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Abstract—In this study, a two-stage method which extracts
fuzzy rules directly from samples is proposed for classification.
First, we introduce a neighborhood based attribute significance
algorithm to select r of the most important attributes from the
original attribute set. Second, the proposed algorithm generates
fuzzy rule from each sample described by the selected attribute
subset and finally simplifies the returned fuzzy rule-base. A
confidence degree is assigned for each of the extracted fuzzy rules
by counting the number of training samples covered by the rule
to solve the conflicts among the rules and then the rule-base is
pruned. The performance of the proposed classification method
have been compared with other five classification approaches
including C4.5, DTable, OneR, NNge, and PART on seven UCI
data sets. The experimental results show that the proposed
method is better than other methods in two aspects: the higher
classification accuracy and the smaller rule-base.

I. INTRODUCTION

Many methods have been proposed to manage real-world
problems which deal with classification tasks [1]. Fuzzy
rule based classification systems (FRBCSs) [2], for their
interpretability, is considered an efficient method among the
computational intelligence techniques. They have been used
in many practical classification problems such as medical
applications [3], classification of battlefield ground vehicles
[4] or intrusion detection [5]-[6], etc. The most challenging
problem in the design of FRBCSs is the construction of rule-
base for a specific problem. There are many methods pro-
posed to construct the rule-base from numerical data, such as
heuristic approaches [7]-[8], neuro-fuzzy techniques [9]-[11],
clustering methods [12]-[13], genetic algorithms [14]-[18], and
data mining techniques [19]-[21], etc. In our study, we propose
a data-based fuzzy rules extraction method (DBFREM) which
extracts fuzzy rules directly from the input samples. To get a
concise rule-base, a new attribute selection algorithm named
NBASA (neighborhood based attribute significance algorithm)
is proposed to select the most r important attributes from
original attribute set. After attribute selection, we introduce
a four-step procedure for generating fuzzy rules from the
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training samples and show how to use these fuzzy rules to
obtain a mapping from attribute space to class label set. Step
1 divides each attribute into fuzzy regions; Step 2 forms a
fuzzy rule-base from the training samples; Step 3 simplifies the
obtained rule-base by using a confidence degree and a pruning
algorithm; Step 4 presents a reasoning procedure for obtain a
mapping based on the concise fuzzy rule-base. The proposed
technique combines the advantages of attribute subset selection
and data-based classification. To offer a thorough comparative
analysis, we experiment with the proposed algorithm using
a number of well known data sets coming from the UCI
Repository of Machine Learning data [22]. The comparative
analysis involves some other types of classifiers such as C4.5
decision tree [23], Decision Table (DTable) [24], One Rule
(OneR) [25], Nearest neighbor like Algorithm (NNge) [26],
and PART Decision List (PART) [27]. The main attributes of
the proposed DBFREM classifier which distinct it from the
other methods can be highlighted as follows:

• For most of the datasets, the relevance of classification
results perform better than the methods mentioned above
such as C4.5, DTable, and PART on accuracies and the
size of rule-base.

• The DBFREM algorithm, requiring no mathematical
model constructs directly from “samples” and the rule-
base extracted by the system is much simpler, easier to
understand and easier to interpretable.

The rest of this paper is organized as follows. In Section
II, the details of the NBASA algorithm and the DBFREM
algorithm are introduced. In Section III, the simulation exper-
iments are presented and the results have been compared with
other methods. Section IV concludes the paper.

II. PROPOSED ALGORITHM

In this section, we will construct two algorithms for feature
selection and rule-base extraction respectively, which compose
the data based classification system. Giving a set of samples
U, described with condition attribute set C and class label set
D (decision), the task of our method is to construct a mapping
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from the condition attribute set to the class label set based on
the set of training samples.

A. Attribute Selection

To get a simple and effective rule-base, feature selection
is a helpful step in model construction. Especially for the
samples described by large number of attributes, it is an
effective technique to reduce classification cost and improve
generalization in the construction of the classifier.

1) Neighborhood Based Rough Set Model: In this part
we mainly review the basic concepts and theoretical results
of neighborhood based rough set model. More details can
be found in [28]. Formally, the data can be written as a
IS = 〈U,C,D〉, where U is the nonempty set of samples
{x1, x2, x3, ..., xn}, called a sample space, C is the set of
attributes {c1, c2, c3, ..., cm}, D is the class label set. Each
sample in the sample space is assigned with a subset of
samples. The samples in the neighborhood are near the center
sample measured with some distance function. The subset
is called a neighborhood information granule. The family of
neighborhood granules forms a cover of the sample space.

Definition 1: Given arbitrary xi ∈ U and B ⊆ C, the
neighborhood δB(xi) of xi in the subset B is defined as

δB(xi) = {xj | xj ∈ U,∆B(xi, xj) ≤ δ} (1)

where ∆ is a weighted distance function.
The size of the neighborhood depends on the threshold δ.

The greater δ is, the more samples will fall into the neighbor-
hood. Neighborhood relations draw the samples together for
similarity or indistinguishability in terms of distances.

The neighborhood conception divides the samples into
two groups: positive region and boundary. Boundary is the
sample subset whose neighborhoods come from more than
one decision class. On the other hand, positive region, denoted
by POSB(D), is the subset of samples whose neighborhoods
consistently belong to one of the classes.

Fig.1 shows an example of binary classification in two
condition attribute subset {c1, c2}, where d ∈ D, d1 is
labeled with “plus” and d2 is labeled with “point”. Consider
samples x1, x2, x3, we assign circle neighborhoods to these
samples. We can find δB(x1) ⊆ d1 and δB(x3) ⊆ d2, while
δB(x2) ∩ d1 6= ∅, δB(x2) ∩ d2 6= ∅. According to the above
definitions: x1 ∈ positive regions, x3 ∈ positive regions and
x2 ∈ boundary. The samples in different attribute subsets
will have different boundaries. The size of the boundary
reflects the discriminability of the classification problem in the
corresponding subsets. It also reflects the recognition power or
characterizing power of the condition attributes. The greater
the boundary region is, the weaker the characterizing power
of the condition attributes will be. It can be formulated as
follows:

Definition 2: The dependency degree of D to B is defined
as the ratio of consistent samples:

γB(D) = |POSB(D)|/|U| (2)

Fig. 1. An example with two classes

where γB(D) reflects the ability of B approximate to D.
Obviously, 0 < γB(D) < 1, we say that D completely depends
on B if γB(D) = 1.

Definition 3: Given a decision system 〈U,C,D〉, B ⊆ C,
a /∈ B, we define the significance of an attribute as

SIG(a,B,D) = γB∪a(D)− γB(D) (3)

The attribute’s significance is the function of three variables:
a, B, and D. An attribute a may be of great significance in B1

but of little significance in B2.
2) Feature Selection Based on Neighborhood: In this part,

we search an attribute subset based on the neighborhood rough
set model through the proposed algorithm. For the attribute
set {c1, c2, c3, ..., cm}, there are 2m combinations of attribute
subsets. It is not practical to search all of the reducts in 2m

combinations. Fortunately, in practice, we usually just require
one of the reducts to train a classifier, and we do not care much
whether the reduct is really the minimal one or not. Then a
tradeoff solution can be constructed, such as greedy forward
search algorithm. The NBASA algorithm is constructed as
TABLE I.

Here the NBASA algorithm adds an attribute with the great
significance into the reduction in each circle until the number
of attributes in the reduction meets requirements.

B. Generating Fuzzy Rules From Numerical Data

Suppose we are given a set of training samples. The simple
three-attribute case is chosen in order to emphasize and to
clarify the basic idea of our new approach.

(c(1)
1 , c(1)

2 , c(1)
3 ; d(1)), (c(2)

1 , c(2)
2 , c(2)

3 ; d(2)), ... (4)

where c1, c2, c3 are the condition attributes and d is the class
label of one given sample. The task here is to generate a set of
fuzzy rules directly from the given samples of (4), and utilize
these fuzzy rules to determine a mapping: f : {c1, c2, c3} ⇒ D.

Our approach consists of the following four steps:

Step 1−Divide the Attribute Spaces into Fuzzy Regions
Assume that the intervals of the attributes c1, c2, and c3

are [cmin
1 , cmax

1 ], [cmin
2 , cmax

2 ], and [cmin
3 , cmax

3 ] respectively.
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TABLE I
ALGORITHM OF FEATURE SELECTION

Algorithm: NBASA
Input: Sample, δ
Sample: the dataset described with condition attribute set C and a class

label set of D;
δ: the threshold to control the size of neighborhood;
Output: Red
Red: the attribute subset with r attributes.
1. Red = NBASA(Sample, δ)
2. red = ∅;
3. for each attribute ci ∈ C− red
4. compute SIG(ci, red,D) = γred∪ci (D)− γred(D);

// Here we define γ∅(D) = 0;
5. end
6. SIG(ck, red,D) = maxi{SIG(ci, red,D)};
7. red = red ∪ ck;
8. if the number of attributes in red is less than r
9. go to 3;
10. else
11. Red = red;
12. end

There are various shapes of membership functions such as
Gaussian, trapezoid and all kinds of divisions of the regions.
For simplicity, we divide each interval into 3 regions, denoted
by S (Small), CE (Center), B (Big), and assign each region a
triangular membership function. Fig. 2 (a), (b), (c) show an
example where the intervals of c1, c2, and c3 are divided: one
vertex lies at the center of the region and has membership
value unity; the other two vertices lie at the centers of the
two neighboring regions, respectively, and have membership
values equal to zero.

Step 2−Generate a Fuzzy Rule-base from Sample Space
First, determine the degrees of the attributes c(i)

1 , c(i)
2 , and

c(i)
3 in different fuzzy sets. For example, c(1)

1 in Fig. 2 (a)
has degree 0.8 in S, degree 0.2 in CE, and zero degree in
B. Similarly, c(1)

2 in Fig. 2 (b) has degree 1 in CE, and zero
degrees in the other two fuzzy sets.

Second, assign a given c(i)
1 , c(i)

2 , or c(i)
3 to the fuzzy set with

maximum degree. For example, c(1)
1 in Fig. 2 is considered to

be S, and c(1)
2 in Fig. 2 is considered to be CE.

Finally, extract one rule from one given sample, suppose
d(1) is Class 1 and d(2) is Class 3, e.g.,

(c(1)
1 , c(1)

2 , c(1)
3 ; d(1))⇒ [c(1)

1 (0.8 in S,max), c(1)
2 (1 in CE,

max), c(1)
3 (0.6 in B,max); d(1) is Class 1]⇒ Rule 1 :

IF c1 is S, c2 is CE, and c3 is B, THEN the sample is Class
1 ([S, CE, B; Class 1]);

(c(2)
1 , c(2)

2 , c(2)
3 ; d(2))⇒ [c(2)

1 (0.6 in CE,max), c(2)
2 (0.7 in S,

max), c(2)
3 (0.6 in CE,max); d(2) is Class 3]⇒ Rule 2 :

(a) Attribute c1

(b) Attribute c2

(c) Attribute c3

Fig. 2. Divisions of the attribute spaces into fuzzy regions and the
corresponding membership functions

IF c1 is CE, c2 is S, and c3 is CE, THEN the sample is Class
3 ([CE, S, CE; Class 3]);

In this way we get a rule-base which contains all of the
rules extracted from original samples.

Step 3−Simplify the Rule-base
There are two processes in simplifying the rule-base. First,

a confidence degree is assigned for each of the extracted fuzzy
rules. Then the rule-base is pruned.

Since there are usually lots of samples, and each sample
generates one rule, it is highly probable that there will be
some conflicting rules, i.e., rules that have the same antecedent
part but a different decision labels. For example, rules [CE,
S, CE; Class 3] and [CE, S, CE; Class 1] are two conflicting
rules. One way to resolve this conflict is to assign a confidence
degree to each rule generated from samples,

First we define a confidence degree to each rule extracted
in step 2 by counting the number of training samples which
the identical rule extracted from. Suppose the total number
of samples in the sample space is p, and there are q samples
covered by Rule i, we define the confidence degree of Rule i
as

D(Rule i) = q/p (5)

Each rule is assigned with a degree via (5), and we accept only
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TABLE II
ALGORITHM OF PRUNING

Algorithm: Pruning the rule-base
Input: Sample, Rule-base
Sample: the training dataset with l classes;
Rule-base: the rule-base with t rules which was simplified in the

first process;
Output: Final Rule-base
Final Rule-base: the final rule-base;
1. Final Rule-base = Pruning(Sample,Rule-base)
2. A = ∅;
3. acc = the accuracy of the present rule-base on Sample;
4. for i= 1 : t
5. delete the i-th rule in the Rule-base;
6. ai = the accuracy of the new rule-base on Sample;
7. A = A ∪ ai;
8. end
9. ak = max{A};
10. if ak ≥ acc
11. delete the k-th rule in Rule-base;
12. go to 1;
13. end
14. Final Rule-base = Rule-base;
15. return

the rule from a conflict group that has the maximum degree.
In this way, not only the conflict problem is resolved, but also
the number of rules is greatly reduced.

Second the rule-base is pruned to cut down the redundant
rules. The rules extracted from the training samples, however,
may include redundant structures as well as poorly performing
rules, which should be removed from the rule-base to enhance
an overall performance of the classifier and improve its effi-
ciency. In what follows, we prune the rule-base by making use
of the available training samples:

1) Remove each rule from the rule-base, and classify the
training samples using the remaining rules.

2) Delete the rule, whose corresponding remaining rules
have the maximal increase of accuracy on training
samples.

3) Repeat 1-2 and terminate the pruning if the resulting
pruned rule-base becomes worse than the original one
when applied to the training samples.

TABLE II presents the pruning algorithm of the rule-base.

Step 4−Determine a Mapping Based on the Fuzzy Rule-base
We use the following strategy to determine the class label

D for given attribute space {c1, c2, c3}: For each attribute in
the given attribute (c(i)

1 , c
(i)
2 , c

(i)
3 ), we first apply the strategy

mentioned in step 2 to decide the fuzzy set of each attribute,
for example, in Fig. 2,

[c(3)
1 (0.9 in B,max), c(3)

2 (0.6 in B,max), c(3)
3 (0.7 in CE,

max)]⇒ (B,B,CE).

Then we search the rule-base produced in step 3 to find a
fuzzy rule whose antecedent part is the same with (B, B, CE)
to determine the class label d(i).

In all the antecedents parts of the rule-base, there is a
huge possibility that there might not exist a (B, B, CE), in
this case, we only consider two attributes from the attribute
(c(i)

1 , c
(i)
2 , c

(i)
3 ). There are three combination forms, these are

(c(i)
1 , c

(i)
2 , ∗∗), (c(i)

1 , ∗∗, c
(i)
3 ), and (∗∗, c(i)

2 , c
(i)
3 ), corresponding

combination regions are (B, B, **), (B, **, CE), and (**,
B, CE). Then we combine the attributes in each combination
using the following product strategy to determine a degree m,
i.e.,

m(c(i)
1 , c

(i)
2 , c

(i)
3 ) =

∑
m(c(i)

j ) (6)

where m(c(i)
j ) denotes the maximal degree of attribute j, e.g.,

the situations (c(i)
1 , c

(i)
2 , ∗∗), (c(i)

1 , ∗∗, c
(i)
3 ), and (∗∗, c(i)

2 , c
(i)
3 )

give

m(c(i)
1 , c

(i)
2 , c

(i)
3 ) = m(c(i)

1 )m(c(i)
2 ) = 0.9×0.6=0.54;

m(c(i)
1 , c

(i)
2 , c

(i)
3 ) = m(c(i)

1 )m(c(i)
3 ) = 0.9×0.7=0.63;

m(c(i)
1 , c

(i)
2 , c

(i)
3 ) = m(c(i)

2 )m(c(i)
3 ) = 0.6×0.7=0.42.

For each rule whose antecedent part correspond with one of
the three combination (B, B, **), (B, **, CE), and (**, B, CE)
in the rule-base, we use the product of the confidence degree
(as in (5)) of the rule and the degree (as in (6)) of combination
as a decision degree. Then select the rule with the maximum
decision degree to determine the class label d(i).

For example, if there are only Rule i and Rule j in the rule-
base accord with the combination (B, B, **), Rule i is [B,
B, S; Class 3] with a confidence degree D(Rule i) and Rule
j is [B, B, B; Class 2] with a confidence degree D(Rule j).
The decision degree for Rule i is Pi = 0.54×D(Rule i), and
the decision degree for Rule j is Pj = 0.54 × D(Rule i). If
Pi ≥ Pj , the class label of the attribute (c(i)

1 , c
(i)
2 , c

(i)
3 ) is Class

3, otherwise, it is Class 2.
There is a small possibility that there might not find

any antecedent part in the rule-base corresponding with
the combinations of the two attributes either. In this case,
we only consider one attribute of (c(i)

1 , c
(i)
2 , c

(i)
3 ). These are

(c(i)
1 , ∗∗, ∗∗), (∗∗, c

(i)
2 , ∗∗), (∗∗, ∗∗, c

(i)
3 ), and then, using the

method mentioned above to find the class label d(i).
If there could not find any antecedent part in the rule-base

corresponding with the combinations of one attribute from the
testing sample either, we confirm that it is an outlier and can
ignore it, moreover, the probability of this situation approaches
to zero as the number of the attributes increasing.

In this way, we get a mapping: f : {c1, c2, c3} ⇒ D.
Our new method can be viewed as a very general model-free

data-based fuzzy system. “Model-free” means no mathemati-
cal model is required for the problem; “Data-based” means the
system constructs directly from “samples” and each sample
produces one rule for selection. The system can adaptively
change the mapping when new “samples” are available.
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TABLE III
DESCRIPTION OF DATA SETS COMING FROM THE UCI REPOSITORY AND

USED IN THE EXPERIMENTS

No Data set Samples Attributes classes
1 Haberman 306 3 2
2 Iris 150 4 3
3 Liver 345 6 2
4 Wine 178 13 3
5 Transfusion 748 4 2
6 Pima 768 8 2
7 Fertility 100 9 2

III. EXPERIMENTAL STUDIES

In this section, seven data sets are used in a series of
experiments. They come from the UCI Machine Learning
Repository. The description of the pertinent data sets is cov-
ered in Table III. In the experiments, for each experiment set, a
ten-fold cross validation is carried out. Each dataset is stratified
and divided into tenfold of (approximately) equal size. Each
time one fold is left out of the whole dataset from training,
and this fold is used for testing. As a result, there are ten runs
for each classifier based on one dataset.

A. Experiment 1

In this experiment, We present a detailed comparative analy-
sis with C4.5 decision tree[23], Decision Table (DTable) [24],
OneR [25], Nearest neighbor like Algorithm (NNge) [26], and
PART Decision List (PART) [27] over the data sets.
• C4.5 decision tree [23]

C4.5 builds decision trees from a set of training data in
the same way as ID3, using the concept of information
entropy. The training data is a set of already classified
samples. At each node of the tree, C4.5 chooses the
attribute of the data that most effectively splits its set of
samples into subsets enriched in one class or the other.
The splitting criterion is the normalized information gain
(difference in entropy). The attribute with the highest nor-
malized information gain is chosen to make the decision.
The C4.5 algorithm then recurses on the smaller sublists.

• Decision Table [24]
Decision Table provides a handy and compact way to
represent complex business logic. In a decision table,
business logic is well divided into conditions, actions
(decisions) and rules for representing the various com-
ponents that form the business logic.

• OneR [25]
OneR, short for “One Rule”, is a simple, yet accurate,
classification algorithm that generates one rule for each
predictor in the data, then selects the rule with the
smallest total error as its “one rule”. To create a rule
for a predictor, we construct a frequency table for each
predictor against the target. It has been shown that OneR
produces rules only slightly less accurate than state-of-
the-art classification algorithms while producing rules
that are simple for humans to interpret.

Fig. 3. Fuzzy membership functions of Attribute c.

• Nearest neighbor like Algorithm [26]
Nearest-neighbor-like algorithm using non-nested gener-
alized exemplars (which are hyperrectangles that can be
viewed as if-then rules). The nearest neighbour algorithm
was one of the first algorithms used to determine a
solution to the traveling salesman problem. In it, the
salesman starts at a random city and repeatedly visits the
nearest city until all have been visited. It quickly yields
a short tour, but usually not the optimal one.

• PART Decision List [27]
It is applied for generating a PART decision list. Uses
separate-and-conquer. Builds a partial C4.5 decision tree
in each iteration and makes the “best” leaf into a rule.

The classifiers are implemented by using the Weka machine
learning toolkit [29] with the default settings being specified in
the toolkit. In my algorithm, we choose the Euclidean distance
weight function as the distance function and the parameters are
respectively set to be δ = 0.125, and r = 3 suggested by the
experiments.

We illustrate the performance of our classifier for the Wine
data. The data set consists of 178 samples and each sample
is described by thirteen attributes. First the NBASA algorithm
in Table I which is proposed in Section II is applied to select
an attributes subset with 3 attributes. Then we extract a rule-
base from the 178 samples described by the new attribute set
and remove the conflicting rules using the method in step 3 to
get a simplest rule-base. We use membership functions shown
in Fig. 3, that is dividing each interval of the three attributes
into 3 regions denoted by S (Small), CE (Center), B (Big) and
assign each region a triangular fuzzy membership function,
The vertex of the CE region lies at the mean value of each
attribute and the vertices of the other regions, S and B, lie
at the minimum value and maximum value of each attribute
regions respectively. After the first simplification in step 3,
the number of rules in the rule-base is 17.4 (on average),
the average classification rate reported for the training set is
82.65% and the average accuracy on the testing set is 89.96%.
Then we prune the rule-base by invoking the pruning algorithm
shown in TABLE II, the number of rules has been reduced to
9.5 (on average), and for this case, the percentage of correct
classification on the training set by the rule-base increased to
84.21% (on average) and the average accuracy on the testing
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TABLE IV
THE CLASSIFICATION ACCURACIES OF DIFFERENT CLASSIFICATION METHODS

Data set C4.5 DTable OneR NNge PART DBFREM
Haberman 0.70 ± 0.0762 0.72 ± 0.0432 0.74 ± 0.0558 0.67 ± 0.0738 0.71 ± 0.0688 0.73 ± 0.0563

Iris 0.96 ± 0.0466 0.93 ± 0.0444 0.94 ± 0.0378 0.95 ± 0.0450 0.95 ± 0.0526 0.97 ± 0.0344
Liver 0.64 ± 0.0748 0.57 ± 0.0571 0.58 ± 0.0849 0.63 ± 0.0851 0.64 ± 0.0878 0.69 ± 0.0771
Wine 0.92 ± 0.0794 0.92 ± 0.0850 0.78 ± 0.0613 0.98 ± 0.0300 0.94 ± 0.0546 0.91 ± 0.0650

Transfusion 0.78 ± 0.0561 0.76 ± 0.0043 0.76 ± 0.0363 0.71 ± 0.0540 0.78 ± 0.0579 0.77 ± 0.0208
Pima 0.75 ± 0.0280 0.75 ± 0.0469 0.71 ± 0.0594 0.73 ± 0.0384 0.73 ± 0.0435 0.75 ± 0.0383

Fertility 0.86 ± 0.0530 0.88 ± 0.0381 0.87 ± 0.0450 0.82 ± 0.0848 0.86 ± 0.0530 0.88 ± 0.0381
Average 0.80 0.79 0.77 0.78 0.80 0.81

set increased to 91.07%.
The average testing accuracies of the seven data sets are

reported in TABLE IV. It shows that the DBFREM can
produce high accuracy and it is better than C4.5, DTable,
OneR, NNge, and PART on some of the data sets such as
Iris, Liver, and Fertility. For Iris data, the average testing
accuracy is as high as 97.33%. While, for Liver data, the
average accuracy on the testing set of the DBFREM is 68.68%,
which are higher than the other five methods.

B. Experiment 2
In this experiment, we compare the number of rules returned

by the DBFREM algorithm with other classifiers. By the
analysis of the results presented in TABLE V, we can draw
the following conclusions:
• The numbers of rules produced by OneR, PART, and

DBFREM are of the same order of magnitude on all of
the seven datasets and they are less than those produced
by the other four methods. The NNge method caused by
its algorithm presents the largest numbers of rules almost
on all of the dataset in TABLE V.

• The rule-base extracted by DBFREM algorithm is much
simpler, easier to understand and easier to interpretable
because each antecedent part of the fuzzy rule in the rule-
base is extracted from the conjunction of only three single
regions.

IV. CONCLUSION

In this paper, we have introduced the neighborhood rough
set model as a basic theoretic framework. Based on the
neighborhood conception, we developed a NBASA feature
selection algorithm to select a small attribute subset from orig-
inal attribute set. Then we constructed a DBFREM algorithm
which extracts a fuzzy rule-base directly from the training
samples described by new attribute subset to form a rule-base
and then cut down the conflict and redundant rules in the rule-
base. The experiments with UCI data sets demonstrated that
the obtained results from DBFREM classifier outperform those
produced by C4.5, DTable, OneR, NNge, and PART on most
of the datasets.
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TABLE V
THE CLASSIFICATION RULES NUMBER OF DIFFERENT CLASSIFICATION

METHODS

Data set C4.5 DTable OneR NNge PART DBFREM
Haberman 2.90 1.50 3.90 76.70 3.40 7.30

Iris 4.70 4.20 3.00 9.80 3.50 6.90
Liver 24.90 2.10 11.10 101.20 8.00 6.00
Wine 5.30 29.60 4.70 9.10 4.70 9.50

Transfusion 6.00 1.00 3.60 157.30 4.00 3.10
Pima 23.60 32.00 8.00 257.20 8.70 8.70

Fertility 1.70 1.00 1.10 20.30 5.50 2.00
Average 9.87 10.20 5.06 90.23 5.40 6.21
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