
 
 

 

  

Abstract—H. Zhang, Q. Zheng, and T. Liu et al. proposed a 
discrete region based approach to improve the consistency of 
the pair-wise comparison matrix. The approach is able to 
significantly improve the consistency of pair-wise comparison 
matrix without to revise the decision maker’s opinion. In the 
approach, a discrete region matrix is transformed into a 
set-matrix in which the elements are the real number set. In this 
paper, a discrete region matrix is transformed into a reciprocal 
interval matrix. A new iterative searching algorithm (NISA) is 
proposed to find the pair-wise comparison matrix with 
approximate optimum consistency from the reciprocal interval 
matrix. Based on the similarly principle, a new algorithm is 
proposed to derive the interval weight vector for the reciprocal 
interval matrix. The key character of this algorithm is that the 
derived interval weight vector includes the weight vector got by 
NISA for the same reciprocal interval matrix. In the experiment, 
five experimental strategies are designed, and the experimental 
results show that H. Zhang et al. proposed approach and NISA 
can get approximately similar weight vector according to the 
same pair-wise comparison matrix used the discrete region.  

Keywords—consistency, interval matrix, region, pair-wise 
comparison matrix, linguistic term. 

I. INTRODUCTION 

n multi-criteria decision making (MCDM) problems, 
decision makers usually use preference relations to express 
their preferences over each pair of alternatives (or criteria). 

Because of the uncertainty of real problems and intuitiveness 
of human judgments, it often happens that the given 
comparisons by a decision maker are inconsistent each other. 
The evaluated priority is plausible, while the pair-wise 
comparison metric does not pass the consistency test. In this 
case, the transitivity and reciprocity rules are not respected 
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within the pair-wise comparison process (Ishizaka and Lusti 
[1]). As a result, the interval evaluations are more suitable for 
representing uncertain information. The consistency of 
MCDM could be increased by use the interval evaluation 
pair-wise comparison matrix, and an interval weight vector 
could be produced [2]. 

The consistency ratio (CR) is proposed by Saaty and et al 
to measure the inconsistency of pair-wise comparison 
matrices. And they introduce the concept of acceptable 
consistency for CR <0.1[3]. Other researchers also introduce 
some index to measure the inconsistency [4-11], such as GCI 
[10], which sums the difference between the ratio of the 
calculated priorities and the given comparisons. Some 
methods are given a different consistency definition. For 
example, G. Zhang, Y. Dong and Y. Xu [11] propose 
linguistic index measures the consistency degree of linguistic 
preference relations via a linguistic way. Furthermore, 
Jaroslav and Petr [8]  propose a new consistency index based 
on the idea of distance of the matrix to special ratio matrix 
measured by a particular metric. This consistency index is 
introduced for reciprocal matrix with fuzzy elements. 
Because of the CR is well known for its widespread use. In 
this paper, the CR is applied to measure the consistency.  

The lack of consistency in decision making with preference 
relations can lead to inconsistent conclusions. The 
consistency improving approaches have been widely studied 
[12]. One can convincingly note that reaching consensus 
requires flexibility and willingness on a part of each member 
of the group to adjust his/her original position [13]. In this 
manner, the decision makers are dispirited to revise their 
judgments. Such approach does not provide any automated 
aid, and the decision makers don’t know how to improve the 
consistency. Another method is to develop a heuristic 
algorithm to improve ordinal consistency by identifying and 
eliminating intransitivity in multiplicative preference relation 
matrices [1, 14-16]. Such as Ishizaka and Lusti [1] suggest an 
expert module to improve the consistency of pair-wise 
comparison matrices, which detects rule transgressions, 
explains them, suggests alternatives and gives hints on how to 
continue the comparison process. It can help the expert to 
build a consistent matrix or limited the inconsistency within 
controlled area. Wang and Chin et al [16] propose an 
approach which looks into decision makers’ over all 
judgments which can be obtained through the aggregation of 
their direct and indirect judgments. This method can guide the 
decision maker to make more consistent judgment. But the 
deducted value may contradict with the decision maker’s 
intention. Many methods are proposed to modify pair-wise 
comparison matrices so that the revised matrices are of 
acceptable consistency [4, 11, 12, 17]. Such as M. Xia, Z. Xu 
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and J. Chen [12] have proposed a method for improving 
consistency or consensus of reciprocal [0, 1]-valued 
preference relations. G. Zhang, Y. Dong and Y. Xu [11] 
propose an algorithm to improving consistency degree in 
linguistic preference relations. These approaches attempts to 
modify the values in the matrix automatically so that the 
inconsistency is below predefined threshold. Obviously, the 
adjusted matrix may no longer respect evaluator’s intention.  

In [18], H. Zhang, Q. Zheng, and T. Liu et al. propose a 
discrete region-based approach to improve the consistency of 
the pair-wise comparison. The approach is that it enables the 
decision makers express their fuzzy cognition with discrete 
regions rather than specific values. The advantage of this 
approach is that it not only can improve the consistency of the 
pair-wise comparison, but also can faithful represent the 
evaluators’ opinions without modifying them.  However, this 
approach does not consider the case in which the region is 
continued. In this paper, we proposed a new approach which 
can improve the consistency of pair-wise comparison matrix, 
while the region is considered as a continue interval. At same 
time, another approach with the same principle is proposed to 
derive an interval weight vector according to the reciprocal 
interval comparison matrix. The interval preference relations 
include two principal ways, and they are the interval 
multiplicative preference relations [19-23] and the interval 
fuzzy preference relations [24-30]. For interval multiplicative 
preference relations where pairwise comparison matrices 
consist of interval values, a large body of literature has been 
developed over the years [22, 25]. Such as Z. Wang and K. W. 
Li [30] put forward a goal programming approach to deriving 
interval weights based on a consistent or inconsistent interval 
comparison matrix. However, what is the relation of the 
interval weight vector and the exact weight vector derived 
from the same interval matrix. This paper proposed approach 
can handle this issue.  

As same as in [18], in this paper proposed approach, the 
linguistic term is used to compare the two criteria, and a 
linguistic term discrete region is introduced to express the 
judgment of the decision makers. If the decision maker can 
give a clear and definite judgment, the discrete region would 
contain only one linguistic term. Otherwise, they can express 
their fuzzy cognition with the discrete region containing 
multiple linguistic terms. The comparing result is stored as a 
linguistic term set matrix, and this set matrix is transformed 
into a set-matrix in which the elements are a discrete region of 
real number [18]. But in this paper, the linguistic term set 
matrix is transformed into a reciprocal interval matrix. Then, 
a new iterative searching algorithm (NISA) is proposed to 
find the pair-wise comparison matrix with approximate 
optimal consistency from the reciprocal interval matrix, 
which is considered as the final pair-wise comparison matrix 
to evaluate the preference of criteria. At same time, a method 
is proposed to derive the interval weight vector based on the 
reciprocal interval matrix. The derived interval weight vector 
incudes the weight vector which is computed based on the 
searched matrix by NISA. The preference orders of them are 
same.  

In the experiment, ten volunteers are invited to evaluate the 

heights of 7 people who are a few personages in the world and 
some teachers in one laboratory using the linguistic term 
discrete regions. All participants get a comparison matrix 
with much better consistency than the stochastic choose 
matrix in reciprocal interval matrix. To all evaluation results, 
the weight vectors are included in the interval weight vector 
derived based on same reciprocal interval matrix in this paper 
proposed approach. The experimental results also show that 
the final derived weight vector based on the discrete region of 
real number in [18] is approximately similar with the one 
based on reciprocal interval matrix in this paper.  

The main contribution of this paper is that: first, proposed a 
new iterative searching algorithm to search a matrix with 
approximate optimum consistency in reciprocal interval 
matrix. Second, based on similar theory, a method derived 
interval weight vector according to reciprocal interval matrix 
is proposed. Third, 5 experimental strategies are designed in 
the experiment to verify the efficiency and key character of 
the proposed methods in this paper. The experimental results 
show that the proposed methods in this paper and the method 
proposed in [18] can get the approximately [31-33] similar 
weight vector according to the same discrete region matrix.  

 The rest of this paper is organized as follows. The 
preliminary concepts are briefly reviewed in Section II. In 
section III, we present the two approaches. The experiment 
and analysis are shown in Section IV. Section V is the 
conclusion and future work. 

II. PRELIMINARY KNOWLEDGE 

In this section, we review the main concepts of linguistic, 
the 2-tuple linguistic model, and the interval pair-wise 
comparison [23] of the analytic hierarchy process (AHP) [34], 
which is the basis of our approach. 

A. Linguistic Scale 

The scale used in analytic hierarchy process AHP [34] can 
be decomposed into two parts [35]: linguistic scale and 
numerical scale. Let { | 0,1,2,  . . . , }S s gα α= =  be a 

linguistic term set with odd cardinality. The term sα   
represents a possible value for a linguistic variable. We also 
call this linguistic term set S as the linguistic scale [35]. The 
AHP linguistic scale, provided in Saaty, is nine gradations 
[35]. Miller [36] demonstrated that an individual cannot 
simultaneously compare more than 7±2 objects without 
confusion. 

The numerical scale of AHP can be described as 
follows[35]: 

{ }1
1, , , 2,3, ,i

i
f f i gf = , where 1 1f = , 1 1i if f+ > > , (5 9)g≤ ≤ .  

 The value of ( )1,  2,  . . . ,  9if i =  corresponds to the thi  
gradation of the AHP linguistic scale. 

B. 2-tuple fuzzy linguistic representation model 

Herrera and Mart´ınez[31-33] contributed a 2-tuple fuzzy 
linguistic representation model. 

Let { | 0,1, 2,  . . . , }kS s k g= =  be a linguistic term set with 
odd cardinality, and the linguistic term set satisfies the 
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following characteristics: 
a) The set is ordered: i js s>  if and only if i j> . 

b) There is a negation operator: ( )i jNeg s s=  such that 
j g i= − . 

Definition 1 [32]: Let [0, ]gβ ∈  be a number in the 
granularity interval of the linguistic term set S , and let 

( )i round β=  and iα β= −  be two values such that [ ]0,i g∈  

and [ )0.5,  0.5α ∈ − . Then, α is called a symbolic translation, 
with round being the usual rounding operation. 

The 2-tuple linguistic model [31-33] represents the 
linguistic information by means of 2-tuples ( ),i is α , where 

is S∈  and [ )0.5,  0.5iα ∈ −  [35]. This linguistic representation 

model defines a function with the purpose of making 
transformations between linguistic 2-tuples and numerical 
values. 

Definition 2 [32]: Let S is a linguistic term set and 
[ ]0, gβ ∈  be a value representing the result of a symbolic 

aggregation operation; then, the 2-tuple that expresses the 
equivalent information to β  is obtained with the following 
function: 

[ ] [ ):  0,   0.5,  0.5g SΔ → × −  

( ) ( )( , ) with ,  i is s i roundβ α βΔ = =  

[ ), 0.5,  0.5iα β α= − ∈ − . 

Clearly, Δ  is one to one. For convenience, its range is 
denoted as S. Then, Δ  has an inverse function with 

g] [0, → S:1−Δ , xix +=Δ− ),(s i
1 . 

More details about 2-tuple model can be seen in [31-33]. 

C. Interval pair-wise comparison matrix 

An interval pair-wise comparison matrix can be 

represented as ([ , ])l h
ij ij n nA a a ×= , where 0 l h

ij ija a< ≤ , 1l

ji

h
ija a= , 

 1h

ji

l
ija a= . About the above interval comparison matrix, we 

have the following definitions: 

Definition 3 [23]. Given an interval comparison matrix 
([ , ])l h

ij ij n nA a a ×=  with l h
ij ij ija a a≤ ≤ and 1l h

ii ii iia a a= = = , for 

, 1, ,i j n= . If the following convex feasible region 

( )1 1
{ , , | , 1,  0}

nl h
w n ij i j ij i ii

S w w w a w w a w w
=

= = ≤ ≤ = >∑ is 

nonempty, then A  is said to be a consistent interval 
comparison matrix, otherwise, A  is said to be inconsistent. 

Let ( )1, , nw w w=  be a weight vector, on which two 

different types of constraints may be imposed. One is the 

additive constraint, namely
1

1
n

ii
w

=
=∑ . The other is the 

multiplicative constraint, i.e.
1

1
n

ii
w

=
=∏ , which is equivalent 

to
1
ln 0

n

ii
w

=
=∑ . Such a multiplicative constraint is used in 

this paper. 

In order to compare or rank global interval weights, a 
preference ranking approach [23] is proposed to compare the 

weights of criteria or rank alternatives in a multiplicative 
aggregation process. 

Let 1 2 [ ,  ]a a a= , and 1 2 [ ,  ]b b b=  be two interval weights. 
The degree of an interval weight being greater than another 
one is defined as the degree of preference [23]. 

Definition 4[23]. The degree of preference of a over b (or 
a > b) is defined as 

( ) 2 1 1 2

2 1 2 1

max(0,  ) max(0,  )
=

( )  ( )

a b a b
P a b

a a b b

− − −
>

− + − . 

In [23], some useful properties about the degree of 
preference of a over b is summarized. 

III. PROPOSED ALGORITHMS 

First, we simple describe the discrete region-based 
evaluation approach proposed in [18]. 

A. Discrete Region-Based Approach Review 

For illustrating this approach, we introduce a predefined 
linguistic term set (TABLE 1)[35]. 

Definition 5[18]: Let S be a linguistic term set, 
{ | 0,1, 2, , } 

k
S s k g= = . The discrete region of linguistic 

term is an ordered finite subset of S. Let ψ  be a discrete 
region of S, which has follow properties: 

1). Sψ ⊆ ; 

2) If ψ  is a discrete region, then 1{ , , , }i i js s sψ +=  

( )i j< , and 1 i jis s s+< < … < . 

3) The discrete region ψ  express as [ , ] ( ,i js s i j≤   
[0, ], [0, ])i g j g∈ ∈ . 

We describe the details of this approach used a simple 
example. 

Example 1: Three quality features of software system are 
“efficiency” (C1), “reliability” (C2) and “functionality” (C3).  

First, using above concepts, the decision maker can give a 
pair-wise comparison matrix, as shown in TABLE 2.  

The value at [C2, C3] is s2, which indicates reliability is 
“essentially less important” than functionality. The discrete 
region [s5, s7] at [C1, C2] states that efficiency is “weakly, 
essentially” or “strongly more important” than reliability. 
Similarly, discrete region [s2, s3] at [C1, C3] states that 
efficiency is “strongly”, “essentially” or “weakly less 

TABLE 1     LINGUISTIC SCALE 

Linguistic 
term 

Linguistic  scale  
Linguistic 
term 

Linguistic  scale  

S0  
Absolutely less 
important (AbL)  

S5  
Weakly important 
(Wk)  

S1  
Strongly less important 
(StL)  

S6  
Essentially important 
(Es)  

S2  
Essentially less 
important (EsL)  

S7  Strongly important (St) 

S3  
Weakly less important 
(WkL)  

S8  
Absolutely important 
(Ab)  

S4  Equally important (Eq)    
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important” than functionality.  Finally, the lower triangular 
matrix is inferred based on the up triangular.  

Second, the comparison matrix which elements are 
represented as the discrete regions is transformed into a 
set-matrix [18] by use the 2-tuple model. In [18], the used 

scale function is the geometrical scale [37] : 
1 ( ) 4( ) ( ) sf s c

−Δ −= , 
where c=2. As a result, the TABLE 2 is transformed into the 
follow set-matrix. 

1: [1.000] 3: [1.414,2.828] 2 : [0.500,0.707]

3: [0.354,0.707] 1: [1.000] 1: [0.500]

2 : [1.414,2.000] 1: [2.000] 1: [1.000]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Third, an iterative searching algorithm (ISA) is proposed 
to search a matrix with the approximate consistency, and the 
weight vector is derived based on this matrix by use the 
Logarithmic least-squares method (LLM) [38]. The 
procedure could be illustrated follow. 

An initial matrix is stochastic selected from the set-matrix, 
such as the follow matrix 0A . 

0

1.000 2.000 0.500

0.707 1.000 0.500

2.000 2.000 1.000

A =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, *

0

1.000 1.414 0.630

0.794 1.000 0.445

1.782 2.245 1.000

A =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The weight follow matrix 0 0*
0 ( )A A

i j n nA ω ω ×= of matrix 0A is 

computed, and CR=0.060346. The next matrix 1
1 ( )ij n nA a ×= is 

searched from the set-matrix, and its elements make that the 

distance 1ln ln( )ij i ja ω ω− (1 ,i n i j n≤ ≤ ≤ ≤ ) is the minimum.  

Such as, ln0.500 ln0.630 ln0.707 ln0.630− > − , then 1
13 0.707a = .  

1

1.000 1.414 0.707

0.707 1.000 0.500

1.414 2.000 1.000

A =
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

Iterating this process until 1k kA A+ = , then kA is the matrix 
searched by ISA. In this example, the optimum matrix is 1A , 
and it is a consistency matrix, CR=0.  

B. New Iterative Searching Algorithm  

In the discrete region-based approach [18], the linguistic 
term discrete region matrix is transformed into a set-matrix. 
In this paper, we consider the case, in which the discrete 
region matrix is transformed into a reciprocal interval matrix. 
For example, the TABLE 2 may be transformed into a follow 
interval matrix.  

[1.000,1.000] [1.414,2.828] [0.500,0.707]

[0.354,0.707] [1.000,1.000] [0.500,0.500]

[1.414,2.000] [2.000,2.000] [1.000,1.000]

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The algorithm to search a matrix with approximate 
optimum consistency from the reciprocal interval matrix is 
proposed, and named as New Iterative Searching Algorithm 
(NISA).  

Firstly, the useful notations are introduced. 
Let an interval matrix is presented as ([ , ])l h

ij ij n nA a a ×= , the 

matrix sequence which is generated by NISA is denoted 
as ( ) 0,1( , )k mA k = " . The prioritization method is the 
Logarithmic least-squares method (LLM) [37]. The weight 

vector of matrix )(kA is denoted as{ ( ) | 1, 2, , }i kA i nω = . 

Let ( )* ( ) ( )k k

i j

k
ij A Aa ω ω= , the weight follow matrix of 

matrix )(kA is denoted as ( )* ( )*( )k k
n nijA a ×= . The consistency 

index of matrix )( kA is denoted as ( )kCR A . 

The steps of NISA are presented as follow. 

Step1. Chose a matrix from the given reciprocal interval 

matrix ([ , ])l h
ij ij n nA a a ×= , and it is presented as (0) (0)( )ij n nA a ×= , 

where (0)

2

l h
ij ij

ij

a a
a

+
= ( ,  , 1,2, ,i j i j n≤ =  ), and (0) (0)1ji ija a= .   

Step2. For matrix )(kA 0, 1, 2(  ),k= " , calculating the 
following parameters: 

1
( )k

i

n k
ijj

A aω
=

= ∏                          (1) 

nn
k

ij
k aA ×= )( )*()*(

                       (2) 
( )

( ) max( )
( 1)

kA
k n

CR A
n RI

λ −
=

− ×
                       (3) 

Step3. For 1 i j n≤ ≤ ≤ , if
( )*l k h

ij ij ija a a≤ ≤ , let 

( 1) ( )*k k

ij ija a+ = . Otherwise, if 
( )*k l

ij ija a< , let
( 1)k l

ij ija a+ = , 

and if 
( )*k h

ij ija a> ,  and let  
( 1)k h

ij ija a+ = . Finally, if ( )i j> , 

then assignment ( 1) ( 1)1k k
ji ija a+ += . 

Step4. Let ( 1) ( 1)( )k k
ij n nA a+ +

×= , and calculated the consistency 

ratio ( 1)( )kCR A + . If ( 1) ( )( ) ( )k kCR A CR A+ ≠ , then )1()( += kk AA . 

The algorithm is gone to step 2. Otherwise, if 
( 1) ( )( ) ( )k kCR A CR A+ = , the algorithm is finished.  

The final matrix )(kA in step4 is the one with the 
approximate optimal consistency ( )( )kCR A . 

If ( ){ }( 0,1, , )kA k m= is the matrix sequence which is 
generated by NISA algorithm, then we can get 

( 1) ( )( ) ( )k kCR A CR A+ < . This conclusion has been proofed based 
on matrix theory.  

C. Derived Interval Weight Vector Algorithm  

After the linguistic term discrete region matrix is 
transformed into a reciprocal interval matrix, the interval 
weight vector is needed to be derived. The algorithm derived 
interval weight vector is presented in the following, and 
named as Iterate Search Optimum Interval Weight vector 
Algorithm (ISOIWA).  

Step1 Initializing 0k = , let
k

A A= , and 
k

A  is represented as 

TABLE 2      PAIR-WISE COMPARISON MATRIX 

 C1 C2 C3 

C1 [s4] [s5,s7] [s2,s3] 
C2 [s1,s3] [s4] [s2] 
C3 [s5,s6] [s6] [s4] 
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( ) ( )([ , ])
k

l h

ij ij n n
k kA a a

×
= .  Let ( )( )L l

k ij n nkA a ×= , ( )( )H h
k ij n nkA a ×= .  

Step2 Compute the weight vectors for two matrixes 
( )( )L l

k ij n nkA a ×=  and ( )( )H H
k ij n nkA a ×=  (Based on LLM [37]), 

and they are represented as 1 2( ) ( ) ( ) ( ){ , , , }L l l l

nk k k kϖ ω ω ω= , 

1 2( ) ( ) ( ) ( ){ , , , }H h h h

nk k k kϖ ω ω ω=  respectively. 

Step3 Let ( ) ( ) ( )
l h

i j

l
ij k k kv ω ω= and ( ) ( ) ( )

h l

i j

h
ij k k kv ω ω= ,  

1 i n≤ ≤ ,  1 j n≤ ≤ . A new reciprocal interval matrix is get, 

and it is presented as ( ) ( ), ( )([ ])l h

ij ij n nkV k kv v ×= . 

Step4 If ( )( )l h

ij ij
kva ≥ , then ( 1)

l l

ij ij
ka a+ = , and ( 1) ( )

h h

ij ij
k ka a+ = . 

If ( )( )h l

ij ij kva ≤ , then ( 1) ( )
l l

ij ij
k ka a+ = , and ( 1)

h h

ij ij
ka a+ = , else 

( 1) ( )max{ , }
l l l

ij ij ijk kva a+ = , ( 1) ( )min{ , }
h h h

ij ij ijk kva a+ = . Let 1kA +  

( 1), ( 1)]([ )l h
ij ij n nk ka a ×+ += , and computing

1 ,
1

( 1)max{|
i j n

l

ij
kaδ

≤ ≤

+=       

( ) |}
l

ij
ka− , 

1 ,
2

( 1) ( )max{| |}
i j n

h h

ij ij
k ka aδ

≤ ≤

+= − . If 
1

0δ >  or 
2

0δ > , 

then let 1k kA A += , and the algorithm is gone to step2. Else, 

the algorithm is stop. The interval weight vector derived by 
this algorithm is follow:  

1 1 2 2( ), ( ) ( ), ( )] ],{[ , [l h l h
k k k kϖ ω ω ω ω=  ( ), ( )], [ }l h

n nk kω ω… . 

IV. EXPERIMENT  

A. Experiment 1  

a) Definition 

In the experiment, ten volunteers are invited to evaluate the 
heights of 7 people who are a few personages in the world and 
some teachers in one laboratory.  The volunteers known well 
these people and can simply estimate their heights. All 
researchers are asked to give a linguistic term discrete region 
pair-wise comparison matrix for the heights of 7 people. In 
the experiment, the got linguistic term discrete region 
matrices are transformed into the reciprocal interval matrix 
and the set-matrix [18] respectively.  

After the set-matrix and reciprocal interval matrix are got, 
some experimental strategies are designed to verify the 
efficiency and character of the algorithms proposed in this 
paper. First, ISA is used to search the matrix with the 
approximate optimum consistency from the set-matrix, and 

deduce the weight vector. This experimental strategy is called 
S1. Second, NISA is used to search the matrix with the 
approximate optimum consistency in the reciprocal interval 
matrix and compute the weight vector. This strategy is called 
S2. Third, ISOIWA is used to derive an interval weight vector, 
and at same time, a new interval matrix is got. Next, a matrix 
with the approximate optimum consistency is searched by 
NISA from the new interval matrix. This experimental 
strategy is called S3. Fourth, the starting matrix is set as the 
matrix which is searched from the corresponding set-matrix 
by ISA, and then the NISA is used to search the matrix with 
the approximate optimum matrix in reciprocal interval matrix, 
and compute the weight vector. This experimental strategy is 
called S4. Fifth, the reciprocal interval matrix is set as the 
final interval matrix which is got at deriving the interval 
weight vector, and the starting matrix is the same matrix in 
fourth strategy. The NISA is used to search the matrix with 
the approximate optimum consistency, and compute the 
weight vector. This strategy is called S5. 

b) Experimental Results Analysis 

In experiment, we get ten linguistic term discrete region 
comparison matrices. For each linguistic term discrete region 
matrix, it can be transformed into a set-matrix and a 
reciprocal interval matrix, and the 5 experimental strategies 
are used to compute the weight vectors and the interval 
weight vector. For example, Fig.1 is a linguistic term discrete 
region matrix. 

The results for all experimental strategies about this 
linguistic term discrete region matrix are shown in table 3. In 
table 3, the initialize interval weight vector is the one derived 

TABLE 3    THE RESULTS FOR ALL EXPERIMENTAL STRATEGIES ABOUT A LINGUISTIC TERM REGION MATRIX 

  Weight 0 Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 

Interval 
weight 
vector 

Initialize interval 
weight vector 

[0.609507,
0.905724] 

[0.580065,
0.905724] 

[1.160129,
1.485994] 

[0.951695,
1.561418] 

[1.640671,
2.208179] 

[0.475848,
0.609507] 

[0.905724,
1.414214] 

Optimum interval 
weight vector 

[0.710688,
0.749785] 

[0.749027,
0.876021] 

[1.219014,
1.277010] 

[1.094095,
1.200677] 

[1.791425,
1.891886] 

[0.517476,
0.580065] 

[1.076549,
1.277010] 

Weight 
vector 

S1 0.742997 0.820335 1.219014 1.10409 1.811447 0.580065 1.160129 
S2 0.736705 0.79043 1.259863 1.12589 1.877776 0.573692 1.123832 
S3 0.733545 0.817347 1.230027 1.120668 1.841471 0.572566 1.147584 
S4 0.737761 0.814554 1.227666 1.111926 1.837254 0.580065 1.143834 
S5 0.737761 0.814554 1.227666 1.111926 1.837254 0.580065 1.143834 

TABLE 4  CR FOR ALL EXPERIMENTAL STRATEGIES  

No. S1 S2 S3 S4  S5 

1 0.076208 0.077116 0.075452 0.075546 0.075452

2 0.092742 0.093501 0.092583 0.092506 0.092506

3 0.107555 0.108285 0.105107 0.105553 0.105107

4 0.082859 0.083691 0.083691 0.081876 0.081477

5 0.067010 0.068179 0.066669 0.066703 0.066669

6 0.070203 0.071348 0.068794 0.069173 0.068794

7 0.093818 0.094433 0.092802 0.092933 0.092802

8 0.084092 0.087781 0.083970 0.083975 0.083970

9 0.113185 0.116485 0.112937 0.112949 0.112937

10 0.087050 0.086691 0.085943 0.085988 0.085943
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in ISOIWA from the original reciprocal interval matrix, and 
the optimum interval weight vector is the interval vector 
which is got at the end of ISOIWA. Weight  ( 0,2, ,6)i i = is 
the components of the interval weight vector and the weight 
vector respectively. From table 3, we see that each interval of 
the initialize interval weight vector includes the 
corresponding interval of the optimum interval weight vector. 
The components of weight vectors for all experimental 
strategies are located in the corresponding intervals of the 
optimum interval weight vector, and they are approximately 
similar with each other. We calculate the cosine similarities 
for the weight vector of S1 comparing with the others. The 
minimum of the cosine similarities is 0.9996. This shows that 
the used approaches in the experiment are convergence. 
Furthermore, the preference order of components of the 
optimum interval weight vector is same with the order of 
components of the corresponding weight vectors computed 
by used 5 experimental strategies. For example, to the 
optimum interval weight vector and weight vectors in the 
TABLE 3, the preference orders of the weight vectors for 5 
experimental strategies are that weight 4>weight2> weight6> 
weight3> weight1> weight0> weight5. According to the 
definition 4 in section preliminary knowledge, we can deduce 
that the preference order of the optimum interval weight 
vector 

is
100% 77.56% 59.57% 100% 99.54%

weight 4 weight2 weight6 weight3 weight1 weight0 
100%

weight5. This is same with the preference order of the 

corresponding weight vectors.  
The approximate optimum consistencies got by the five 

experimental strategies for all linguistic term discrete region 
matrices in the experiment are shown in table 4.  The “No.” is 
the sequence of the researcher invited in the experiment. To 
each linguistic term discrete region matrix, the approximate 
optimum consistencies (corresponding to a row in table 4) got 
by the five experimental strategies are very close to each 
other, and the standard variances about them is computed. 
The computed results about the standard variances are shown 
in Fig.2. The maximum of the standard variance is 0.001512. 

B. Experiment 2 

In this experiment, 1000 random linguistic comparison 
matrices are generated for each order matrix, and the orders 
of matrix are from 5 to 16. Each linguistic comparison matrix 
is transformed into an interval reciprocal matrix, and NISA 
and ISOIWA are used to search the approximate optimal 
matrix and the interval weight vector respectively. The iterate 
times of NISA and ISOIWA is counted, and the result is 
shown in TABLE 5. 

From the results, we can see that the averages of iteration 
times are a constant. The iteration times of NISA are less than 
the order of matrix. The iteration times of ISOIWA are about 
20 for all order matrices. As a result, the computing 
performance of two algorithms is good. 

V. CONCLUSION AND FUTURE DISCUSSION 

In this paper, we propose two new approaches that are able 
to improve the consistency of the pair-wise comparison 
reciprocal matrix and derive the interval weight vector for 
reciprocal interval matrix, respectively. The main 
contributions of our approaches include: transforming the 
decision maker’s linguistic term region pair-wise comparison 
matrix into the reciprocal interval matrix, this enables the 
decision makers express their fuzzy cognition with linguistic 
term discrete region rather than specific values. As a result, it 
can increase the flexibility and reduce the difficulty of 
judgment by the decision maker making. Next, we design a 
new algorithm (NISA) to search a matrix with approximate 
optimal consistency from the reciprocal interval matrix. This 
matrix with approximate optimal consistency not only 
represents the decision maker’ opinion, but also has well 
consistent. Furthermore, we proposed another algorithm to 
derive the interval weight vector for the reciprocal interval 
matrix. This algorithm is based on the same theory with NISA. 
The interval weight vector derived by this algorithm includes 
the weight vector by NISA derived to the same reciprocal 
interval matrix.  Finally, in the experiment, 5 experimental 
strategies is designed,  and the results show that the weight 

TABLE 5       THE AVERAGE ITERATION TIMES FOR ALGORITHMS 

order 5 6 7 8 9 10 11 12 13 14 15 16

NISA 5.94         5.78 5.65 5.49 5.27 5.23 5.07 4.90 4.78 4.74 4.66 4.59

ISOIWA 21.51 22.09 22.39 22.43 21.00 20.74 19.96 19.40 19.00 18.51 18.07 17.69

4 6 8 2 0 4 2 3 2 3 2

4 1 3 2 2 5 5 6 2 4

4 5 7 0 1 8 3

4 0 6 7 6 7

4 7 4 8

4 0 2

4
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Fig.1 A DISCRETE REGION MATRIX FOR LINGUISTIC TERM 
Fig.2  STANDARD VAVIANCE OF THE APPROXIMATE OPTIMUM 

CONSISTENCY FOR 5 EXPERIMENTAL STRATEGIES 
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vectors by ISA and NISA derived according to the set-matrix 
and corresponding  reciprocal interval matrix are very 
similarly with each other. These two weight vectors are also 
included in the interval weight vector derived from the same 
reciprocal interval matrix. Through the random experiment, 
we know that the two algorithms have a good computing 
performance.  

In the future, we will consider other consistence indexes 
proposed in literatures. We believe NISA can be adapted to 
improve these consistency indices as well.  The application of 
our approach is also an importance problem, we will further 
research. 
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