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Abstract— Improving the use of energy resources has been
a great challenge in the last years. A new complex scenario
involving a decentralized bidirectional communication between
energy suppliers, distribution system and consumption is nowa-
days becoming reality. Sometimes cited as the largest and most
complex machine ever built, Electric Grids (EG) are been
transformed into Smart Grids (SG). Hence, the load forecasting
problem has become more difficulty and more autonomous load
predictors are needed in this new conjecture. In this paper
a novel method, so-called MSES, bio-inspired by Evolution
Strategies (ES) combined with Multi-Start (MS) procedure is
described. This procedure is mainly based on a self-adaptive
algorithm to calibrate the parameters of the fuzzy rules. MSES
was implemented in C++ via OptFrame framework. Our main
goal is to evaluate the performance of this algorithm in a grid
environment. Real data from an electric utility have been used
in order to test the proposed methodology. The obtained results
are fully described and analyzed.

I. INTRODUCTION

ELECTRIC grids are changing from a centralized single
supply model towards a decentralized bidirectional grid

of suppliers and consumers. In this new environment, so-
called Smart Grid (SG), a dynamic scenario filled with
uncertainty is reality.

Rogers et al. [1] highlight that the demand side, con-
sumers, will have to adapt to the available resources, in
contrast to the current model in which the supply should
always match the demand. In most countries, the migration
to this new business model and the implementation of the SG
has as its starting point the installation of smart meters [2]
and sensors in residences and commercial buildings. On the
other hand, if one considers the incentives and global efforts
to reduce emissions of greenhouse gases, the supply side
also becomes increasingly complex and difficult instead of
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being managed, since the final amount of energy in the power
system is going to be formed by conventional central-station
power units and a growing number of systems for generating
renewable energy (primarily wind and photovoltaic units [3]).

Considering measurement systems with fast acquisitions
rates (short-term), typically 15 to 30 minutes, one can expect
a large amount of detailed data about the condition of the
electrical network to be converted into valuable and useful
information. These data are not only useful in single class
problems, these huge datasets are now available in different
ways to allow researchers from distinct areas to develop
solutions for multifunctional and high complex problems.
This current work is mainly focused on load forecasting in
a SG scenario, whereas traditional forecasting methods have
many limitations to tackle big data [4].

Predictive energy models can be developed using various
Artificial Intelligence techniques, such as Artificial Neural
Networks (ANN), fuzzy logic, data mining, mathematical
programming and heuristic methods [5], [6], [7], [8], [9],
[10], [11]. The need to develop high accurate models for
energy consumption forecasting is imminent, starting from
simple data mining and noise suppression methods to more
complete and efficient machine learning algorithms.

Grosman & Lewin [12] use an algorithm based on the
concept of Genetic Programming – GP [13] to generate a
prediction model for dynamic control with nonlinear assump-
tions. Kashid & Maity [14] proposes a model based on GP
for summer monsoon rains forecasting across India territory.
Vladislavleva et al. [15] perform a forecasting model for pre-
dicting power output of wind farms based on meteorological
data, using a hybrid method, integrating symbolic regression
with GP. Recently, Çelekli et al. [16] propose a hybrid model,
combining ANN with Gene Expression Programming (GEP)
[17], to a manufacturing metallurgy problem, involving the
forecasting of sorption of an azo-metal.

In terms of heuristic fuzzy algorithms, different approaches
can be found in the literature. Huarng [18] proposed heuristic
models by integrating problem-specific heuristic knowledge
with Chens model to improve forecasting, the heuristic
knowledge was used to guide the search for suitable fuzzy
sets for index forecasting. Sousa & Asada [19] proposed a
heuristic algorithm that employs fuzzy logic to the power sys-
tem transmission expansion planning problem. It was based
on the divide to conquer strategy, which is controlled by a
fuzzy system. The algorithm provides high quality solutions
with the use of fuzzy decision making. Recently, Zacharia
& Nearchou [20] proposed a metaheuristic algorithm for the
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fuzzy assembly line balancing type-E problem, a generalized
version of the problem with fuzzy task processing time
and line efficiency maximization was considered. Cheok
et al. [21] combine bigram Markov language models with
heuristic fuzzy rules to improve statistical language models
recognition accuracy. Heuristic procedures were used to
determine the confidence of the bigram model score and
optical character recognition results, in way to improve the
overall recognition accuracy.

In order to deal with energy forecasting problems, the use
of a class of bio-inspired metaheuristics combined with the
fuzzy logic is proposed. Consequent values of each fuzzy
rule are summed and the mean of this sum is considered
as the forecast value. The proposed approach in this paper
incorporates the power of the Evolutionary Algorithms to
adapt these fuzzy rules, calibrating it and improving the
forecasting performance of the proposed model.

In this context, Evolution Strategies – ES [22], stands out
as a robust and flexible framework which has been effectively
applied to many combinatorial optimization problems [23],
[24], however, up to the moment, with only sparse/none
applications in forecasting and prediction area. Thus, we
propose a heuristic algorithm based on Multi-Start – MS [25]
and ES metaheuristics. MS was used to generate good initial
solutions and ES procedure to refine these solutions.

The remainder of this paper is organized as follows. Sec-
tion II describes the generic problems where the new strategy
is aiming to tackle. Section III describes the proposed algo-
rithm. Section IV presents the computational experiments,
and, finally, Section V draws the final considerations and
future work.

II. FORECASTING PROBLEMS

The class of forecasting problems tackled in this work
can be defined as a set of discrete or real values M , where
M = {m1,m2, ...,mn}, such that mi ∈ R, represent the n
available measured values to perform the forecasting of finite
sequences P , where P = (pt+1, pt+2, ..., pt+k) ,or simply
Pn [26], such that pi ∈ R, k indicates the number of steps
to be predicted.

In this context, the complexity of the problem is directly
related to several factors such as:
• amount of missing data and outliers belonging to the

training set M ;
• measurement errors in M ;
• distribution and behavior of the data set M (non-

stationarity, degree of non-linearity, seasonality, ten-
dency, etc.);

• size of the training set M ;
• number of steps k to be forecast;
• among others.
In view of these basic attributes, the proposed method can

be adapted to tackle different areas and forecasting problems,
such as load forecasting in SG environment [27], and also
other areas, such as earthquake prediction [28], wind energy
forecasting [29], risk analysis for credit granting, among
others.

III. METHODOLOGY

A. Fuzzy model

The fuzzy model proposed in this paper is presented in
Eq. 1.

y(o) =

∑z
i=1 viω(oi − s.Ai) +

∑z
j=1 wjω(−oj + s.Bj)∑z

i=1 ω(oi − s.Ai) +
∑z
j=1 ω(−oj + s.Bj)

(1)
Each term of this equation is presented below:
• A, where A = {a1, a2, ..., az} are the upper bound

limits of the fuzzy rules;
• V , where V = {v1, v2, ..., vz} are the consequent value

of each rule in vector A;
• B, where B = {b1, b2, ..., bz} are the lower bound limits

of the fuzzy rules;
• W , where W = {w1, w2, ..., wz} are the consequent

value of each rule in vector B;
• ω can be any desired function (e.g trapezoid , sigmoid,

Heaviside step, among others).
Such that yi∈{A,V,B,W},j∈O ∈ R. The notation s.X

indicates that the vector X is related to a specific solution s.
Finally, these fuzzy rules can be seen as:
1) the difference from a current value oi and a given rule

in vector sAi
is multiplied by a weight sVi

.
2) the difference from a current value oj and a given rule

in vector sBj
is multiplied by a weight sBi

.
If the ω function is even the idea of the fuzzy rules sAi

and sBj would be essentially the same, otherwise, it could
be seen as the boundaries demarcating positive and negative
differences.

B. Solution representation

One solution is represented by a matrix R = [Y ], being
Y a matrix 4 × |O| of forecasting generations, where O =
{o1, o2, ..., oz} is the options vector with |O| = z options.
Possible choices for this options set O are measurements
from the set M , derivatives and integrals and the mean of
these values. The 4 lines of matrix Y represent the four
vectors that generate the forecasting, described in Section
III-A.

Figure 1 illustrates a possible solution using three options,
z(K − 1), z(K − 2) and z(K−1)+z(K−2)

2 or o1, o2 and o3,
respectively. Values used in this example were chosen arbi-
trarily. The first option is the measurement value z(K − 1),
the second option is the measurement z(K − 2) and the
third one is the average of these values (i.e. z(K−1)+z(K−2)2 ).
z(K) is denoted by the forecast value, if K ∈ P , or measured
value, if K ∈M , for a given time instant t. According to the
same idea, z(K − 1) is predicted or measured value for the
previous instant t− 1. If there is a need to use the values K
from the predicted set P , the accuracy and precision of the
algorithm is impaired. This aspect will be verified in Section
IV, since the data used in this work requires the forecasting
of the next 24 hours ahead. One last parameter, so-called
precision p, regulates the number of columns in each option.
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For instance, the chosen precision in Figure 1 was p = 1,
however, if a precision p = 10 had been chosen, this example
would have had 30 columns (i.e. p ∗ z).

M = {100, 105, 94, 85, 100, 101, 90, 120, 125, 115, 111}

k = 2 (i.e. 2 steps ahead)

s =


z(K − 1) z(K − 2)

z(K−1)+z(K−2)
2

A 87 95 103
V 70 80 95
B 100 90 110
W 110 50 80


Fig. 1. Solution example

C. Applying a solution with ω functions

Like the ANN, the method proposed here has several ways
to calibrate and train it, similar to that ones used on neural
networks. Algorithm 1 exemplifies how to apply a solution
using functions of a defined class ω.

Algorithm 1: Apply a solution using ω functions
Input: Solution s, options values O = {o1, o2, o3}
Output: Predicted value y

y ← 0; m← 01
for i← 1 To z do2

diffA = oi − s.Ai3
diffB = −oi + s.Bi4
applyA = ω(diffA)5
applyB = ω(diffB)6
y ← y + applyA ∗ s.Vi + applyB ∗ s.Wi7
m← m+ applyA+ applyB8

end9
y ← y/m10
return x11

In Lines 3 and 4, differences between the options values
and the ones on the solution are calculated. Lines 5 and 6
compute these differences and return abscissas of function
ω. In Line 7, estimation value y receives the weighted sum
of s.Vi and s.Wi. It should be noticed that divisor m is, in
this case, the sum of the weights applyA and applyB.

In this current version of the proposed algorithm, a sig-
moid function, with its range belonging to [0, 1], was also
proposed in way to reduce the discontinuity present in the
sum of Heaviside functions.

D. Applying a solution with Heaviside step function

Algorithm 2 exemplifies how to have a predicted value y
from a given solution s based on the Heaviside step function.

Line 3 of Algorithm 2 verifies if the option value from
the vector MOF (measured or forecast) has its value bigger
than option value in vector s.Ai. If bigger, the forecasting
value y consequently receives the application value of stored
in the vector s.Vi. The process is analogous for the other
two vectors s.Bi and s.Wi. Finally, in Line 12, variable y
becomes the average of all accepted values.

Algorithm 2: Apply a solution based on Heaviside step
function

Input: Solution s, options values O = {o1, o2, o3}
Output: Predicted value y

y ← 0; m← 01
for i← 1 To z do2

if oi > s.Ai then3
y ← y + s.Vi4
m← m+ 15

end6
if oi < s.Bi then7

y ← y + s.Wi8
m← m+ 19

end10
end11
y ← y/m12
return x13

Let, u(oi − t) =

{
1 for oi ≥ t
0 for oi < t

, be the Heaviside

step function. Thus,
Thus, in this case, the fuzzy model described in Eq. 1 of

Subsection III-A can be rewritten as presented in Eq. 2.

y(o) =

∑z
i=1 viu(oi − s.Ai) +

∑z
j=1 wju(−oj + s.Bj)∑z

i=1 u(oi − s.Ai) +
∑z
j=1 u(−oj + s.Bj)

(2)
The problem shown in Figure 1 prompts the forecast of

the next two steps (k = 2) (two hours ahead) subsequent to
the time instant t, in which the power consumption is equal
to 111. Therefore, in this case, to obtain the step t + 2, we
must feed solution s with values predicted in previous steps,
known as recursive prediction. Figure 2 presents the practical
application of this solution.

Step 1 - Time point t+ 1

P = {}

s(t+ 1) =


111 115 113

A 87 95 103
V 110 95 100
B 107 90 114
W 110 50 120


y = (110 + 95 + 100 + 120)/4 = 106.25
P = {106.25}

Step 2 - Time point t+ 2

P = {106.25}

s(t+ 2) =


106, 25 111 108, 625

A 87 95 103
V 110 95 100
B 107 90 114
W 110 50 120


y = (110 + 110 + 95 + 100 + 120)/5 = 107
P = {106.25, 107}

Fig. 2. Applying a solution s
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E. Objective function and solution evaluation

Given a set of discrete training points T ∈ M |T =
{t1, t2, ..., tρ}, where ρ ≤ n is the cardinality of the training
set, a solution s is evaluated from the forecasting of some
of these known points belonging to the set T .

In our approach, evaluating a solution s is basically
generate all possible forecasting of the set T and compare it
to the measured values. According to the designed options
(Section III-B), there is a part of the set that is necessary to
perform initial forecasting, and will not be used to evaluate
the solution s. For instance, the solution example depicted
in Figure 1 needs at least two measured points (z(K − 1)
and z(K − 2)) to start the solution evaluation. From a given
training set T = [100, 105, 94, 85, 100, 101] with ρ = 6 is
possible to make up to four forecasting (with k = 1), based
on these forecasting, different evaluation metrics can be used.
However, as the number of steps ahead in this example is
k = 2, only two forecasting could actually be done. Figure
3 exemplifies the evaluation of the solution given in Figure
1 with the training described above.

In the evaluating example presented in Figure 3, f fore-
casting were made, where f = (ρ − 2)/k and X =
{x1, x2, ..., xρ−2} is the set of forecasting values. With k = 2
and ρ = 6, the evaluation was made over the whole of f = 2
forecasting of two steps ahead. The forecasting set obtained
was X = {108.75, 106.25, 115, 95} against the training
measured set TM = {94, 85, 100, 101}. It is emphasized
that the values T − TM = {100, 105} were only used to
generate the initials forecasting.

The goal is to minimize the error
∑
ei = tmi−xi|∀i ∈ X ,

where tmi is the measured value at the same instant of time
prediction xi. Furthermore, the objective function can be any
desired quality indicator or even more than one, in case of
multi-objective approaches. In this paper, the main indicator
used was the MAPE (Eq. 3).∑

ei =
abs(tmi − xi)

tmi
|∀i ∈ X (3)

F. The MSES Algorithm

The proposed algorithm, called MSES, consists on the
combination of the metaheuristic procedures Multi-Start –
MS [25] and Evolution Strategy – ES [22]. From the MS
procedure, the construction phase was used to generate viable
and good quality initial solutions, as can be verified in the
BuildInitialRandomSolution procedure. The pseudocode is
outlined in Algorithm 3.

The initial population of the algorithm (lines 1 to 6 of
Algorithm 3) consists of µ individuals, and it is created
according to the BuildInitialRandomSolution procedure (line
2). This procedure consists in calculating the mean and
standard deviation of the available training set T , from
those two values, a normal distribution is used to generate
each value of the vectors A, B, V and W . In this work,
the options used were (z(K − 1), z(K − 2), z(K − 24),
z(K − 168), z(K − 336), z(K − 504), z(K − 672), average
values, derivative and integral of the last two previous values,

T = {100, 105, 94, 85, 100, 101}
X = {}

Forecasting f = 1
P = {}
Step 1

s(t+ 1) =


105 100 102.5

A 87 95 103
V 110 95 100
B 107 90 114
W 110 50 120


y = (110 + 110 + 95 + 120)/4 = 108.75
P = {108.75}
Step 2

s(t+ 2) =


108.75 105 106.97

A 87 95 103
V 110 95 100
B 107 90 114
W 110 50 120


y = (110 + 95 + 100 + 120)/4 = 106.25
P = {108.75, 106.25}
X = X ∪ P = {108.75, 106.25}

Forecasting f = 2
P = {}
Step 1

s(t+ 1) =


85 94 89.5

A 87 95 103
V 110 95 100
B 107 90 114
W 110 50 120


y = (110 + 120)/2 = 115
P = {115}
Step 2

s(t+ 2) =


115 85 106.97

A 87 95 103
V 110 95 100
B 107 90 114
W 110 50 120


y = (110 + 50 + 100 + 120)/4 = 95
P = {115, 95}
X = X ∪ P = {108.75, 106.25, 115, 95}

Fig. 3. Evaluating a solution s

z(K − 1) - z(K − 2)). Values z(K − 1) and z(K − 2)
correspond to the last two measured values, z(K−24) is the
demand at the same time on the last day, z(K − 168) (same
time on the last week), z(K − 336) (2 weeks), z(K − 504)
(3 weeks) and z(K − 672) (4 weeks) correspond to the
demand at the weekday and time on the last four weeks ago,
respectively. Average is the mean of those values and integral
is the sum of them. Finally, option derivative was based
on the instantaneous change rate of the last two measured
demand (z(K − 1) and z(K − 2)). For integral option, the
initial values of vectors A and B were generated using basic
operations involving trapezoids areas. As for the vector of
derivatives, the initial values were 0.

Finally, line 4 merges the MS solution s and the matrix of
standard deviations M (the use of this matrix can be verified
in algorithm 6), generated according to Algorithm 4. In this
sense, the following nomenclature is used: let indS be the
solution s of the individual ind; and let indM be the matrix
with the standard deviation values, with the same size of the
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Algorithm 3: MSES
Input: γ, Function f (.)
Input: r neighborhoods: NaddX1 , NaddX2 , NaddX... ,

NaddXr

Output: Population Pop

for i← 1 to µ do1

s← BuildInitialRandomSolution()2

M ← BuildStdVectors(startStdDesv)3

ind← s+M4

Popi ← ind5

end6

while stop criterion not satisfied do7

for i← 1 to λ do8

Generate a random number x ∈ [1, µ]9

ind← Popx10

ind← UpdateParameters(ind, σupdate)11

ind← ApplyMutation(ind)12

Popoffspringi ← ind13

end14

for i← 1 to κ do15

Generate a random number x ∈ [1, λ]16

end17

Pop = Selection (f , Pop, Popoffspring)18

end19

return Pop20

solution s (i.e., same number of rows and columns).

Algorithm 4: BuildStdVectors
Input: Standard deviation σstartStdDesv
Output: Standard deviation matrix M

for i← 1 to 4 do1

for o← 1 to z do2

Mi,o ← σstartStdDesv3

end4

end5

return M6

In line 11 of Algorithm 3 the mutation procedure is called
for the selected individual, the pseudocode of this procedure
is described in Algorithm 5.

Algorithm 5: UpdateParameters
Input: Individual ind and standard deviation σupdate
Output: Individual ind with its parameter matrix

updated

for i← 1 to 4 do1

for o← 1 to z do2

Mi,o ←Mi,o +N(0, σupdate)3

end4

end5

return ind6

For each position (i, o) in the matrix M of the Algorithm
5, a normal distribution, centered at mean zero and standard

deviation σupdate, is applied to update each value of this
matrix, as can be verified at line 3.

The procedure ApplyMutation (line 12 of the Algorithm
3) is illustrated in Algorithm 6.

Algorithm 6: ApplyMutation
Input: Individual ind
Output: Individual ind with its solution updated

for i← 1 to 4 do1

for o← 1 to z do2

indSi,o ← indSi,o +N(0,Mi,o)3

end4

end5

return s6

In line 3 of Algorithm 6 each position (i, o) of a solution s
related to a individual ind is updated according to a normal
distribution with mean equal to zero and std. deviation Mi,o.

The selection procedure (line 18 of the Algorithm 3) can
be any desired selection strategy, as long as the strategy
returns a population of size µ. We used two basic forms
of competition, both with the same notation of [22]. In
the first, denoted by (µ + λ), there is competition between
parents and offspring. In this strategy the µ best individuals
are selected among parents and offspring. In the second
selection strategy used, denoted by (µ, λ), individuals who
survive to the next generation are the µ best ones in the
offspring. It is clear that using the strategy (µ, λ) as a
way of selection, the population that survives to the next
generation suffers a considerable selective pressure, however,
this pressure becomes even greater when the strategy (µ+λ)
is used.

IV. COMPUTATIONAL EXPERIMENTS

The MSES algorithm was implemented in C++ in the
framework OptFrame 2.0 1 [30], [31]. This framework has
been successfully applied to other problems in the literature
(see [32], [33] and [34]).

It is important to point out that all code used in this
research is, from this moment, available as an example on
OptFrame core, as an open-source tool under GNU LGPL 3.

The tests were carried out on a OPTIPLEX 9010 Intel Core
i7-3770, 3.40 x 8 GHZ with 32GB of RAM, with operating
system Ubuntu 12.04.3 precise, and compiled by g++ 4.6.3,
using the Eclipse Kepler Release.

The dataset (Figure 4) used to validate the proposal was
obtained from the EirGrid Free Data [35]. It consists in
intraday electricity demand measurements for the 50 week
period from Monday, 7 January 2013 to Sunday, 22 De-
cember 2013 (8400 samples). All experiments used hourly
data. Two different groups of training and validation set were
created. The first one, so-called EG1-1, consists in the first 20
weeks (3360 samples) to train the algorithm, the remaining
ten weeks (1680 samples) to evaluate post-sample accuracy
of 24 hours ahead forecast, this experiment is similar those

1Available at http://sourceforge.net/projects/optframe/
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presented in Taylor & McSharry [36], but in that case a
private dataset, related to 10 Europeans countries, was used.
The second dataset, so-called EG1-2, presented in this paper
consists in 40 weeks (6720 samples) to train the algorithm
and a training set with the same characteristics as the last
one.

After some empirical analysis, MSES deviation parameters
were set as σstartStdDesv = 2 and σupdate = 1.

Fig. 4. EirGrid dataset – 07/01/2013 to 22/12/2013

A. Time-to-Target plot results

In this first experiment, a time-to-target plots (TTTplots)
was done to check the efficiency of the proposed algorithm
in reaching the solution currently used by the company.
Run time distributions or time-to-target plots display, on the
ordinate axis, the probability that an algorithm will find a
solution at least as good as a given target value within a
given running time, shown on the abscissa axis. Time-to-
target plots were first used in [37]. Run time distributions
have been advocated also in [38] as a way to characterize
the running times of stochastic algorithms for combinatorial
optimization.

Aiex et. al [39] described a Perl program to create time-
to-target plots for measured times that are assumed to fit
a shifted exponential distribution, closely following [40].
Such plots are very useful to compare different algorithms or
strategies for solving a given problem and have been widely
used as a tool for algorithm design and comparison.

A batch of 120 executions was made, algorithm MSES was
applied to solve the first proposed instance, EG1-1, with a
target MAPE equal to 3.6. The performance ended only when
the algorithm had found the target value. These times were
then sorted in ascending order, so that, for each execution
i = 1, 2, ..., 120 there is a time ti and a probability pi =
(i− 0.5)/120 associated. A time limit of 1200 seconds was
imposed to each execution. If the algorithm could not reach
the target solution, its execution was discarded. It should
be noticed that the target MAPE is related to the objective
function described in Section III-E. This target value does not
measure the quality indicator MAPE in the blind training set,
that is unknown and not evaluated in this stage.

Table I shows eight variants of the algorithm MSES,
created from different values for its parameters and fuzzy

Fig. 5. Superimposed empirical distribution

rules (objective function). Variants 1 to 4 have its population
with 30 individuals and 160 offspring, on the other hand
variants 5 to 8 have 100 parents and 600 offspring at each it-
erations. Two different selection strategies were proposed, as
described in Section III-F. Two different accuracies, namely
precision (as presented in Section III-B), were proposed.
The objective function 1 is the one using Heaviside function
(Section III-D), and 2 is the sigmoid function (Section III-C).

TABLE I
VARIANTS

Acronym µ λ Selection Precision Objective function
MSES1 30 160 (µ+ λ) 20 1
MSES2 30 160 (µ+ λ) 5 1
MSES3 30 160 (µ, λ) 5 1
MSES4 30 160 (µ, λ) 5 2
MSES5 100 600 (µ+ λ) 5 1
MSES6 100 600 (µ+ λ) 5 2
MSES7 100 600 (µ, λ) 5 1
MSES8 100 600 (µ, λ) 20 1

The results of the graph ti × pi are shown in Figure 5,
a superimposed empirical probability curve. It can be seen
that variant MSES1 presented the premature convergence,
since it did not reach the target 17 times. Variant MSES7
showed the best performance in reaching the given target
MAPE, presenting the lowest computational time and the
higher probabilities in reaching the target. Heaviside ob-
jective function (1) showed the best performance in terms
of computational time, on the other hand, sigmoid function
(2) reached the target in most time of its executions. This
result is entirely consistent, since the sigmoid function has
more neighborhoods and probably more ways to scape from
an attraction basin. Comparing variants with selection (µ, λ)
in relation to (µ + λ), one can conclude that low selective
pressure prevents premature convergence by high accurately
individuals in the parents set.

343



B. Benchmark results

The MSES7 variant was selected to perform this last
computational experiment. It was run 10 times for both
proposed instances (EG1-1 and EG1-2) with 20 minutes per
training. After the training, the algorithm was applied to a
blind forecasting on the remaining ten weeks, as explained
in the beginning of this section. As the validation has its
computational time less than 0.001ms, it is not considered.

Table II presents the obtained results. Column “Best”
present the best forecast, in terms of MAPE indicator, in 10
executions. Columns “Average” and “Std. Desv” indicates
the average MAPE of the blind training set and the standard
deviation, respectively.

TABLE II
COMPUTATIONAL RESULTS

MAPE
Instance Best (%) Average (%) Std. Desv

Heaviside step function (1)
EG1-1 3.46 3.81 0.16
EG1-2 2.37 2.46 0.07

Sigmoide function (2)
EG1-1 3.34 3.76 0.31
EG1-2 2.29 2.36 0.09

Analyzing Table II, it can be seen that MSES7 obtained
a good quality solution, regarding to MAPE indicator, with
standard deviation up to 0.31. Using sigmoid function (Sec-
tion III-C) the algorithm was able to perform slightly better
forecasts than using Heaviside step function (Section III-
D), but, this fact should be carefully analyzed in future
experiments due to statistical indicators indicating crossed
confidence intervals for both algorithms.

Finally, Figure 6 displays a forecasting example with the
blind validation set of EG1-2 instance, using the variant
MSES7, using objective function 2, on its best execution with
MAPE equal to 2.29%.

Fig. 6. Forecasting against measured values – EG1-2

V. CONCLUSIONS AND EXTENSIONS

In this paper, a class of energy load forecasting problem
with realistic assumptions was discussed. Despite its practical
relevance, this variant of load forecasting has received little

attention of heuristic based methods. Because of its difficulty
and large number of expected variables in a future Smart
Grid (SG) environment, a new framework for forecasting is
proposed. This new approach consists on a fuzzy algorithm
bio-inspired by Evolution Strategies, so-called MSES, com-
bining power of the constructive heuristic Multi-Start with
the natural bio-inspired procedure Evolution Strategy, going
through a large search space of feasible solutions.

From real based literature datasets, provided by EirGrid
[35], the algorithm efficiency was verified. It was capable to
find good quality solutions with low variability in reduced
computational time. Eight different variants of the MSES
were proposed, based on time-to-target empirical probability
experiment one variant was selected. Selected variant was
tested with two different dataset. The one that presented the
best results got an average MAPE of 2.37 %, competitive
with the current literature, as can be verified in [36]. Overall,
the proposed method proved to be a powerful tool that can
support short-term forecasting in a 24 hour-ahead model .

The success of the proposed method is promising, par-
ticularly in view of the method’s flexibility, as it is mainly
based on metaheuristics. Therefore, it can be used in various
everyday situations with minor adjustments. Ongoing work
is aiming to gain insight into the method and apply it to
other load forecasting configurations, using different load
forecasting horizons, extending the study for short and long
term load forecasting.

As future extensions for this work, it is proposed to
develop a multi-objective version of the problem addressed,
using different quality indicators to evaluate the solutions.

Furthermore, the inclusion of new objectives in vogue on
the SG context is proposed. Improve the algorithm to re-train
after new data acquisitions is also a requested requirement
in the SG. It is also propose to adapt this algorithm to other
forecasting problems, such as earthquake prediction, risk
analysis for credit granting, among others. Finally, a parallel
version of MSES would be an import future extension, in
order to take advantage of multi-core technology already
present in current machines and with easy abstraction for
heuristic algorithms. Entire code used in this research is,
from this moment, available as example on the OptFrame
website. Thus, it is expected that future researchers continue
contributing to enhancing the proposed method, increasing
its efficiency, optimizing neighborhood structures, improving
the evaluating function and other mechanisms presented in
this paper.
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