonal terms of P matrices will remain same for

all the rules. The diagonal elements construct different Ps for

each rule. It can be shown that (15) is a generic form of

conventional Lyapunov candidate function V(x) = xTPx where

P = P̂ + D̂ and D̂ is the fuzzy aggregated form.

Thus, time derivative of Lyapunov function of the closed

loop system (13) can be given by

V̇(x(t)) = xTPẋ + ẋTPx

= xT

L
∑

i=1

σiP
(i)

L
∑

j=1

σ j

(

A(j)
+ B(j)K

)

+

L
∑

j=1

σ j

(

A(j)T
+KTB(j)T

)

L
∑

i=1

σiP
(i)

x (21)

Therefore, the stability condition can be stated by the

following theorem.

Theorem 2: The system described in (3) is asymptotically

stable with the controller (12) if there exists P̂, D(l), and K

such that

P(l)
= P̂ + D(l) > 0 (22)

P(l)A(l)
+ P(l)B(l)K + A(l)TP(l)

+KTB(l)TP(l) < 0 (23)

P(i)A(j)
+ P(i)B(j)K + A(j)TP(i)

+KTB(j)TP(i)
+

P(j)A(i)
+ P(j)B(i)K + A(i)TP(j)

+KTB(i)TP(j) < 0 (24)

where, l = 1, 2, ..., L i = 1, 2, ..., L − 1 and j = i + 1,, L

This is a constrained search problem that we solve using GA

toolbox in Matlab. GA searches stable P(l) and K that satisfy

above constraints.

2) Design of fitness function: Fitness function assigns a

fitness value to each genome and the reproductive ability

of a genome is decided by the fitness value. Selection and

preservation of good genomes depend on the fitness function

design. Algorithm 1 shows the design of fitness function which

is used in the Genetic Algorithm to select initial weights.

100

Algorithm 1 Fitness function for initial weight selection

P(l) ← P̂ + D(l), P0 ← 0

for each l ∈ L do

Λmin ← min eigenvalue o f P(l)

if Λmin < 0 then
P0 ← P0 − Λmin × N0 [N0 is a large positive number]

end if

end for

if P0 > 0 then

return P0

else

for each l ∈ L, i ∈ L1 and j ∈ L2 do
Λmax ← max eigen value o f M [M represents the left
hand side of equation (23) - (24)]

end for

P1 ← max o f Λmax

return P1

end if

C. Policy iteration (PI) based learning of optimal control law

This section presents the learning of near optimal controller.

Single network adaptive critic methodology is utilized to

approximate the infinite horizon cost. We use the same fuzzy

sets for the SNAC, which is generated during identification of

system dynamics. Critic network can be used to approximate

the value function J(x) or the co-state vector λ(x) on the

optimal state trajectory. Here, we are motivated to approximate

J(x) as V(x) in (17). Thus, V(x) is given by [10]

Vc(x(t), t) =

∫ ∞

tc

(

xT (t)Qx(t) + uTc (x)Ruc(x)
)

dt. (25)

Here, subscript c indicates the time stamp of time tc at which

the value function is estimated. The complete derivative of

V(x(t), t) along the system state trajectory can be described as

V̇(x, t) =
∂V(x, t)

∂t
+

(

∂V(x, t)

∂x

)

ẋ(t)

=
∂V(x, t)

∂t
+

(

∂V(x, t)

∂x

)

[Ax + Bu] ,

(26)

To stay along the optimal system state trajectory, (26) has to

satisfy the Hamilton-Jacobi-Bellman equation (7). This leads

(26) to

V̇(x, t) = −ϕ(x,u). (27)

This implies asymptotic stability while staying on optimal state

trajectory.

Since, we are motivated to learn the optimal control law

u∗, we exploit a learning methodology [14] where the critic

network is trained to approximate the optimal cost J∗. As the

training progresses, the SNAC eventually learns to predict the

optimal cost. We start with the stabilizing controller (12) that

we design in previous section and collect cost-to-go in each

T time to learn the optimal value function. The scheme is

presented as follows

Vi(x(t0)) =

∫ t0+T

t0

(xTQx + uTi Rui) dt + Vi(x(t0 + T)) (28a)

ui+1(x) = −
1

2
R−1BT ∂Vi

∂x
(28b)

Here, subscript i denotes iteration index. At ith iteration, critic

network estimates Vi(x(t)) in (28a) and policy is renewed to

ui+1(x) at (i + 1)th iteration. It is evident from (28a) that the

cost is the result of optimal control policy (28b). Hence, as the

learning progresses, it falls on the optimal trajectory and critic

network eventually learns to approximate the optimal cost.

1) Update of critic weight matrices: Cost-to-go can be

represented as summation of cost accumulated in time t0 to T

and cost-to-go at time T , while staying on optimal trajectory.

Thus the incremental cost can be given by the following

∆V(x(t0)) =

∫ t0+T

t0

(xTQx + u∗
T
Ru∗) dt (29)

When the network is trained properly, the difference between

predicted costs at tth
0

and (t0 + T)th instants should be same as

∆V(x(t0) in (29). Therefore, the Genetic Algorithm finds those

weights of critic network for which ‖∆V(x(k)) − (V(P(k) −

V(P(k + T))‖ is minimized. This must be noted that the

stabilization criterion should be satisfied while minimizing the

error norm.

Algorithm 2 Fitness function for PI based training

P(l) ← P̂ + D(l), P0 ← 0, P1 ← 0

for each l ∈ L do

Λmin ← min eigenvalue o f P(l)

if Λmin < 0 then
P0 ← P0 − Λmin × N0 [N0 is a large positive number]

end if

end for

if P0 > 0 then

return P0

else

for each l ∈ L, i ∈ L1 and j ∈ L2 do
Λmax ← max eigen value o f M [M represents the left
hand side of equation (23) - (24)]
if Λmax > 0 then
P1 ← P1 + Λmax × N1[N1 < N0, is a large positive number]

end if

end for

if P1 > 0 then

return P1

end if

P2 ← ‖∆V(x(k)) − (V(P(k) − V(P(k + T))‖

return P2

end if

101

Ẑ0,1

O,O1

Ŷ1

Ŷ 2

C2

O2

X̂2

lC2

lC1

E

Ẑ2

X̂0

C1

X̂1

q2

q1

q1

Fig. 1: A manipulator with 2-DOF

2) Fitness function for PI based training: A fitness value is

assigned to each genome by the fitness function, based on the

output of the function. The fitness function that is used in this

phase of learning, by the GA is in fact some augmentation of

the previous fitness function. Algorithm 2 shows the design of

the fitness function.

IV. Simulation

Let us consider a manipulator of two Degree of Freedom

(DOF) given in Fig. 1 [15].

Where the mass of link 1 & 2 are given by m1 and m2

respectively and the inertia matrices at the center of mass of

both the links are given by

IC1
=

Ixx1 0 0

0 Iyy1 0

0 0 Izz1

, and IC2
=

Ixx2 0 0

0 Iyy2 0

0 0 Izz2

For the given manipulator configuration (1) can be repre-

sented as

[

m11 m12

m21 m22

] [

q̈1
q̈2

]

+

[

c11 c12
c21 c22

] [

q̇1
q̇2

]

=

[

u1
u2

]

(30)

where mi j and ci j, i = 1, 2; j = 1, 2 are the elements of M

and C respectively. And q = [q1 q2]T and u = [u1 u2]T

m11 = m1l
2
C1
+ Izz1 + m2l

2
1
+ m2l

2
C2
+ Izz2 + 2m2l1lC2

(cosq2)

m12 = m2l
2
C2
+ Izz2 + m2l1lC2

(cosq2)

m21 = m12

m22 = m2l
2
C2
+ Izz2

c11 = −2m2l1lC2
q̇2(sinq2)

c12 = −m2l1lC2
q̇2(sinq2)

c21 = m2l1lC2
q̇1(sinq2)

c22 = 0

The specifications of the manipulator are as the following:

m1 = 5.768 kg, m2 = 1.802 kg, l1 = 0.6 m, l2 = 0.37 m

lc1 = o.26 m, lc2 = 0.216 and Ixx1 = Ixx2 = 0, Iyy1 = Iyy2 = 0,

Izz1 = 0.135, Izz2 = 0.0593.

The dynamic model of the manipulator is presented here to

generate input-output data set for system identification. The

system model information is not used during the controller

design. Training data can be generated using the existing

controller. Though random input-output data points can also

be used for system identification. It should be noted that the

data set should cover all operating regions of the manipulator

workspace. The design methodology is described in three

steps.

Step 1. The nonlinear manipulator model is identified as

a TSK fuzzy model (3) in state space form where each

joint position and velocity are the system states. 30000 data

points with sampling rate of 5ms are used to learn the system

dynamics. We represent the fuzzy model by seven rules. The

Gaussian functions are chosen as fuzzy set in the rule base.

GA finds proper mean and variance of the fuzzy sets. The

procedure is given in [11]. Fig 4 shows the estimated output

from TSK fuzzy model for testing data.

Step 2. The proposed methodology avoids learning of the

value function with initial controller. The identified TSK fuzzy

model is used to select the initial stable weights of the critic

network. The procedure involves finding stable Lyapunov P(l),

l = 1, 2, .., L matrices. Algorithm 1 shows the fitness function

design which is used by GA to find initial weights. GA

searches for suitable P(l) and K for which equation (22) to

(24) satisfy. Algorithm 1 is coded as the fitness function of

the search problem. For this example, we take N0 = 1025.

The controller in (6) is a stabilizing controller where λ∗

is associated with stable P(l) matrices and R = I ∈ ℜ2.

Fig. 2 shows the state evolutions when stabilizing controller

is used. Results are presented for both the cases of known and

unknown input matrix B.

In the figure, plot ‘a’ is associated with known input matrix

B, where as plot ‘b’ is associated with unknown input matrix.

It is evident that almost similar controller performance can be

obtained without knowing the system dynamics.

Step 3. Finally, the critic weights are updated by improving

the policy to approximate optimal cost-to-go from a given

state. In this example we select T = 0.5 sec, R = I ∈ ℜ2

and Q = 10 ∗ I ∈ ℜ4 where I represents identity matrix.

The manipulator is operated to collect data points for optimal

training of the critic network. The system is left to evolve

from some initial joint positions to desired positions under

the influence of controller (28b). All the states, control inputs

and associated cost are stored with corresponding time stamp

at each T time. The critic network is updated when 1000 such

data points are collected. GA finds another set of P(l) matrices

that minimize the error norm. Fitness function for this part of

training is given in Algorithm 2 where N1 = 1015. The policy

is renewed by the solution provided by GA and the process

continues. The results are shown after five such updates.

Fig. 3 shows time evolution of system states and controller

output after the critic is iteratively trained with updated policy.

Since states are penalized more during the training with

optimal control law, the driving input is relaxed to increase

in magnitude. All the simulations are done for seven seconds

and with same initial points, so that a good comparison can be

made and the conclusion can be obtained easily. Fig. 5 depicts

102

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7

x
1

time (sec)

a
b

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0 1 2 3 4 5 6 7

x
2

time (sec)

a
b

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7

x
3

time (sec)

a
b

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0 1 2 3 4 5 6 7

x
4

time (sec)

a
b

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 1 2 3 4 5 6 7

u
1

time (sec)

a
b

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0 1 2 3 4 5 6 7

u
2

time (sec)

a
b

Fig. 2: Validation of control law before policy update

103

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7

x
1

time (sec)

a
b

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0 1 2 3 4 5 6 7

x
2

time (sec)

a
b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7

x
3

time (sec)

a
b

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 1 2 3 4 5 6 7

x
4

time (sec)

a
b

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 1 2 3 4 5 6 7

u
1

time (sec)

a
b

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0 1 2 3 4 5 6 7

u
2

time (sec)

a
b

Fig. 3: Validation of control law after policy update

104

-6

-4

-2

 0

 2

 4

 6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

jo
in

t
a

c
c
e

le
ra

ti
o

n
 1

data points

actual
estimated

-8

-6

-4

-2

 0

 2

 4

 6

 8

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

jo
in

t
a

c
c
e

le
ra

ti
o

n
 2

data points

actual
estimated

Fig. 4: Validation with test data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7

C
o

s
t

time (sec)

c
b
a

Fig. 5: Comparison of cost

convergence of cost on optimal trajectory. In the figure, plot

‘c’ denotes the cost that is generated by the initial control law

before the critic is trained to estimate optimal cost. Plot ‘a’

indicates the cost when the original input matrix B in (1) is

used to generate control input in (28b) and plot ‘b’ shows the

cost when the control input is generated using fuzzy estimated

input matrix B from (3). It’s evident from the results that

optimal performance in both the cases are comparable.

V. Conclusion

The present work describes the methodology of obtaining

a near optimal control law for robotic manipulators where the

dynamic information of the system is completely unknown.

Learning of initial value function is avoided with the intro-

duction of fixed gain controller and use of an unconventional

Lyapunov function gives simple stability criteria on weight

matrices. The stability criteria are incorporated in GA fitness

function to ensure stability. Simulation results show that such

updates with renewed policy proceeds towards optimality and

the TSK fuzzy model that is learnt from input-output data, can

be utilized for near optimal control problems.

References

[1] F. Lewis, “Applied optimal control and estimation.” Prentice-Hall, 1992.
[2] D. S. Naidu, Optimal Control Systems. CRC Press, 2003.

[3] J. Ding, S. Balakrishnan, and F. Lewis, “A cost function based single
network adaptive critic architecture for optimal control synthesis for a
class of nonlinear systems,” in Neural Networks (IJCNN), The 2010

International Joint Conference on, July 2010, pp. 1–8.
[4] P. J. Werbos, “Approximate dynamic programming for real-time control

and neural modeling,” in Handbook of Intelligent control, D. A. White
and D. A. Sofge, Eds. Multiscience Press, 1992.

[5] X. Yang, D. Liu, and D. Wang, “Reinforcement learning for adaptive
optimal control of unknown continuous-time nonlinear systems with
input constraints,” International Journal of Control, vol. 87, no. 3, pp.
553–566, 2014.

[6] X. W. Radhakant Padhi, Nishant Unnikrishnan and S. Balakrishnan, “A
single network adaptic critic (snac) architecture for optimal control,”
Neural Networks, vol. 19, pp. 1648–1660, 2006.

[7] L. C. B. III, “Reinforcement learning in continuous time: advantage
updating,” IEEE World Congress on Computational Intelligence., pp.
2448–2453 vol.4, 1994.

[8] R. P. Swagat Kumar and L. Behera, “Direct adaptive control using single
network adaptive critic,” IEEE International Conference on Systems of

Systems Engineering, 2007.
[9] N. H. S. Prem Kumar Patchaikani, Laxmidhar Behera and G. Prasad,

“A t-s fuzzy based adaptive critic continuoust-time input affine nonlinear
systems,” IEEE International Conference on System, Man and Cyber-

netics, 2009.
[10] S. Dutta and L. Behera, “Policy iteration based near-optimal control

scheme for robotic manipulator with model uncertainties,” IEEE Multi-

Conference on Systems and Control, 2013.
[11] A. Patnaik, S. Dutta, and L. Behera, “Data driven system identification

using evolutionary algorithms,” Lecture Notes in Computer Science, vol.
7665, pp. 568–576, 2012.

[12] K. Tanaka and H. O. Wang, Fuzzy Control Syatems Design and Analysis.
New York: Wiley, 2001.

[13] B. J. Rhee and S. Won, “A new fuzzy lyapunov function approach for a
takagi-sugeno fuzzy control system,” Fuzzy Sets and Systems, vol. 157,
pp. 1211–1228, 2006.

[14] P. K. Patchaikani and L. Behera, “Online policy iteration scheme for
continuous time nonlinear systems with partially known dynamics,”
International conference on Advances in Control and Optimization of

Dynamical Systems, 2012.
[15] J. J. Craig, Introduction to robotics: Mechanics and Control. Pearson,

2009.

105

