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Abstract—In this paper, we present a complete inferencing
framework based on L-fuzzy sets, comprising fuzzification, in-
ferencing itself, and both linguistic and numeric defuzzification
strategies. We present the algorithms for each step, and then
present a range of worked examples to illustrate the methods.
Finally, we compare the results with similar examples which
carry out ‘standard’ Mandani-style inference. To the best of our
knowledge, this is the first time that practical algorithms for
complete L-fuzzy inference have been presented.

Index Terms—L-Fuzzy sets, fuzzy inference systems, fuzzifica-
tion, defuzzification, similarity.

I. INTRODUCTION

Two years after Zadeh’s original 1965 paper on fuzzy sets,

Goguen (one of Zadeh’s students) published a paper outlining

the concept of L-fuzzy sets [1]. Goguen pointed out that

the codomain of a fuzzy set could be any transitive partially

ordered set (poset), denoted by L, rather than the unit interval

[0, 1] as per Zadeh’s original definition, and he termed a

fuzzy set with this more general definition an L-fuzzy set.

Goguen went on to state that restricting the codomain to

be a complete lattice, with distributivity, was probably more

useful in practice and considered simply ordered sets as special

cases (albeit still being generalisations of standard fuzzy sets).

Although Goguen proposed many theoretical considerations

and provided proofs for some of these, he did not provide

practical algorithms for performing inference.

Whilst Zadeh’s seminal papers in 1975 [2] considered

inference processes, it was Mamdani who first provided a

practical algorithm for carrying out an approximate form of

inference for standard fuzzy sets [3]. Despite the fact that

Mamdani’s approach is pragmatic in the way it implements in-

ferencing (essentially blurring the distinction between logical

implication and conjunction), the methodology has become the

most widely implemented form of fuzzy inference in practical

algorithms. Of course, other inferencing methodologies have

also been proposed (including TSK inference, ANFIS and

others) along with practical algorithms for implementation.

However, despite attracting some subsequent theoretical inter-

est such as from Dubois and Prade [4], Wang and He [5], and

others, practical inferencing methodologies for L-fuzzy sets,

akin to Mamdani type inference for fuzzy sets, have yet to

be proposed. Partially due to this lack of practical inferencing

algorithms, L-fuzzy sets have perhaps not attracted as much

interest as they might.

We feel that more attention should be given to the use

of L-fuzzy sets featuring posets or simply ordered sets as

membership grades, particularly as more natural expressions of

modelling human reasoning (as opposed, for example, to fuzzy

control). As an example, take the expression of people’s ages.

It is quite natural for a person to describe the membership

of someone of 60 years of age as being ‘somewhat’ in

the set of old people, describing someone of 70 as being

‘probably’ old, and someone of 90 years as being ‘definitely’

old, without providing clear indications of numeric values of

such memberships.

Some authors, including ourselves, have resorted to util-

ising type-2 fuzzy sets (both interval type-2 and general) to

represent the vagueness in such numeric membership values,

but this still requires some numerical representation of mem-

bership on the unit interval [6]. In many cases, we know

nothing about the order of membership grades other than that,

for example, ‘not at all’ is less than ‘somewhat’, which in

turn is less than ‘definitely’. Putting arbitrary numeric values

onto these labels is meaningless (or perhaps even misleading).

It may be sufficient, more natural and, in some cases, a

better reflection of reality to use simply ordered sets for these

membership grade labels. Hence the attraction of L-fuzzy sets.

Whilst we note that posets are the most general codomain of

L-fuzzy sets, and may be useful in some contexts, we restrict

our consideration to codomains which are simple ordered sets.

This paper continues as follows. In Section II, important

theoretical notions pertaining to L-fuzzy sets and properties

thereof are reviewed, followed by the proposal of some novel

manipulations. In Section III, we then present a complete prac-

tical methodology, together with algorithmic details, necessary

for carrying out L-fuzzy inference akin to Mamdani inference.

In Section IV, we describe similar methods and algorithms

for defuzzification. Once the methods and algorithms are

described, in Section V we present a complete worked example

to illustrate the methods in practice, comparing and contrasting

with standard approaches. Finally, we discuss the implications

of this work in Section VI and then present conclusions and

opportunities for future work in Section VII.

II. L-FUZZY SETS

Definition 1 An L-fuzzy set Ă on a set X is a function Ă :
X → L, where L is a poset [1]. �

Remark 1 For the remainder of this paper, we will restrict

L to being a simply ordered set. We write A rather than Ă

to simplify notation where the context is clear. To distinguish

this from the general case, we shall refer to a simply ordered
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Fig. 1. Examples of L-fuzzy sets Low, Mid, and High. Note that the labels on the y-axis are arbitrary.

codomain as Y . That is, we will restrict the definition such

that an L-fuzzy set A on a set X is a function A : X → Y ,

where Y is a simply ordered set. Note that Y will be discrete

and finite. �

Given that we are concerned with creating practical method-

ologies with algorithmic implementations, we will also restrict

X to be a discrete, finite ordered set. That is, all L-fuzzy

sets will have a discrete and finite universe of discourse. For

cases where the universe of discourse is conceptually infinite

(such as defined on continuous subsets of ℜ), the universe

will be discretised for representation and manipulation. We

now introduce some notation.

Definition 2 Let A be a specific L-fuzzy set, A : XA →
Y A. XA is the domain of A, discretised into m points, with

elements xA
i (i = 1 . . .m):

XA = (xA
1 , x

A
2 , . . . , x

A
m)

where the parentheses are use to denote an ordered set. Also,

let Y A be the codomain of A, discretised into n points, with

elements yAj (j = 1 . . . n):

Y A = (yA1 , y
A
2 , . . . , y

A
n )

then the specific L-fuzzy set A, with elements ai ∈ Y A, can

be written as:

A = (a1, a2, . . . , am).

Taken together, these can be written in equivalent Zadeh style

notation as:

A = a1/x
A
1 + a2/x

A
2 + · · ·+ am/xA

m

where the codomain is implicit (in Zadeh’s notation, the

codomain is omitted, as it is always [0, 1]). �

Remark 2 We emphasise that the elements yAj of the

codomain Y A are represented by application dependent lin-

guistic labels, such as { incompatible, possible, probable },

but that these linguistic labels are just identifying the ele-

ments. Thus, for example, whether we label three elements as

incompatible, possible and probable, or as possible, probable

and definite, or false, half-true and true, or even as ‘0.0’,

‘0.5’ and ‘1.0’ does not matter — they are simply labels

describing a rank-ordered list in which the position or rank

(relative position or degree of value in the graded group) is

the important matter. �

Example 1 Let Low be an L-fuzzy set defined on domain

XLow, being the integers 1 . . . 5, over a codomain Y Low,

being an ordered set with elements incompatible (inc), possible

(pos), and probable (prb), i.e.:

XLow = (1, 2, 3, 4, 5)

Y Low = (inc, pos, prb)

Low = (prb, pos, inc, inc, inc)

or in Zadeh notation:

Low = prb/1 + pos/2 + inc/3 + inc/4 + inc/5.

Then, two different L-fuzzy sets Mid and High on the

same domain (XHigh = XMid = XLow) and codomain

(Y High = Y Mid = Y Low) might be:

Mid = (inc, pos, prb, pos, inc) and

High = (inc, inc, inc, pos, prb).

These sets are illustrated in Fig. 1. �

Note that any element of an L-fuzzy set may be unde-

fined, which is quite distinct from being defined as any one

of the values on the codomain including, for example, inc

(incompatible). This will be written as ‘—’. In essence, —

represents an undefined value, such that the membership could

lie anywhere in the codomain; i.e. we have no information

about the membership value. As an example, consider a fuzzy

set representing the level of enjoyment at work, defined for

each day of the week. So the domain XA = ( Mon, Tue, Wed,

Thu, Fri, Sat, Sun ), and the codomain Y A represents various

levels of enjoyment, such as ( None, Little, Some, Lots ). Given

that a person only works Mon to Fri, the set may be defined

as A = ( Little, Some, Some, Little, Lots, —, —).

Later, it will be necessary to state explicitly the domain and

codomain of the L-fuzzy set, this can be written as:

XA

AY A

or XA=(xA

1
,xA

2
,...,xA

m
)AY A=(yA

1
,yA

2
,...,yA

n
)

To simplify notation, we drop the superscript on the domain

X (and even the domain itself) when obvious, and we drop

the superscript A on the codomain Y and from the elements of

the codomain yAj when obvious. Hence, we may write XA

AY A

as just AY , and yAj as just yj , e.g.:

X=(1,2,3,4,5)LowY=(inc,pos,prb) or XLowY .
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Fig. 2. Illustration of L-fuzzy union of sets Low and Mid, each as in Fig. 1.

A. Intersection and Union

Definition 3 For two L-fuzzy sets, A and B, defined on the

same domain X , with the same codomain Y , the intersection

is defined as:

A ∩B ≡ min(A,B)

=
(
min(a1, b1),min(a2, b2), . . . ,min(am, bm)

)
�

Definition 4 Similarly, the union of two L-fuzzy sets defined

on the same universe X and codomain Y is defined as:

A ∪B ≡ max(A,B) �

Example 2 Using the same sets as in the example above:

Low ∩ Mid = min
(
(prb, pos, inc, inc, inc),

(inc, pos, prb, pos, inc)
)

= (inc, pos, inc, inc, inc).

while:

Low ∪ Mid = max
(
(prb, pos, inc, inc, inc),

(inc, pos, prb, pos, inc)
)

= (prb, pos, prb, pos, inc). �

An illustration of the L-fuzzy union of sets Low and Mid, as

given in Fig. 1, are shown in Fig. 2.

Before we can proceed to an inferencing framework, in-

cluding fuzzification, implication and defuzzification, we need

to define a number of operations that may be performed

on L-fuzzy sets, namely implication, L-similarity and a

numeric defuzzification.

B. Implication

When carrying out implication within a rule-based system

in a practical Mamdani context, the truth value of a rule

is evaluated, and then that truth value is used to ‘fire’ a

consequent fuzzy set at the given truth value. In Mamdani

terms, this is implemented by carrying out an intersection

operation (using a tnorm) between the evaluated truth value

and the elements of the consequent set. We need to formulate

an equivalent process for L-fuzzy implication.

In standard fuzzy sets, in which the codomain is always

fixed as the unit interval, membership values are simply

expressed as a value in [0, 1]. In contrast, in L-fuzzy systems in

which different sets may be defined over different codomains,

a membership value is expressed as a specific element of a

codomain. So, rather than simply stating that a membership

value of a certain element in a standard fuzzy set is (say) 0.5

(where the codomain [0, 1] is implicit), we may state that the

membership of a certain element of an L-fuzzy set is pos on

codomain (inc, pos, prb) which is quite different, of course,

from pos on codomain (inc, pos,may(be), prb, def(inite)). The

essential process of implication is that the consequent set is

fired at the evaluated level of the antecedent. That is, with

an antecedent evaluated as pos on codomain (inc, pos, prb),
the fired consequent set is simply labelled as belonging to

pos(inc,pos,prb).

To represent this formally, assume we have an antecedent:

AY A=(yA

1
,yA

2
,...,yA

n
)

and a consequent:

CY C=(yC

1
,yC

2
,...,yC

n
).

To emphasise, note that the codomain of the antecedent and

consequent may differ — that is Y A 6= Y C , nA 6= nC , and

yAj 6= yCj . To carry out implication, it is necessary to maintain

the concept that the result of implication will be an L-fuzzy

set that is one of a set of terms of a single linguistic variable.

Definition 5 A linguistic variable, denoted as A, consists of

a set of related L-fuzzy sets Ak ∈ A, defined over the same

domain and codomain. �

Definition 6 The result of implication A → C is a linguistic

variable C, consisting of a set of L-fuzzy set terms CyA

i

,

where yAi ∈ Y A, the codomain of the antecedent, and each

CyA

i

has the domain and codomain of the consequent set C.

If a specific evaluation (firing strength) of the antecedent is

denoted aY
A=(yA

1
,yA

2
,...,yA

n
), for example posY

A=(inc,pos,prb),

then the result of implication is the linguistic variable C, in

which Ca = CY C

, with the remaining constituent sets having

undefined (—) membership values. �

Example 3 The process is best illustrated with an example.

Assume the codomain of a consequent set C is:

Y C = (inc, pos,may, prb, def )

and that a specific L-fuzzy set consequent of implication on

the domain 1 . . . 5 is:

C = (inc, inc,may, prb, def ).

Note the fact that m (= 5, the number of elements in the

domain) is equal to n (= 5, the number of elements in the

codomain) is entirely coincidental, and without significance.

The codomain of the antecedent A is:

Y A = (inc, pos, prb)

and the specific antecedent of the implication evaluates as pos,

i.e. pos(inc,pos,prb). The term sets of the linguistic variable
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resulting from the implication A → C are:

Cinc = (—,—,—,—,—),

Cpos = (inc, pos,may, prb, def ), and

Cprb = (—,—,—,—,—). �

III. L-FUZZY INFERENCE

A. Inference Process

As usual in fuzzy rules, linguistic variables appear as rule

antecedents and as rule consequents, each variable comprising

a set of terms (fuzzy sets) defined over a common domain and

codomain. Suppose we have a set of multi-input single-output

rules and each rule, denoted as Rr∈R, is of the form:

R1 : If ã1 is A1,1 and/or . . . ã2 is A1,2 and/or . . .

Then C1 is C1

R2 : If ã1 is A2,1 and/or . . . ã2 is A2,2 and/or . . .

Then C2 is C2

R|R| : If ã1 is A|R|,1 and/or . . . ã2 is A|R|,2 and/or . . .

Then C|R| is C|R|

where ãi is the actual observed value of input i being evalu-

ated, Ar,i is the fuzzy antecedent set of the ith input variable

for the rth rule, and Cr is the resulting linguistic variable of

the rth implication (the rule output). The overall result of the

inference is C =
⋃

r∈R Cr, that is, a single linguistic variable

comprising the union of all the rule outputs.

As a pragmatic constraint, we require all input variables to

be defined over the same codomain, while the consequent sets

may have a different codomain (although each rule consequent

is a set drawn from the same linguistic variable). Note that the

domains of all variables are independent, as per usual.

The L-fuzzy inference process is essentially the same as

in Mamdani inference. For each rule: each input variable is

fuzzified by evaluating the membership value on the codomain

at the value of the input on the domain; the overall value of

the antecedent is formed by taking the union or intersection of

the sub-clauses of the rule; the consequent of the rule is fired

as specified by the implication process, above; and, finally, the

individual rule outputs are combined by the union operation.

B. Inference Example

We provide a complete worked example of a very simple

inference process, with two rules.

Example 4 Let there be two linguistic variables, A and B,

each with three terms Low, Mid and High, defined on the

domain 1 . . . 5 and with a codomain (inc, pos, prb), as follows:

ALow = (prb, pos, inc, inc, inc),

AMid = (inc, pos, prb, pos, inc),

AHigh = (inc, inc, inc, pos, prb),

BLow = (prb, prb, inc, inc, inc),

BMid = (inc, prb, prb, prb, inc), and

BHigh = (inc, inc, inc, prb, prb).

A comprises the three sets shown in Fig. 1 and is shown,

together with B in Fig. 3. There is a third linguistic variable,

C, which also has three terms Low, Mid and High, defined on

the domain 1 . . . 5, with a codomain (inc, pos,may, prb, def ):

CLow = (def , prb,may, inc, inc),

CMid = (inc, pos, def , pos, inc), and

CHigh = (inc, inc,may, prb, def ).

and also shown in Fig. 3. There are two rules in this simple

illustrative system:

R1 : If ã is ALow and b̃ is BMid Then C1 is CHigh

R2 : If ã is AMid and b̃ is BMid Then C2 is CMid

Now, assume the inference is fired with the crisp values

ã = 2 and b̃ = 3. Then, for R1:

ALow(2) = pos(inc,pos,prb)

BMid(3) = prb(inc,pos,prb)

ALow(2) ∩ BMid(3) = pos(inc,pos,prb) ∩ prb(inc,pos,prb)

= pos(inc,pos,prb)

Hence, the consequent CHigh = ( inc, inc, may, prb, def ) is

fired at pos(inc,pos,prb) and so, as detailed in Sec. II-B, the

result C1 of R1 is:

C1,inc = (—,—,—,—,—),

C1,pos = (inc, pos,may, prb, def ),

C1,prb = (—,—,—,—,—).

It is straightforward to see that for R2:

AMid(2) ∩ BMid(3) = pos(inc,pos,prb)

and hence that the result of R2 is:

C2,pos = (inc, pos, def , pos, inc),

C2,inc = C2,prb = (—,—,—,—,—).

Taking the union of the two rules gives the final result of

inference consisting of the three constituent L-Fuzzy sets:

Cpos = (inc, pos, def , prb, def ),

Cinc = Cprb = (—,—,—,—,—),

as shown in Fig. 4(a-c), for Cinc, Cpos and Cprb, respectively.

�

IV. DEFUZZIFICATION

We now proceed with a set of operations for defuzzification

of the result(s) of L-fuzzy inference. Note that these are not

the only methods that may be used, in the same way that centre

of gravity defuzzification is just one of a range of conventional

defuzzification methods.
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Fig. 3. Illustration of the three linguistic variables, A, B and C, each containing three L-fuzzy term sets, Low, Mid and High. Note that the terms are
different in each case (despite having similar names) and that the codomain of C is different to that of A and B.
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Fig. 4. Illustration of the final output of the two rule system presented in Example 4. Both Cinc and Cprb are undefined for all values of the domain, as a

result of the fact that neither of the rules provided any information on these levels.

A. Similarity Matrix

As described in Sec. III, the result of an inference process on

a set of rules is a single overall consequence linguistic variable

C comprising one term for each level of the codomain of the

rule antecedent(s). So, one can now form the similarity of each

of the resultant consequence terms with each of the terms of

the original consequent variable C.

Definition 7 A similarity matrix, S, may be constructed for

the result of L-fuzzy inference, of size |Y A| × |C|, with rows

for each level in the codomain Y A of the antecedent(s), and

columns for each of the terms in the consequent linguistic

variable C. Each element is the matrix represents the similarity,

sim, between the consequence term for the corresponding

row and the original consequent term for the corresponding

column. �

Example 5 Thus, continuing the previous example, the sim-

ilarity matrix will be a 3×3 matrix with rows inc, pos and prb

(for consequence terms Cinc, Cpos and Cprb), and columns

Low, Mid and High (for consequent terms CLow, CMid and

CHigh), with elements:




sim(Cinc, CLow) sim(Cinc, CMid) sim(Cinc, CHigh)

sim(Cpos, CLow) sim(Cpos, CMid) sim(Cpos, CHigh)

sim(Cprb, CLow) sim(Cprb, CMid) sim(Cprb, CHigh)




�

B. L-Similarity

In order to calculate the similarity, sim, between two

L-fuzzy sets, we propose a form of Jaccard similarity.

Definition 8 The similarity between two L-fuzzy sets A and

B is given by:

sim(A,B) =
|A ∩B|

|A ∪B| �

While this may appear straightforward, this is not the case.

The Jaccard similarity is essentially based on the relative size

of the intersection and union. As the codomain of an L-fuzzy

set is simply an ordered set without any numerical scale to the

levels, there is no obvious, natural method to determine the

size of such a set. To address this issue, we propose the most

natural way to assess the difference between levels, namely

counting the steps. That is, to move from the first level to the

third level requires two steps. It is obvious that counting steps

is the same as mapping the levels to the natural numbers and

taking the absolute value of the difference (that is, from the

first step to the third step is 3− 1 = 2 steps).

Definition 9 The codomain Y A of L-fuzzy set A, with

elements yAj (j = 1 . . . n) can be mapped onto the domain,

Y ′A, of integers 1 . . . n:

yAj = (yA1 , y
A
2 , . . . , y

A
n ) ⇒ y′Aj = (1, 2, . . . , n) (1)

�

Definition 10 The cardinality, |A|, of L-fuzzy set A is given

by the sum of the levels of the memberships of A above the

lowest level of the codomain, once the codomain has been

mapped to integers. That is:

|A| =
m∑
i=1

(y′Aj (ai)− 1)
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Thus, the cardinality of L-fuzzy set CMid shown in Fig. 3 is

1 + 4 + 1 = 6, while that of Cpos shown in Fig. 4 is 12. �

Now we have these definitions, for the same example, the

similarity between CMid and Cpos, as above, is:

sim(Cpos, CMid) =
|Cpos ∩ CMid|

|Cpos ∪ CMid|

=
|CMid|

|Cpos|
=

6

12
= 0.5

This gives a similarity matrix:

S =


 0 0 0
0.167 0.5 0.75
0 0 0


 ≡

Low Mid High

inc 0 0 0
pos 0.167 0.5 0.75
prb 0 0 0

This matrix may be interpreted as indicating the similarity

between each of the consequent terms and the various levels of

the antecedent codomain. Thus, the example similarity matrix

above may be interpreted as indicating an output which is Mid

to High at the level pos on the ordered scale (inc, pos, prb).

C. Numeric Defuzzification

While the similarity matrix above is a natural point to

conclude defuzzification, there may be circumstances in which

a complete numeric defuzzification of the results of L-fuzzy

inference is required; for example, if the mapping of the

codomain onto a numeric scale is known (or is somehow

natural or obvious from the context). In order to arrive at a

single numeric value for inference, two steps are necessary.

First, the locations of the term sets of the consequent

variable on its domain are derived using a centroid-like

calculation. Then, the similarity matrix is interpreted as the

centroid of these locations, weighted by the absolute value

of the matrix element and the level of the corresponding

row on the codomain of the antecedent(s). In both of these

steps, the codomain needs to be transformed from an ordered

set onto a numeric scale, such as the unit interval [0, 1], as

usually featured in fuzzy sets. This may be achieved through

the linear mapping provided in Eqs. (1) and (2), above. The

location of the L-fuzzy set may then be obtained by any

method of numeric defuzzification as for standard fuzzy sets;

for example, by centroid (centre-of-gravity) defuzzification, in

which case the location of set C is given by:

C̃ =

∑m
i=1 ci ŷ

C
i∑m

i=1 ŷ
C
i

As an example, consider the term set of the con-

sequent variable C, as shown in Fig. 3. The five

elements of the codomain (inc, pos,may, prb, def ) are

first mapped to (0, 0.25, 0.5, 0.75, 1) such that the set

Low(inc,pos,may,prb,def ) can be interpreted as the fuzzy set

1/1 + 0.75/2 + 0.5/3 + 0/4 + 0/5 (in standard Zadeh notation),

which has a centroid at 1.778. Similarly, it can easily be

derived that Mid has a centroid at 3, while High has a centroid

at 4.222. These centroids are denoted C̄k, one for each term of

the consequent variable C, that is, C̄Low = 1.778, C̄Mid = 3.0
and C̄High = 4.222.

To perform numeric defuzzification, it is necessary to map

the numerical codomain Y ′A onto the unit interval, as Ŷ A.

By default, this mapping is most naturally made onto equally

spaced intervals on the unit interval, such that y′1 is mapped

to zero and y′n is mapped to one:

y′Aj = (1, 2, . . . , n) ⇒ ŷAj =

(
∀

n

j=1

j − 1

n− 1

)

= (0,
1

n− 1
, . . . , 1) (2)

Next, the rows of the matrix are weighted by the levels ŷA

of the codomain Y A of the antecedent(s) mapped onto [0, 1],
so that the total weight of each column is given by:

wq =

|Y A|∑
p=1

ŷAq Sp,q

for each column q from 1 to |C|.
Finally, the location of the entire similarity matrix, can be

derived from the centroid of the consequent term locations

based on these column weights:

S̃ =

∑|C|
q=1 C̄q wq∑|C|
q=1 wq

where the C̄q are the indexed elements of C̄.

For the matrix S above, this simply reduces to (0.167 ×
1.778 + 0.5 × 3 + 0.75 × 4.222) / (0.167 + 0.5 + 0.75)
= 3.503. That is, the similarity matrix S has an overall

‘centroid’ located at 3.503, that is just to the R.H.S. of the Mid

set. Visually, this can be interpreted as the overall centroid of

the three sets shown in Fig. 4, where the set Cpos lies half-

way between Cinc and Cprb. While other approaches may be

adopted, nevertheless, this results seems intuitively appealing,

maintaining the essence of the conventional centroid.

V. RESTAURANT TIPPER EXAMPLE

In order to demonstrate the complete L-fuzzy inference

process, we present a complete worked example of an L-fuzzy

equivalent of the restaurant tipper example as given in the

MATLAB R© Fuzzy Logic Toolbox R© [7].

The example relates the size of the tip to be given in a

restaurant based on two factors, the quality of the service and

the quality of the food. Thus, there are two input linguistic

variables (service and food) and one output linguistic variable

(tip). The following rules are provided:

If service is poor or food is rancid, then tip is cheap
If service is good, then tip is average
If service is excellent or food is delicious, then tip is generous

with the understanding that service has three terms poor,

good and excellent; food has two terms rancid and delicious;

and tip has three terms cheap, average and generous. The

membership functions for each of these terms can be found in

the MATLAB R© Fuzzy Logic Toolbox R©.
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Fig. 5. Illustration of terms in the three linguistic variables, service, food and tip, in the coarse-grained restaurant tipper example.
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Fig. 6. Illustration of terms in the three linguistic variables, service, food and tip, in the fine-grained restaurant tipper example.

A. Coarse-Grained Tipper Example

We present two different L-fuzzy implementations of

the tipper example. Firstly, a coarse-grained version in

which all three linguistic variables have the same codomain

(inc, pos,may, prb, def ) on integer domains discretised to 11

equally spaced points, over the intervals [0, 10], [0, 10] and

[0, 30], respectively. The L-Fuzzy sets are shown in Fig. 5.

Note that, the coarse nature of the discretisation mean that

these are only broadly similar to the MATLAB R© versions.

B. Fine-Grained Tipper Example

In the fine-grained version, the three linguistic variables

are all defined over the codomain (0, 0.1, . . . , 1.0) with 101

discretisations on real domains over the intervals [0, 10], [0, 10]
and [0, 30]. The L-Fuzzy sets, modelled on the MATLAB R©

Fuzzy Logic Toolbox R© sets, are shown in Fig. 6. Note that

these sets are now much closer approximations to the triangu-

lar membership functions used in the MATLAB R© example.

C. Restaurant Tipper Inference

The MATLAB R© Fuzzy Logic Toolbox R© version of tipper

produces the centroid result of 7.79 when run with the crisp

inputs service = 2 and food = 7. In comparison, the coarse-

grained L-fuzzy version produces a similarity matrix of:

cheap average generous

inc 0.031 0.545 0.5
pos 0.000 0.000 0.0
may 1.000 0.045 0.0
prb 0.000 0.000 0.0
def 0.000 0.000 0.0

which has a centroid of 4.04. While this centroid is quite far

from the MATLAB R© example, this is mainly attributable to

the rough nature of the approximations in the terms, necessary

due to the coarse discretisations used. When the fine-grained

L-fuzzy model is used, with far closer approximations of the

term sets, a much closer result is obtained. Surface plots of

the original MATLAB R© example, the coarse-grained model

and the fine-grained model are shown in Fig. 7.

VI. DISCUSSION

In this paper, we have defined a restricted form of L-fuzzy

set, in which the codomain is a simply ordered, finite and

discrete set. The domain of the L-fuzzy set is also a simply

ordered, finite and discrete set. We go on to detail basic

operations of intersection, union, and implication, and then

present a complete inference framework for L-fuzzy rule-

based inference systems, akin to Mamdani inference. Within

the inference, we require all antecedent terms to be defined

over the same codomain, while the rule consequents may

be defined over a different codomain. While some of the

restrictions on general L-fuzzy sets that we impose may appear

quite onerous at first sight, they are actually a significant

relaxation of conventional fuzzy sets and systems, in which

the codomain is always the unit interval [0, 1].
The simple two-rule example used through the paper il-

lustrates the complete inference process, while the restau-

rant tipper example provides a complete L-fuzzy inference

including numeric defuzzification. It can be seen from the

results obtained that the numeric results of our operations

can replicate conventional Mamdani inference to a reasonable

accuracy. Although this is not the primary goal of these

589



se
rv
ice

0

2

4

6

8

10

fo
o
d

0

2

4

6

8

10

tip

10

15

20

se
rv
ice

0

2

4

6

8

10

fo
o
d

0

2

4

6

8

10

tip

5

10

15

20

25

se
rv
ice

0

2

4

6

8

10

fo
o
d

0

2

4

6

8

10

tip

10

15

20

Fig. 7. The input-output surface for the tipper example, as given in the MATLAB R© Fuzzy Logic Toolbox R© [7]; for the coarse-grained L-fuzzy equivalent
model; and for the fine-grained L-fuzzy model.

L-fuzzy methods, it nevertheless provides some confidence

that the operation described are appropriate.

The primary result of our L-fuzzy inference is a set of

L-Fuzzy sets, as shown in Fig 4. We provide defuzzification

strategies in both linguistic and numeric forms. The linguistic

defuzzification is based on finding the similarity of each of

the resulting L-fuzzy sets, against the original term sets in

the consequent variable, using a form of Jaccard similarity. In

order to implement this step, it is necessary to map the simply

ordered set of the codomain onto a numeric scale, for which

we initial use the natural numbers. In doing so, we obtain

a form of Manhattan distance between the two sets, that is

the number of steps required to move from one ordering to

the other, passing through the intermediate ordered elements

on the way. As a subsequent step, in order to calculate an

equivalent to the centroid, we map simply ordered codomains

onto equally spaced intervals covering the unit interval.

There is an obvious contradiction in describing an entire in-

ferencing process that can operate on simply ordered L-fuzzy

sets, and then as a final step to introduce an arbitrary mapping

of the codomains of the sets onto numeric scales, to permit

similarity calculations and numeric defuzzification. However,

we maintain that there is an advantage of doing so, Namely,

that the mappings to numeric scales is delayed until the end

of the inference process. Indeed, the final mapping to the unit

interval is only required for the numeric defuzzification step.

As this is a separate self-contained step after inferencing has

been completed, it is obviously possible to perform inferencing

and then investigate a range of alternative numerical mappings

that may be suitable to a specific application context. While

we have not done this in the present paper, we are currently

exploring this ‘delayed mapping’ concept. One application

area in which a complete L-fuzzy approach may be more

natural is, for example, in the context of expert (subject)

agreements. Consider a situation in which we have five experts

and we wish to model the expert agreement: the number of

expert agreements obtained for a particular element of a set

could be used as the codomain of an L-fuzzy set [8]. Then,

the L-fuzzy methods presented in this paper may be used to

perform inference, without having to place the various levels of

agreement onto an arbitrary mapping on [0, 1] (as needs to be

done when using conventional fuzzy sets). Having determined

the results of inference, various mappings may then be used

to weight agreement of different numbers of experts. Again,

this is the subject of current research.

VII. CONCLUSION

In this paper, we have presented a complete L-fuzzy infer-

encing system, with practical algorithms, from input fuzzifica-

tion to output defuzzification, allowing inference without the

need to arbitrarily map fuzzy sets onto [0, 1]. To the best of our

knowledge, this is the first time a complete such system has

been described. We have demonstrated that the fuzzification,

inferencing and defuzzification strategies described, provide

both natural linguistic consequences, and can provide numeric

results that closely match a conventional ‘Mamdani’ approach.

In future, we intend to explore the use of L-fuzzy sets in

example real-world applications, including using them when

representing levels of expert agreement, as mentioned above.

Suppose we need to represent the fact that m of n experts

agree. For example, three experts (of five) agreeing has more

worth than two agreeing and less than four agreeing, but these

agreement levels do not have specific associated numerical

values. Thus, this would be better represented by L-fuzzy sets

as described herein, rather than standard fuzzy sets.
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