
 
 

 

  

Abstract—This paper proposes a novel feature selection 
approach formulated based on the Fish School Search (FSS) 
optimization algorithm, intended to cope with premature 
convergence. In order to use this population based optimization 
algorithm in feature selection problems, we propose the use of a 
binary encoding scheme for the internal mechanisms of the fish 
school search, emerging the binary fish school search (BFSS). 
The suggested algorithm was combined with fuzzy modeling in a 
wrapper approach for Feature Selection (FS) and tested over 
three benchmark databases. This hybrid proposal was applied 
to an ICU (Intensive Care Unit) readmission problem. The 
purpose of this application was to predict the readmission of 
ICU patients within 24 to 72 hours after being discharged. We 
assessed the experimental results in terms of performance 
measures and the number of features selected by each used FS 
algorithms. We observed that our proposal can correctly select 
the discriminating input features. 

I. INTRODUCTION 
The information age is very hard to grasp. In an average 

person’s life nowadays, we get more information in a day 
than someone who lived 100 years ago would get in a 
lifetime. The speed at which information is increasing means 
that finding accurate data is becoming more important than 
the data itself [1]. With the urgent need for a new generation 
of computation techniques and tools to assist humans in 
extracting useful information from a fast growing volume of 
data, a methodology was created, called Knowledge Data 
Discovery (KDD), first introduced by Fayyad in 1996 [2]. 

The KDD process comprises a series of steps to extract 
knowledge from data: 1) Data Acquisition - the process of 
acquiring and storing data; 2) Data Preprocessing - consists of 
applying proper techniques that allow the improvement of the 
overall quality of the data, includes processing of 
noise/outliers, correction of missing values, and/or alignment 
of data sampled at different frequencies; 3) Feature Selection 
(FS) - consists of finding useful features to represent the data 
and discarding the non-relevant ones, i.e. the ones that 
contain redundant information; 4) Modeling - refers to the 
process of combining methods from computational 
intelligence and/or statistics to extract patterns in data sets. In 
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this work, classification models (fuzzy modeling) were used; 
and finally 5) Interpretation - the process of evaluating the 
discovered knowledge with respect to its validity, usefulness, 
novelty, and simplicity. External expertise may be required in 
this step. 

The field of feature selection has been object of extensive 
research in recent years [3]. This can be explained due to the 
potential benefits introduced by data dimensionality 
reduction. This can greatly improve data visualization and 
understanding, facilitating knowledge discovery. 
Furthermore, if a lower number of features is used, less 
information needs to be measured and stored, leading to 
simpler equipments, and consequently, reducing unnecessary 
costs. From the clinical point of view, this process may bring 
to light new variables that had not been previously considered 
as relevant for a given medical problem [4].  

However, in real-world systems, the selection of a low 
number of features that consistently describe the problem is 
usually time consuming and, in many cases, impossible to 
achieve with a greedy approach [5]. Thus, the maximization 
of the model performance and the minimization of the 
number of used features depends on the chosen combination 
of features, often making the FS problem NP-Hard. 
Metaheuristics, such as Particle Swarm Optimization (PSO), 
have shown to be well suited for this type of problems, due to 
their randomized nature [5,6]. The main advantage of using 
Metaheuristics is that they are able to find good solutions, 
without having to try all possible combinations. However, the 
best Metaheuristic to solve a problem depends on the 
properties of the tackled problem. 

In this paper, We propose a novel approach for binary 
variables based on the Fish School Search (FSS) optimization 
algorithm [7], named binary fish school search algorithm 
(BFSS). BFSS applied to the FS problem intends to present 
the capability to select discriminating input features and also 
to achieve high classification accuracy. 

The clinical problem addressed is the readmission problem. 
The motivation relies on the fact that patients readmitted to an 
Intensive Care Unit (ICU) during the same hospitalization 
period have an increased length of stay, higher costs and 
increased risk of death [8,9,10]. The purpose of this case 
study is to predict the readmission of ICU patients within 24 
to 72 hours after being discharged, using real world data [4]. 

This paper is organized as follows: Section II introduces the 
formulation of the feature selection problem, where the main 
concepts of fuzzy modeling are also presented; Section III 
describes the original FSS; Section IV presents the proposed 
modification to the internal mechanisms of the FSS, leading 
to the BFSS algorithm;  Section V depicts the results obtained 
in the benchmark test problems and the results obtained from 
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readmission application case study; and Section VI presents 
the conclusions. 

II. FEATURE SELECTION 
Feature selection algorithms can be grouped into four 

categories: wrappers (used in this work), filters, hybrids and 
embedded [3, 9].  

Wrappers use a search algorithm to search through the 
space of possible features and evaluate each subset by 
running a model on this subset. Wrappers can be 
computationally expensive and have a risk of over-fitting the 
model. Filters are similar to wrappers in the search approach, 
but instead of evaluating against a model, the features are 
selected by means of performance evaluation that does not 
require building a model. In embedded feature selection 
methods, similarly to wrapper methods, feature selection is 
linked to the classification stage. This link is much stronger in 
this case, since feature selection in embedded methods is 
included into the classifier construction. The main advantage 
of the wrapper method over embedded methods is a better 
coverage of the search space. And the main advantage of the 
wrapper method over filter methods is that the final selected 
subset is highly correlated with the chosen metrics to assess 
the performance in the wrappers. This means that the 
classifier or in this case the classifier. When the objective is to 
obtain a model as accurate as possible and the time to obtain it 
is not an issue, then the wrapper method is an advantageous 
choice. 

A. Wrapper Methods 
The main characteristic of wrapper methodologies is the 

involvement of the predictor as part of the selection 
procedure. In this paper, a learning machine was used as a 
“black box” to score the subsets according to their predictive 
performance [11].  

Wrappers are constituted by three main components:  
1) Search method; 
2) Learning machine; 
3) Feature evaluation criteria.  
Wrapper approaches were aimed to improve the results of 

the specific predictors they work with. During the search, 
subsets were evaluated without incorporating knowledge 
about the specific structure of the classification [11]. 

B. Fuzzy Modeling 
The fuzzy modeling technique was considered. This 

learning machine method allows approximation of nonlinear 
systems when there is little or no previous knowledge of the 
problem to be modeled [10, 4]. This tool supports the 
development of models around human reasoning (also 
referred to as approximate reasoning), and allows an element 
to belong to a set to a degree, indicating the certainty (or 
uncertainty) of its membership.  

First order Takagi-Sugeno (TS) fuzzy models [12] were 
applied, which consist of fuzzy rules where each rule 
describes a local input-output relation. When first order TS 
fuzzy systems are used, each discriminant function consists of 
rules as shown in (1).  
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where,  j=1 , … , J corresponds to the rule number, x=(x1, … , 
xN) is the input vector, N is the total number of inputs 
(features), Ajn is the fuzzy set for rule Rj  and nth feature, and yj 
is the consequent function for rule Rj. The degree of 
activation of the jth rule is given by: 
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where µAjn(x):R→[0,1]. The number of rules j and the 
antecedent fuzzy sets Ajn were determined by means of fuzzy 
clustering in the product space of the input and output 
variables. In this work, the chosen clustering method was 
Fuzzy C-Means (FCM) [1], since it is suitable for 
classification. 

Given a classification problem, and being a linear 
consequent, a threshold t is required to turn the continuous 
output y ∈ [0,1] into the binary output y ∈ {0,1}. In this way, 
if y < t then y = 0, and if y ≥ t then y = 1.  

III. FISH SCHOOL SEARCH 
The novel Binary Fish School Search algorithm (BFSS), 

formulated and presented in this paper, was created based on 
the optimization search algorithm Fish School Search (FSS),  
first proposed by Bastos-Filho and Lima Neto in 2008 [7]. 

Several oceanic fish species, as well as other animals, 
present social behavior. The main reason for this is to increase 
mutual survivability and may be viewed in two ways: (i) for 
mutual protection and (ii) for synergistic achievement of 
other collective tasks. Here, protection means reducing the 
chances of being caught by predators; and synergy, refers to 
an active mean of achieving collective goals, such as finding 
food. Some of the main characteristics derived from real fish 
schools inspired the mechanisms that were incorporated into 
the core of the approach soundly, and are grouped into two 
observable categories of behaviors. The operators are 
grouped accondingly as follows: 

Feeding – food is a metaphor for indicating to the fish the 
regions of the aquarium that are likely to be good spots for the 
search process. Feeding operators consider variations in the 
fitness function and return variations on the weight of the 
fish; 

Swimming – a collection of operators that are responsible 
for guiding the search effort globally towards subspaces of 
the aquarium that were collectively sensed by all individual 
fish as more promising with regard to the search process. 

The concept of food was considered as related to the 
function to be optimized in the process, the fitness function. 
As an example, consider a minimization problem, the amount 
of food in a region would be inversely proportional to the 
fitness function evaluation in this region. The “aquarium” is 
defined by the delimited region in the search space where the 
fish can be positioned. The position of each fish represents a 
possible solution for the tackled problem. The original 
operators of the FSS are described as follows. 
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A. The Feeding Operator 
As in real situations, the artificial fish of FSS are attracted 

to food scattered in the aquarium in various concentrations. In 
order to find greater amounts of food, each fish in the school 
can move independently (see individual movement in the 
next section). As a result, each fish is allowed to increase or 
decrease in weight, depending on its success or failure in 
obtaining food. The weight of the fish represents the 
mechanism to store the success of fish during the search 
process. The authors, in [7], proposed that fish’s weight 
should vary proportionally to the normalized difference 
between the values of the fitness function at the previous and 
current fish position with regards to the food concentration on 
these spots: 
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where Wi(t) is the weight of the fish i in the iteration t, xi(t) the 
position of the fish i in the iteration t and f[

ix (t)] evaluated the 
fitness function (i.e. amount of food) in ix  (t) . A few 
additional measures were included to ensure rapid 
convergence toward rich areas of the aquarium, namely: 

• Fish weight variation is evaluated once at every FSS 
cycle; 

• An additional parameter, named weight scale (Wscale) 
was created to limit the weight of a fish. The fish weight may 
vary between 1 and  Wscale . 

All the fish are born with weight equal to  Wscale /2. 

B. The Swimming Operators 
For fish, swimming is directly related to all the important 

individual and collective behaviours such as feeding, 
breeding, escaping from predators, moving to more liveable 
regions of the aquarium or, simply being gregarious. This 
panoply of motivations to swim away inspired the authors of 
[7] to group causes of swimming into three classes: a) 
individual, b) collective-instinct and c) collective volition.  

Below further explanations on how computations are 
performed on each of them are provided. 

C.  Individual Movement 
Individual movement occurs for each fish in the aquarium 

at every cycle of the FSS algorithm. The swim direction is 
randomly chosen. Provided the candidate destination point 
lies within the aquarium boundaries, the fish assess whether 
the food density there seems to be better than at its current 
location. If not, or if the step-size would be considered not 
possible (i.e. lying outside the aquarium or blocked by, say, 
reefs), the individual movement of the fish does not occur. 
Soon after each individual movement, feeding would occur, 
as detailed in the Section III.A. 

For this movement, a parameter was defined to determine 
the fish displacement in the aquarium called individual step 
(stepind). Each fish moves stepind if the new position has more 
food than the previous position. Actually, to include more 
randomness in the search process the individual stepind is 
multiplied by a random number generated by a uniform 
distribution in the interval [-1,1], represented as u in (4). In 
general, the individual step was decreased linearly in order to 

provide exploitation abilities in later iterations: 
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where gcurrent is the number of the current iteration and  gfinal  is 
the total number of iterations, for the fish i and dimension  j. 

D. Collective-Instinctive Movement 
After the individual movement, a weighted average of 

individual movement based on the instantaneous success of 
all fish of the school is computed. This means that fish that 
had successful individual movements influence the resulting 
direction of movement more than the unsuccessful ones. 
When the overall direction is computed, each fish is 
repositioned. This movement is based on the fitness 
evaluation enhancement achieved, as shown in (5): 
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where ∆xindi is the displacement of the fish i due to the 
individual movement within the current FSS cycle. 

E. Collective-Volitive Movement 
After individual and collective-instinctive movements are 

performed, one additional positional adjustment is still 
necessary for all fish in the school: the collective-volitive 
movement. This movement is devised as an overall 
success/failure evaluation based on the incremental weight 
variation of the whole fish school. In other words, this last 
movement is based on the overall performance of the fish 
school during the current iteration. The rationale is as 
follows: if the fish school is putting on weight (meaning the 
search has been successful), the radius of the school should 
contract; if not, it should dilate. This operator is deemed to 
help greatly in enhancing the exploration abilities in FSS. 
This phenomenon might also occur in real swarms, but the 
reasons are as yet unknown. The fish-school dilation or 
contraction is applied as a small step drift to every fish 
position with regard to the school’s barycenter. The 
fish-school’s barycenter is obtained by considering all fish 
positions and their weights, as shown in (6): 
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For this movement, a parameter called volitive step 
(stepvol) was defined as well. The new position is evaluated as 
in (7) if the overall weight of the school increases in the FSS 
cycle; if the overall weight decreases, (8) should be used. 

)]()([.)()1( tBaritxusteptxtx ivoli −−=+   (7) 

)]()([.)()1( tBaritxusteptxtx ivoli −+=+   (8) 
where u is a random number uniformly generated in the 
interval [0,1]. We also decreased the linear stepvol along the 
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iterations. 
The FSS algorithm starts by randomly generating a fish 

school according to parameters that control fish sizes and 
their initial positions.  

Regarding dynamics, the central idea of FSS is that all 
bio-inspired operators perform independently from each 
other. The FSS search process is enclosed in a loop, where 
invocations of the previously presented operators will occur 
until at least one stop condition is met. Stop conditions 
conceived for FSS are as follows: limitation of the number of 
cycles, time limit, maximum school radius and maximum 
school weight. Examples of the use of FSS algorithm can be 
visualized in [7]. 

IV. BINARY FISH SCHOOL SEARCH 
Although there are numerous ways to encode the FSS 

algorithm in order to solve feature selection problems, after 
some initial tests, we decided to modify the internal 
mechanisms of the FSS algorithm to manipulate binary 
inputs. 

The following sections describe the modifications to the 
original fish school search algorithm, emerging the binary 
fish school search (BFSS). 

A. Encoding 
There are various ways of encoding a problem solution. 

The encoding scheme presented here is inspired in [7]. An 
example of a possible state (position of a fish i) with a total of 
Nt features to be selected can be represented by the sequence: 

)1,...,0,1(),...,,( 21 ==
tiNiii xxxx .    (9) 

The state is encoded by a sequence of Nt bits, in which each 
bit indicates whether a feature is present or absent. 

This binary scheme, offers a straightforward representation 
of a feature subset, allowing the algorithm to search through 
the workspace, adding or removing features, simple by 
flipping bits in the sequence. While the FSS algorithm was 
not originally developed in the context of binary encoding, it 
appeared to be possible to modify the real to a binary 
encoding, keeping the following principles: 
• to follow the internal mechanisms of the original 

algorithm, without losing the meaning of each bio-inspired 
operator; 
• to add few additional parameters; 
• to ensure the convergence of the algorithm; 
• to keep simplicity and understanding. 
In the next sections, the modifications made to each of FSS 

internal mechanisms are presented.  

B.  Initialization of each fish 
For each fish i, the initial position was initialized randomly 

by doing: 

tij NjNi
otherwise

uif
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where u is a random number uniformly generated in the 
interval [0,1], N the number of fish and  Nt  the total number 
of features to be selected. 

By doing this, the algorithm starts with a population of fish 
completely randomly positioned within the search space, 

being the number of features of each fish selected at the 
beginning of the algorithm around Nt/2. We have assumed 
this because the algorithm might not converge freely along 
iterations if the initial average number of features is too small. 

C. Individual Movement 
The Individual movement occurs once in every cycle of the 

BFSS. For each fish i, and for each feature j, if a random 
number u (uniform distribution in the interval [0,1]), is 
smaller than Sind(t) the bit will flip, otherwise it will not 
change: 
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The Parameter Sind, in the same way as the FSS, will 
decrease linearly along the iterations depending on the first 
value and the last value of stepind. This allows a soft 
convergence through the iterations. A fish will move if the 
new position has more food than the previous position, i.e. if 
the fitness function of new set of features selected (new 
position) presents a better performance than the previous one. 
By doing this, the random exploration of each individual fish 
is preserved. 

D. Collective-Instinctive Movement 
After the individual movement, the weighted average of 

the individual movements, based on fish that had moved, is 
calculated. This process was executed in the same way as the 
FSS, equation (3). 

In order to guide all fish to the direction provided by the 
successful individual movements some adaptations were 
made to the original FSS algorithm. When dealing with 
positions with bits, equation (5) loses its meaning. The 
displacement of the fish,  ∆xindi  in equation (5), can no longer 
be quantified correctly using the discrete flipping of a bit. 

For that reason, equation (12) was used to describe the 
resultant position of the overall successful of the individual 
movement: 
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In (12),  ∆xindi  in (5) was replaced by xindi . In this approach, 
the use of the current position of fish that had success in the 
individual movement is seen as being more descriptive than 
the flipping of bits. 

The resulting vector I  has the same dimension as the 
positions of the fishes, but with values varying between 0 and 
1. As an illustrative example, (13) represents a possible 
configuration of I  : 

]7.0...3.005.01.0[=I     (13)  
The goal of the Collective-Instinctive Movement operator 

is to attract each fish to the resultant direction of the 
individual movement operator. In the BFSS, each fish must 
follow I . Therefore, it is necessary to have bit format to 
allow this. After some preliminary tests, we deployed an 
adaptive threshold per iteration. For a given )(tI , a threshold 
was used, multiplying the parameter thres_c by the max value 
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of )(tI . The resultant value of this multiplication would then 
be used as a threshold in the current iteration for this operator: 
if the values of the bits of )(tI  were below the threshold, they 
would be considered 0, otherwise 1.  

For the example (13), and if the parameter  thres_c  was 
0.4, the threshold used in this iteration would be 
0.4x0.7=0.28. Considering that 0.7 is the maximum value 
depicted in (13), the resulting I is: 

]1...1010[=I .              (14) 
Therefore, for each iteration t, the threshold to compute  
)(tI  binary vector was calculated using the maximum value 

of )(tI . This allows the algorithm to select at least 1 feature, 
then avoiding to loose its exploration ability, when compared 
the case in which a constant threshold is used through all 
iterations.  

After the computation of )(tI  in bit format, all fish position 
may now tend to )(tI . In order to allow this, the position of 
each fish is compared to )(tI . Then, one dimension of the fish 
that does not have the same value of )(tI  is randomly chosen 
and is flipped. This process diminishes the hamming distance 
between the position of each fish and )(tI . In comparison 
with the original algorithm, )(tI  no longer represents the 
direction but the position resultant of the successfully 
individual movements. By flipping only one bit per fish, a 
soft and steady convergence of the algorithm is expected.  

An illustrative example can be presented as follows. 
Suppose the values for the position and the vector I: 

x (t) = [0 1 0 11] → I = [0 1 0 0 0]

x (t + 1) = [0 1 0 0 1]
      (15) 

In (15), the fish x(t) moved in the direction of )(tI . One 
must observe that the bits with the same values 
are underlined. The resultant position, x(t+1), is achieved by 
flipping one bit that was randomly chosen among the ones 
that present has different values. The total number of bits 
underlined in the new position is greater than the one in the 
position before the collective-instinctive movement, making 
the new position of the fish to be closer to )(tI . 

E. Collective-Volitive Movement 
Similarly to the Collective-Instinctive Movement operator, 

the Collective-volitive operator underwent some changes. 
The main goal of this operator is, depending of the success of 
the individual movement, to contract or dilate the fish 
position to or from the barycentre. 

The barycentre was computed in the same way as in the 
FSS algorithm (6). Analogously to the computation of the 
vector )(tI , after the evaluation provided by (6), the 
barycentre is not obtained in a bit format. Thereby, the 
parameter thres_v  was introduced. In the same way as in the 
collective-instinctive movement, an adaptative threshold was 
used: multiplying thres_v  with the max value of barycentre. 

If the overall individual movement is a success (overall 
weights improved in the iteration) each fish shall approximate 
to the barycentre. Similarly to the process in the 
collective-instinctive movement operator, every bit per fish is 

compared to the barycentre. One bit (chosen randomly among 
the different bits) is then flipped. By making only one flip per 
fish per movement, the algorithm enables a soft directing 
towards the barycentre. An illustrative example generated by 
an improvement of the overall weight (contraction) is shown 
in (16). 

]10010[)1(
]00010[]11010[)(

=+
=→=

tx
Baritx    (16) 

In (16), fish changed x(t) randomly choosing one of the 
different bits when compared to Bari (bits not underlined in 
(16)) from barycentre (bari). This allowed the fish to 
approximate to the barycentre. 

If the overall weights had not improved, each fish has to 
move to the opposite direction of the barycentre. In order to 
allow, we introduce here the concept of anti-barycentre. The 
anti-barycentre consists of a vector in which all bits are 
flipped when compared to the barycentre. In this situation, the 
process is the same as described above for the case of 
contraction to the barycentre, but using the anti-barycentre for 
the dilatation. In (17) one can observe an example of 
dilatation, i.e. the case in which the overall weights did not 
improve. 

]11011[)1(
]11010[]11010[)(

=+
=→=

tx
Antibaritx    (17) 

In (17), the fish new position x(t+1) is obtained by 
comparing each bit of the anti-barycentre of the barycentre 
presented in (16). One of the bits with different values (not 
underlined in (17)), was flipped, making the new position of 
the fish to be closer to the Antibari and consequently further 
to bari in (17). After the collective-volitive movement, a new 
cycle begins. 

The stop criterion used was the number of iterations, and 
the best solution per iteration was the fish with best 
performance in the fitness function for that iteration. 

F. Objective function  
Although some of the parameters of the BFSS algorithm 

influence the final number of features selected (thresholds), 
the process of developing an objective function is critical, 
since it serves as guidance in search of the optimum. The 
objective function in (18) was used to evaluate the fitness of a 
certain position of the fish, based on [5]:  

)1)(1(
t

f

N
N

Pf −−+= αα ,        (18)     

where Nf represents the number of features selected, Nt the 
total number of features and P accounts for the performance 
of the created model. The parameter α ∈ [0,1]  is the weight 
of the related goal: accuracy or subset size. One must 
remember that the two main objectives in the FS problem are: 
maximizing the model accuracy and minimizing the size of 
the feature subset. 

V. RESULTS 

A. Benchmark tests 
To demonstrate the potential of the proposed approach, 

feature selection was performed in three benchmark datasets. 
The selected benchmark databases are listed in Table I, which 
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Databases Samples Features Classes
German (credit card) 1000 24 2
Sonar 208 60 2
WDBC 569 30 2

are available in the UCI repository. This repository has been 
widely used by researchers as a primary source of machine 
learning databases. Furthermore, the databases in this 
repository have a good balance between classes and a large 
diversity in feature number and sample size. 

 
TABLE I 

DATABASES USED FOR VALIDATION THE BFSS ALGORITHM 

 

Three feature selection methods were applied for the sake 
of comparison: 

• Sequential Forward Selection (SFS) search algorithm, 
incremental algorithm reported in [14]; 

• Binary Particle Swarm Optimization (PSO), a 
metaheuristic that can be consulted in [5]; 

• Binary Fish School Search (BFSS), presented in this 
paper. 

For each database the FS was performed using the three 
different methods, and using the same partitions of the data in 
order to make a fair comparison of the results. After FS, 
10-fold cross validation was applied to the best subset in each 
algorithm. The results of the 10-fold cross validation, for each 
method and with no feature selection are presented in Table 
II. 

As expected, the results presented in Table II shows that the 
use of a metaheuristic (BPSO and BFSS) in the process of FS 
clearly increases the overall accuracy of the models and 
selects a lower number of features. 

In what concerns the comparison of the proposed BFSS to 
the BPSO algorithm, Table II shows that these two algorithms 
have slightly better results, both in the accuracy and in the 
number of features selected.  

The convergence of the approach presented in this paper 
can be seen in Fig. 1. It shows the graphical evolution of the 
fish with the best solution per iteration, for the FS process in 
the sonar database. 

 
 
 

 

B. Application to readmission prediction 
Patient readmissions to intensive care units (ICUs) are 

associated with increased mortality, morbidity and costs. 
Current models for predicting ICU readmissions have 
moderate predictive value, and can utilize up to twelve 
variables that may be assessed at various points of the ICU 
inpatient stay [8,9,10]. 

In this paper, we used the database created in [4], derived 
from the MIMIC II database [14]. This database contains the 
time series of 22 physiologic variables that described each 
patient stay in an ICU. 

Previous studies [4], used the arithmetic mean, the 
maximum, the minimum and the standard deviation of each 
physiologic variables in order to absorb the information and 
reducing the data to a constant dimension input that describes 
each patient stay. In this paper, in addition to these statistical 
measures, the Shannon entropy and the weighted average 
were also used, giving the possibility to withdraw more 
information. 

TABLE II 
COMPARISON OF DIFERENT METHODS FOR FEATURE SELECTION 

Mean Std Mean Std Mean Std
NO-FS 77.43 ± 3.37 24 0.48 ± 0.06 0.90 ± 0.04
SFS 73.72 ± 4.37 7 0.45 ± 0.09 0.86 ± 0.04
BPSO 74.95 ± 2.84 7 0.51 ± 0.11 0.85 ± 0.05
BFSS 75.74 ± 3.16 6 0.52 ± 0.10 0.86 ± 0.03
NO-FS 75.50 ± 9.34 60 0.81 ± 0.16 0.71 ± 0.18
SFS 74.91 ± 7.01 11 0.71 ± 0.09 0.78 ± 0.14
BPSO 78.87 ± 6.49 8 0.79 ± 0.08 0.79 ± 0.11
BFSS 78.88 ± 8.94 9 0.80 ± 0.11 0.78 ± 0.12
NO-FS 97.18 ± 2.65 30 0.95 ± 0.04 0.99 ± 0.03
SFS 96.30 ± 2.40 5 0.93 ± 0.06 0.98 ± 0.03
BPSO 96.82 ± 2.32 3 0.97 ± 0.05 0.97 ± 0.03
BFSS 96.51 ± 3.54 3 0.98 ± 0.03 0.96 ± 0.05
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WDBC

Accuracy (% ) Sensitivity SpecificityNo. 
Features

MethodDatabase
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Fig. 1. Graphical evolution of the fish with the best solution per iteration 
using the sonar database. Fitness and ACC (above), and respective 

number of features selected (below). 
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Four different gradients for the linear distribution of the 
weights for the weighted mean were considered: 0.1, 0.4, 0.6 
and 0.9, giving more relevance to data before the discharge of 
the patient. Thus, four different datasets were considered, 
each one with the arithmetic mean, the maximum, the 
minimum and the standard deviation, the Shannon entropy 
and the weighted average (each dataset with different 
gradient) of the 22 physiologic variables that describe each 
patient. The dimension of each data set is presented in Table 
III: 

TABLE III 
DIMENSION OF THE READMISSON DATASETS 

 
 
 
 
Each sample corresponds to a patient, and each class 

contains the information about the readmission or not of the 
patient. 

Traditionally, accuracy has been used to evaluate the 
classifier performance. However this criterion is limited, 
especially for medical applications, due to several reasons. If 
one of the classes is more underrepresented than the others, 
misclassifications in this class will not have a great impact in 
the accuracy value. Besides, a good classification of a class 
might be more important than classifying other classes and 
this cannot be assessed with accuracy. Thus, we used the 
sensitivity and specificity to evaluate the AUC, which was 
used as the main performance metrics. This choice is based on 
the fact that the percentage of the readmitted patients is only 
12.3% against 87.7% of not readmitted patients. In this case, 
one of the classes is underrepresented and if the accuracy had 
been used the results would not be realistic. 

After collecting the results of all the FS methods for the four 
readmission datasets, the use of different gradients for the 
distribution of the weights for the weighted mean proved to 
be not relevant. All the algorithms show almost no sensibility 
to the presence of different gradients of the weighted mean 
for the 22 physiologic variables, presenting similar results for 
the four datasets using the same algorithm. Thus, the results 
for only one dataset are presented. Table IV shows the 10-fold 
cross validation results after the FS process for the three FS 
algorithms and with no feature selection for the readmission 
dataset with gradient of 0.9. 

The results show that BFSS both obtained a smaller number 
of features and introduces significant improvement in the 
sensitivity with a small reduction in the specificity. This is 
important since correct classifications for the positive cases 

are being made more accurately, and in this case of study the 
positive class has a greater importance than the negative one.  
Thus, the sensitivity measure is seen as a more important 
measure than the specificity. 

The graphical evolution in Fig. 2, confirms the convergence 
of the BFSS algorithm formulated in this paper during the FS 
process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. CONCLUSIONS 
This paper presented a new bio-inspired algorithm for 

feature selection, the binary fish school search (BFSS). The 
BFSS algorithm achieved slightly better results in 
comparison with the other FS methods in three benchmark 
databases considered in this paper. Regarding the prediction 
of ICU readmissions, the BFSS achieved superior results, 
mainly due to the significant improvement in the sensitivity, 
which is very important for medical applications, and the 
lower number of features selected. The main contribution to 
achieve such results was the presence of the 
collective-volitive operator, which had a major role to 
provide a higher exploration capability, allowing the 
algorithm to escape from local optima. 

In this work, various modifications to the FSS algorithm 
were proposed. Nevertheless, not all the possible paths were 
explored. As already done to the original FSS algorithm [15], 
the reduction of the number of parameters and refinement of 
the BFSS operators are logical paths for future investigation. 

 
TABLE IV 

COMPARISON OF DIFERENT METHODS FOR FEATURE SELECTION USING THE READMISSION DATASET 
Method

Mean Std Mean Std Mean Std Mean Std
NO-FS 0.64 ± 0.10 132 67.58 ± 11.73 0.63 ± 0.21 0.68 ± 0.14
SFS 0.68 ± 0.10 9 66.43 ± 14.59 0.71 ± 0.14 0.66 ± 0.17
BPSO 0.67 ± 0.11 8 59.13 ± 10.23 0.78 ± 0.11 0.57 ± 0.14
BFSS 0.69 ± 0.11 6 55.53 ± 14.12 0.87 ± 0.11 0.51 ± 0.16

AUC No. 
Features

Accuracy (% ) Sensitivity Specificity

Fig. 2. Graphical evolution of the FS best fish per iteration, BFSS algorithms using 
the readmission dataset with gradient of 0.9 for the distribution of the weighted 

mean. Fitness and AUC (above), and respective number of features selected 
(below). 
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