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Abstract—The goal in group decision making is to ensure that
the best decision is made with respect to the available informa-
tion and knowledge possessed by all group members. However,
different types of uncertainty may influence both the assessment
of the individual views and the derivation of the overall group-
level solution. The difficulty in such decision-making may escalate
if the views of all individuals only cover part of the problem
space. Systems capable of reasoning through fuzzy interpolation
can help. Fuzzy rule interpolation is an important technique
for performing inference with sparse rule bases. Even when a
given observation has no overlap with the antecedent values of
any existing rules, fuzzy rule interpolation may still derive a
conclusion. This paper presents an approach for achieving group
decision making via fuzzy interpolation. Individual preferences
are firstly aggregated by means of a method learned on rough-
fuzzy set theory, and rough-fuzzy interpolation is then applied
to derive the group-level conclusion. Experimental investigations
are carried out and the results are presented to demonstrate the
efficacy of the proposed work in guaranteeing the overall decision
accuracy.

I. INTRODUCTION

Group decision making (GDM) is a process where a
number of individuals attempt to reach a consensus on a certain
decision. A group solution is the one that is the most acceptable
to all the individuals concerned as a whole. In GDM, both
the individuals in the group and the group at large jointly
make decisions. To do this, individuals need to express their
judgements among a set of alternative opinions. However, dif-
ferent types of uncertainty may influence both the assessment
of the individual views and the derivation of the overall group-
level solution [1]. These include the following factors: (1)
An individual’s role (weight) in the generation of the group
solutions, since there may be a group leader or leaders who
play more important roles in a particular GDM process. (2)
An individual’s preference for possible decision alternatives,
since individuals may have a different understanding for the
same information and different experiences in the area of
current decision problems. (3) An individual’s use of criteria
for assessing alternatives, since individuals may often have dif-
ferent judgements in comparing the importance between those
criteria. All such types of uncertainty translate into difficulties
in determining the final solution by the group. In addition, there
are many situations where the potential decision alternatives
may be ordered and even depicted on an underlying continuum
[2]. Each individual may have an optimum or most preferred
position on the continuum. Obviously, the closer any given
alternative lies to the optimum, the more it may be preferred

over another. Sometimes, an individual’s optimum may be
located between two distinct alternatives. That is, a different
preference may appear beyond given alternatives, leading to
the difficulty of making a consensual decision.

It is well-known that human judgement including prefer-
ences is often subjective, vague and imprecise. Fuzzy systems
play an important role in decision making and offer a flexible
framework for GDM. Indeed, fuzzy rules are often employed
by human beings to make decisions. Such rules use a series of
IF-THEN statements to describe what action should be taken in
terms of the currently observed information. They are widely
used in fuzzy inference systems (FIS) to perform decision
making according to given individuals’ preferences.

The compositional rule of inference [3] offers an effective
mechanism to deal with fuzzy inference for dense rule bases.
Given such a rule base and an observation that is at least
partially covered by the rule base, the conclusion can be
inferred from certain rules that intersect with the observation.
However, for the case where a fuzzy rule base contains ‘gaps’
(termed: sparse rule base [4]), if a given observation has no
overlap with the antecedent values of any rule, conventional
fuzzy inference methods cannot derive a conclusion. This is of
particular significance when a given preference lies between
two known alternatives in GDM. Fortunately, using fuzzy rule
interpolation (FRI) [5], [6], certain decisions may still be
reached. However, different types of uncertainty may influence
both the assessment of the individual views and the derivation
of the overall group-level solution in GDM. To cope with
such uncertain information and knowledge, higher order fuzzy
representation may be helpful [7], [8].

In this paper, an FRI technique for GDM is proposed
in order to better address the underlying relative uncertainty,
thereby determining appropriate decisions. For each criterion,
the OWA operator [9] is employed to decide each individual’s
role. Then, aggregation of individuals’ preferences is per-
formed by means of a rough-fuzzy (RF) set theoretic approach
[7]. Finally, a popular transformation-based FRI (abbreviated
to T-FRI hereafter) [10], [11] is utilised to enable required
interpolative reasoning.

The rest of this paper is structured as follows. Section II
reviews the general concepts of RF sets, OWA aggregation
and T-FRI. Section III illustrates the proposed approach for
GDM, and details its implementation. Section IV provides a
simulated example that demonstrates the procedures of the
proposed work, and verifies its accuracy in comparison to
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possible alternative techniques. The paper is concluded in
Section V, including suggestions for possible further work.

II. BACKGROUND

A. Rough-Fuzzy Sets

Fuzzy set theory and rough set theory are distinct but
complementary extensions of conventional set theory. Typical
examples which involve fuzzy and rough sets include those as
reported in [12], [13], [14].

Let I = (U,A) be an information system, where U is
a nonempty set (the universe) of finite objects and A is a
nonempty finite set of attributes such that a : U → Va for
every a ∈ A with Va being the set of values that attribute a
may take from. With any P ⊆ A there is a crisp equivalence
relation IND(P ) [15]:

IND(P ) = {(x, y) ∈ U2 | ∀a ∈ P, a(x) = a(y)} (1)

If (x, y) ∈ IND(P ), then x and y are indiscernible by at-
tributes from P . The equivalence classes of the indiscernibility
relation with respect to P are denoted [x]P , x ∈ U.

Let X ⊆ U, X can be approximated using only the
information contained within P by constructing the P-lower
and P-upper approximations of X [15]:

PX = {x|[x]P ⊆ X}
PX = {x|[x]P ∩X 6= ∅}

(2)

The tuple < PX,PX > is called a rough set.

Definition 2.1. [7] With any P ⊆ A, a new equivalence
relation IND(P ) can be defined by:

IND(P ) = {x ∈ U2 | ∀Fl(x) ∈ P, Fl ∈ Co} (3)

where Fl, l ∈ {1, . . . , J}, are fuzzy sets that are known to
exactly belong to a given concept Co, with Co, o ∈ {1, . . . , Y },
being a given decision class in X , i.e., X = {C1, C2, . . . , CY }.

Using this equivalence relation, the lower and upper ap-
proximations for each Co in X can be redefined as follows.

Definition 2.2. [7] Let P be an equivalence relation on X
and Fl, l ∈ {1, . . . , J}, be fuzzy sets in Co (Co ∈ X), the
lower and upper approximations are a pair of fuzzy sets with
membership functions defined by the following, respectively:

µPCo(x ∈ [x]P ) = inf{µFl
(x)|x ∈ [x]P }, l ∈ {1, . . . , J}

µPCo
(x ∈ [x]P ) = sup{µFl

(x)|x ∈ [x]P }, l ∈ {1, . . . , J}
(4)

The tuple < PX,PX > is called an RF set, in contrast to the
most general use of this term in the literature [16].

B. OWA Operator

When dealing with real-world problems, the opinions of
different experts are usually aggregated in order to provide
more robust solutions. This reflects a nature of GDM. Apart
from the classical aggregation operators, a family of Ordered
Weighted Averaging (OWA) operators [9] have also been
successfully applied [17], [18]. The fundamental aspect of an
OWA operator is the reordering step in which the inputs are

rearranged in descending order and then integrated into a single
aggregated value.

Definition 2.3. [9] An OWA operator of dimension p is a
mapping Rp → R, which has an associated weighting vector
W = (w1, w2, . . . , wp)

T , where wv ∈ [0, 1] and
∑p
v=1 wv =

1. An input vector (c1, c2, . . . , cp), is aggregated as follows:

OWA(c1, c2, . . . , cp) =

p∑
v=1

wv ĉv (5)

where ĉv is the vth largest element in the vector (c1, c2, . . . , cp)
and ĉ1 ≥ ĉ2 ≥ · · · ≥ ĉp.

One important method required to implement any OWA
operator is to determine the associated weights. In general,
different choices of the weight vector W lead to different
aggregation results. Three special instances of OWA are the
classical Average, Max and Min. The Average operator results
by setting wv = 1/p, the Max by w1 = 1 and wv = 0
for v 6= 1, and the Min by wp = 1 and wv = 0 for
v 6= p. Apart from these, other approaches for obtaining the
OWA weights can be classified into two categories, namely:
argument-independent and argument-dependent. As reflected
by their respective names, the weights derived by the former
are not related to the arguments being aggregated, while
the latter determines the weights on the basis of the input
arguments.

1) DOWA Operator:

Definition 2.4. [19] Let (c1, c2, . . . , cp) be the argument
vector, and e be the average value of this argument set:
e = 1

p

∑p
v=1 cv . The similarity degree between any argument

cv and the average value e is calculated by

s(cv, e) = 1− |cv − e|∑p
u=1 |cu − e|

(6)

Note that if
∑p
u=1 |cu−e| = 0, then cu−e = 0, u ∈ {1, . . . , p}.

That is, all the values of the arguments are the same. In this
case, s(cv, e) = 1, v ∈ {1, . . . , p}.

From this, an input vector (c1, c2, . . . , cp) can be aggre-
gated by the DOWA operator as follows [19]:

DOWA(c1, c2, . . . , cp) =

p∑
u=1

wucu (7)

where the weight vector W = (w1, w2, . . . , wp)
T is generated

by

wv =
s(cv, e)∑p
u=1 s(cu, e)

, v ∈ {1, . . . , p} (8)

2) Clus-DOWA Operator:

Definition 2.5. [20] Let (c1, c2, . . . , cp) be an argument vector.
For each argument cu, the concept of its reliability ru is defined
as its distance du to the nearest cluster recorded during a given
clustering process, i.e.,

ru = 1− du∑p
v=1 dv

(9)

1320



Note that if
∑p
v=1 dv = 0, then dv = 0, v ∈ {1, . . . , p}. This is

a similar case to that mentioned previously, therefore ru = 1,
u ∈ {1, . . . , p}.

From this, a specific and powerful OWA operator can be
defined as follows.

Definition 2.6. [20] The Clus-DOWA operator is defined by

Clus-DOWA(c1, c2, . . . , cp) =

p∑
v=1

wvcv (10)

where the weight vector is calculated from a computed vector
of reliability measurement (r1, r2, . . . , rp):

wv =
rv∑p
u=1 ru

, v ∈ {1, . . . , p} (11)

C. Transformation-Based Fuzzy Rule Interpolation

An outline of the existing T-FRI is provided in this
subsection, including both the underlying concepts and the
interpolation steps, further details can be found in [10], [11].
For simplicity, only rules involving trapezoidal-shaped mem-
bership functions are considered here.

Given a trapezoidal fuzzy set A, denoted by
(a0, a1, a2, a3), where a0 and a3 are the two limit points of
the support of A where membership values equal 0, a1 and
a2 are the two limit normal points of A where membership
values equal 1. Its representative value (Rep) is defined such
that:

Rep(A) =
a0 +

a1+a2
2 + a3

3
(12)

Note that this definition subsumes the Rep of a triangular fuzzy
set as its specific case (where a1 and a2 of a trapezoid are
collapsed into a single value a1).

1) Closest N Rules Selection: Without losing generality,
suppose that a rule Ri and an observation O are represented
by:

Ri : if x1 is Ai1, · · · , xj is Aij , · · · , xM is AiM
then y is Bi

O : x1 is A∗1, · · · , xj is A∗j , · · · , xM is A∗M

where Aij denotes the jth antecedent fuzzy set of Rule Ri, A∗j
denotes the observed fuzzy set of variable xj , and Bi denotes
the consequent fuzzy set of Rule Ri with j ∈ {1, . . . ,M}, M
being the number of antecedent variables.

The distances dij between the pairs of Aij and A∗j can be
calculated as follows:

dij = d(Aij , A
∗
j ) = d(Rep(Aij),Rep(A∗j )) (13)

The distance di between the rule Ri and the observation
O is deemed to be the average of all antecedent variables’
distances:

di =

√√√√ M∑
j=1

d′ij
2, d′ij =

dij
maxj −minj

(14)

where maxj and minj are the maximum and minimum values
of variable j, j ∈ {1, . . . ,M}. Each distance measure dij is

normalised into the range [0, 1], denoted by d′ij , to make the
absolute distances compatible with each other over different
domains.

2) Intermediate Rule Construction: Suppose N (N ≥ 2)
closest rules have been chosen from the observation. Such rules
are represented as Ri, i ∈ {1, . . . , N}, each has M antecedents
Aij , j ∈ {1, . . . ,M}. Let wAij

denote the weight to which the
jth antecedent of the ith rule contributes to the intermediate
rule. The normalised weight w′Aij

can be defined as:

w′Aij
=

wAij∑N
i=1 wAij

, wAij =
1

dij
(15)

Note that if dij = 0, then Rep(Aij) = Rep(A∗j ). In this case,
the antecedent of the observation is considered to be ‘identical’
to the corresponding antecedent of the rule Ri, in terms of the
currently applied definition of Rep. Thus, wAij = 1 for the
‘identical’ one(s), while wAij = 0 for the remainder.

The antecedent of the so-called intermediate fuzzy term
AIFTj is constructed from the antecedents of these closest
rules. Another process shift is then introduced to modify AIFTj

to the antecedent of the intermediate rule A′j so that it will have
the same Rep as A∗j :

A′j = AIFTj +δAj (maxj−minj), AIFTj =

N∑
i=1

w′Aij
Aij (16)

where δAj is a constant defined by:

δAj
=

Rep(A∗j )− Rep(AIFTj )

maxj −minj
(17)

Regarding the consequence of the intermediate rule B′,
it can be calculated by analogy to the computation of the
antecedent, such that:

B′ = BIFT + δB(max−min), BIFT =
N∑
i=1

w′Bi
Bi (18)

where BIFT is the consequence of the intermediate fuzzy
term, max and min are the maximum and minimum values
of consequent variable, w′Bi

and δB are the means of w′Aij

and δAj
, i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, respectively, which

are defined as:

w′Bi
=

1

M

M∑
j=1

w′Aij
, δB =

1

M

M∑
j=1

δAj (19)

3) Scale Transformation: The similarity degree between
two fuzzy sets A′ and A∗ is measured by two scale rates
sb and st (sb ≥ 0 and st ≥ 0), and one scale ratio S.

The scale rates sb and st for scaling the bottom and top
supports of A′ with respect to A∗ are defined by:

sb =
a∗3 − a∗0
a′3 − a′0

, st =
a∗2 − a∗1
a′2 − a′1

(20)

resulting in A′′. The scale ratio S, which represents the actual
increase of the ratio between the bottom support and the top
support, is then introduced to further modify A′′ to avoid the
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top support of the resultant fuzzy set becoming wider than the
bottom support, such that:

S =



a∗2−a
∗
1

a∗3−a∗0
− a′2−a

′
1

a′3−a′0

1− a′2−a′1
a′3−a′0

if st ≥ sb

a∗2−a
∗
1

a∗3−a∗0
− a′2−a

′
1

a′3−a′0
a′2−a′1
a′3−a′0

otherwise

(21)

Scale transformation is then applied to generate B′′ from
B′ using s′b and s′t under the conditions S′ = S and s′b = sb.
The scale rate s′t of the top support of B′ is calculated such
that

s′t =

 s′b ∗ (S ∗
b′3 − b′0
b′2 − b′1

− S+ 1) if st ≥ sb

st otherwise
(22)

4) Move Transformation: The similarity degree is further
reinforced by the use of the move rate m. By using m, A′′ is
moved so that the transformed fuzzy set exactly matches the
shape of A∗. The move rate m is defined by:

m =


a∗0 − a′′0
a′′1−a′′0

3

if a∗0 ≥ a′′0

a∗0 − a′′0
a′′3−a′′2

3

otherwise
(23)

Note that the above scale and move transformations are utilised
for one antecedent only. The calculation for M antecedents is a
mere repetition, resulting in s′bj , s

′
tj and mj , j ∈ {1, . . . ,M}.

The final interpolated conclusion B∗ is estimated by ap-
plying the scale and move transformations to B′, using sBb

,
sBt

and mB , such that:

sBb
=

1

M

M∑
j=1

s′bj , sBt
=

1

M

M∑
j=1

s′tj , mB =
1

M

M∑
j=1

mj

(24)
where M is the number of antecedent variables.

III. PROPOSED ROUGH-FUZZY INTERPOLATION FOR
GROUP DECISION MAKING

The objective of aggregation is to combine individuals’
preferences into an overall aggregated value so that the final
decision takes into account all individuals’ contributions. Dif-
ferent but similar opinions are usually aggregated to provide
more robust solutions. The particular concern of this work is to
deal with the situations where conclusions cannot be inferred
but may be interpolated when given uncertain observations
have no overlap with any rules.

One possible approach is to interpolate all the conclusions
separately with respect to each given observation first and
then, to derive the final solution by aggregating all the in-
dividual conclusions. This approach is hereafter denoted as
the IA method, standing for interpolation before aggregation.
However, as outlined previously, the first step of interpolation
requires the computation of the closest rules from a given
rule base. A distance measure needs to be calculated in

order to estimate the proximity between each rule antecedent
and observation antecedent. This implies a time complexity
of O(xmn), where x is the number of observations to be
interpolated, m is the number of antecedent variables, and
n is the number of fuzzy rules involved in a rule base.
An alternative approach creates an artificial observation by
aggregating all the observations first and then, to derive the
final solution by performing interpolation over this artificial
observation. For obvious reasons, this approach is hereafter
denoted as the AI method, which has an overall time com-
plexity of O(mn). The reduction in computation complexity
is significant, especially when the number of observations
becomes large. Consequently, the AI method is employed
herein for problem solving while the results are compared to
those obtainable by the IA method. The following presents the
theoretical framework of the AI approach.

A. Aggregation

In dealing with individuals’ preferences, the pessimistic
means is to aggregate such preferences by an intersection
operation, in order to ensure that all preferences are satisfied.
Opposite to this, the optimistic means is to create the artificial
overall preference by performing a union operation in an
effort to satisfy at least a single preference. To enable the
representation of different types of uncertainty, RF sets [7]
can be used to support the aggregation. Thus, Definition
2.2 can be applied for situations where all opinions share a
common point. Unfortunately, for many instances, individuals
may attempt to conceal their preferences for purposes of taking
certain strategic advantages or simply misrepresent their own
preferences due to lack of sufficient information [2]. This
may lead to preferences that are distinct from the others,
resulting in an empty intersection (although it will not affect
the union). However, all of the individuals should contribute to
the outcome, although one outlier should not affect the overall
result. This work therefore extends the original definition of
RF sets to a more general version with the use of the OWA
operators, which is defined as follows.

Definition 3.1. Let P be an equivalence relation on X and
Fl, l ∈ {1, . . . , J}, be fuzzy sets in Co (Co ∈ X), the
lower approximation (LA) and upper approximation (UA) are
a pair of fuzzy sets with membership functions defined by the
following, respectively:

µPCo
(x ∈ [x]P ) = OWA{µFl

(x)|x ∈ [x]P } =
J∑
l=1

wlµFl
(x)

µPCo
(x ∈ [x]P ) = OWA{µFl

(x)|x ∈ [x]P } =
J∑
l=1

wlµFl
(x)

(25)
where the weight vector W = (w1, w2, . . . , wJ)

T can be
computed using different operators as mentioned before.

Note that when using the Min and Max operators for the
calculation of LAs and UAs respectively, the results remain
the same as those in Definition 2.2. That is, the original is a
specific case of this new definition.

The fuzzy sets are aggregated using a partitioning-based
method to discretise the input space in this work. The domain
of each observed variable xj , j = 1, . . . ,M , is partitioned
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into a set of discretised values Dj = {Fj1, . . . , Fj|Dj |}, where
|Dj | denotes the cardinality of this set. Therefore, given J
observations of a variable xj , the aggregated observation of
this variable is calculated using the following OWA operator:

FOWAj
= sup
k∈{0,...,|Dj |}

J∑
l=1

wklµFl
(minxj

+k∗
maxxj −minxj

|Dj |
)

(26)
where maxxj and minxj are the maximum and minimum
values of the jth observed values Fjl, l = 1, . . . , J .

B. Interpolation

The existing T-FRI approach is extended to implement
interpolation for RF sets. An RF set A can be repre-
sented by the LA AL and the UA AU , i.e., A =<
AL, AU >. In particular, when trapezoidal membership
functions are used, such an RF set can be illustrated as
shown in Fig. 1, where AL = (aL0 , a

L
1 , a

L
2 , a

L
3 ;H

L
A1
, HL

A2
),

AU = (aU0 , a
U
1 , a

U
2 , a

U
3 ;H

U
A1
, HU

A2
), with (aL0 , a

L
1 , a

L
2 , a

L
3 ) and

(aU0 , a
U
1 , a

U
2 , a

U
3 ) denoting the four limit points of the LA and

those of the UA, respectively, and HL
AE

and HU
AE

, E ∈ {1, 2},
denoting the maximum membership values of AL and AU ,
with aU0 ≤ aL0 , aL3 ≤ aU3 , 0 < HL

A1
= HL

A2
≤ HU

A1
= HU

A2
=

1. Clearly, the closer the shapes of AL and AU are, the less
uncertain the information contained within A is. When AL

coincides with AU , the RF set degenerates to a conventional
fuzzy set.

Fig. 1. Lower approximation AL and upper approximation AU of a trapezoid
RF set A

Suppose that an RF set A as defined in Fig. 1 has
the following eight distinct coordinates: (aL0 , 0), (aL1 , H

L
A1

),
(aL2 , H

L
A2

), (aL3 , 0), (aU0 , 0), (aU1 , H
U
A1

), (aU2 , H
U
A2

) and
(aU3 , 0). The lower and upper Reps Rep(AL) and Rep(AU )
of A can then be computed according to Eq. (12), such that:

Rep(AK)x =
aK0 +

aK1 +aK2
2 + aK3
3

Rep(AK)y =
0 +

HK
A1

+HK
A2

2 + 0

3
=
HK
A1

+HK
A2

6

(27)

where K = L,U , and x and y denote the x coordinate and
the y coordinate, respectively.

Note that in the existing T-FRI Rep(A)y is a constant, only
the x coordinate value is therefore considered there. However,

this is no longer the case in this work due to the introduction of
higher order uncertainty, both values of x and y coordinates
need to be considered. The calculation for Rep(A)y follows
the same as Rep(A)x to maintain consistency.

In order to distinguish different shapes of RF sets, the shape
diversity factor f needs to be introduced. This work follows
the conventional definition of statistical standard deviation
(although this may be defined differently).

Definition 3.2. The lower and upper shape diversity factors
fLA and fUA are defined by:

fKA =

√√√√√ 2∑
g=0

(âKg − Rep(AK)x)2

3
, K = L,U (28)

where âK0 = aK0 , âK1 = 1
2 (a

K
1 + aK2 ), and âK2 = aK3 .

A small shape diversity factor implies that the four key
points of AL (AU ) tend to be close to those of the lower
(upper) Rep. That is, the smaller the shape diversity factor,
the smaller the area of the LA (UA).

Extending T-FRI to dealing with RF sets, a single overall
Rep of a given RF set is required. For this, the weight factor
w of the LA (UA) is first introduced below.

Definition 3.3. The lower and upper weight factors wLA and
wUA are defined as the weights of the shape diversity factors,
in terms of the areas of the LA and UA, such that:

wKA =
fKA

fLA + fUA
, K = L,U (29)

where fLA + fUA 6= 0. If however, fLA + fUA = 0, i.e., fLA = 0
and fUA = 0, the RF set degenerates to a singleton value,
wLA = wUA = 1/2.

Definition 3.4. The overall representative value Rep(A) of a
given RF set A is defined by:

Rep(A) =wLA(Rep(AL)x + Rep(AL)y)
+wUA(Rep(AU )x + Rep(AU )y)

(30)

where the lower (upper) shape diversity factor is regarded as
the weight of the lower (upper) Rep of the LA (UA). This
is necessary, as otherwise, the same value for Rep would be
derived from different shapes of RF sets.

Given the above definitions, the extended algorithm for
deriving the interpolated conclusion with multiple multi-
antecedent rules is summarised below.

1) Calculate Representative Values: The lower and upper
representative values Rep(AK)x and Rep(AK)y of a given RF
set A are calculated first using Eq. (27). The shape diversity
factors fKA and weight factors wKA are computed according
to Eqs. (28) and (29), respectively. The overall representative
value Rep(A) is then obtained by Eq. (30), K = L,U . The
calculations for the antecedents of the observation and all rules
follow the same procedure.
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2) Choose Closest N Rules: The distances between the
artificially created observation and all rules in the rule base
are calculated using Eqs. (13) and (14). The N (N ≥ 2) rules
which have minimal distances are then chosen as the N closest
rules to perform interpolation.

3) Construct Intermediate Rule: The normalised weight
w′Aij

of the jth antecedent of the ith chosen rule, which is
calculated by Eq. (15), together with the parameter δAj

, which
is calculated by Eq. (17), are used in Eq. (16) to obtain the
antecedent of the intermediate rule A′j for each antecedent
dimension xj , i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}. From this,
two parameters w′Bi

and δB are computed using Eq. (19), and
are then used to construct B′ from Eq. (18), resulting in the
intermediate rule A′1 ∧ · · ·A′j ∧ · · ·A′M ⇒ B′.

4) Carry out Scale, Move and Height Transformations: In
conjunction with the given A∗j for each antecedent dimension
xj , the rates sKbj , s

K
tj , mK

j and hjE , K ∈ {L,U}, E ∈ {1, 2},
can then be calculated using Eqs. (20), (23) and (31). Due
to the uncertainty introduced in the membership functions, a
further transformation on the heights of the LAs is needed,
while the heights of the UAs remain the same owing to
its normality. Since the LAs of different RF sets may have
different heights, the height transformation is therefore used
to transform the heights of A

′L
jE to the heights of A∗LjE . The

height rate h is calculated by:

hjE =
H∗LAjE

H
′L
AjE

, E = 1, 2 (31)

where 0 < H∗LAjE
≤ H∗UAjE

= 1 and 0 < H
′L
AjE
≤ H

′U
AjE

= 1,
as defined previously. This constraint applies to the interpo-
lated conclusion as well. That is, if the height of B∗L is greater
than the height of B∗U after the height transformation, then
H∗LBE

= H∗UBE
.

5) Derive Interpolated Conclusion: The second interme-
diate term B′′ and the interpolated result B∗ can then be
estimated by the combined sKBb

, sKBt
, mK

B and hBE
, K ∈

{L,U}, E ∈ {1, 2}. Here, sKBb
, sKBt

and mK
B are computed

following Eqs. (21), (22), (23) and (24), respectively, and hBE

is computed according to Eq. (31) such that:

hBE
=

1

M

M∑
j=1

hjE , E = 1, 2 (32)

Note that no particular information is assumed regarding which
preference has a more dominating influence upon the conclu-
sion in general, the arithmetic mean is employed here in order
to ensure that the approach is consistent with the underlying
T-FRI. This also helps avoid subjective intervention. That is,
all the preferences are treated equally. If however, specific
information is available, other OWA operators such as the
DOWA and Clus-DOWA operators may be more suitable.

6) Implement Modified Procedure: To obtain intuitive in-
terpolated conclusions for RF sets, the relative location be-
tween the LA and UA of an RF set should be considered. For
this purpose, B′′ is modified into B′′c to maintain the relative
location both before and after the scale transformation. Here,
a relative location factor θ is defined by

θ =
B
′L

B′U
=
B
′′L

B′′Un
=
B
′′L
n

B′′U
(33)

where B
′′L
n and B

′′U
n denote the ‘new’ terms which are

modified from the given B
′′U and B

′′L respectively, using
the same θ. The combined B

′′L
c and B

′′U
c of B′′c are then

computed as the mean of the corresponding two terms, such
that:

B
′′K
c =

B
′′K +B

′′K
n

2
, K = L,U (34)

Similarly, the final interpolated conclusion can also be
modified from B∗ to B∗c using the same θ to maintain the
relative location both before and after the move transformation.

IV. EXPERIMENT AND EVALUATION

A simulated example is used in this section to validate the
efficacy of the proposed work. The results obtainable by the
proposed AI method are utilised to compare with those by the
two IA methods (the proposed and an existing technique).

A. Experimental Set-up

Individuals may represent their opinions in the form of
crisp or fuzzy terms. Occasionally, when only crisp num-
bers are provided, a fuzzification process is needed. In this
simulation-based experimentation, a base function of three
crisp input variables, shown in Eq. (35) is chosen to establish
a sparse rule base. A fuzzy rule is generated by fuzzifying
the crisp inputs and their associated function output, where a
numerical value a is converted to a fuzzy set A with a random
function f : A = ((a− f)− f, a− f, a+ f, (a+ f) + f). This
provides a simple non-linear (sparse) rule base suitable for the
purpose of current investigation.

y = 1 +
√
x1 +

1

x2
+

1√
x33

(35)

To evaluate the proposed approach, the output y which is
computed from the base function, is assumed to be the ground
truth for interpolated results. Without losing generality, the
arithmetic mean is used for the OWA operator and regarded as
the ground truth for the outcome of the aggregation process.

The first comparison is between the proposed AI and IA
methods. In this comparison, the proposed RF sets are applied
to aggregate the derived individuals’ solutions in IA and the
observed opinions in AI, respectively. The Max operator is
selected to calculate LAs, while the DOWA and Clus-DOWA
operators are used to compute UAs in order to ensure a
purely data-driven implementation. For the sake of reducing
computational complexity, the aggregated results are simulated
with trapezoidal membership functions. The proposed RF
interpolation is employed in both IA and AI methods. Thus,
two opposite processes are implemented with the proposed
approach.

The comparison is also carried out between the proposed
AI method and an existing IA method where T-FRI is used
for interpolation and the defuzzification-based least squares
(D-LS) [21] for aggregation. The weight function used in the
existing work of [21] is defined by

wq =
1/Rep(Oq)∑Q
q=1 1/Rep(Oq)

, q = 1, . . . , Q (36)
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where Rep(Oq) is the Rep of the qth computed output value
Oq .

In the present simulation-based experimental evaluation,
the Reps of the resultant sets of using IA or AI are recorded.
They are then compared against their corresponding ground
truth calculated using the base function. The range error (RE)
and the root-mean-square error (RMSE) are adopted here to
analyse the accuracy of the three different approaches:

εRE =
|Oq −Gq|

maxy −miny
, q = 1, . . . , Q

εRMSE =

√√√√ 1

Q

Q∑
q=1

(Oq −Gq)2
(37)

where maxy and miny are the maximum and minimum values
of the consequent variable, and Oq and Gq denote the qth
computed output value and its corresponding ground truth,
respectively.

B. Results and Discussion

Since stochastic elements are presented in the generation
of observations, the evaluation process is repeated 100 times.
Tables I, II and III list the percentage results of the averaged
RE and RMSE, where AN is the number of antecedent
variables and O is the number of individual observations. The
former two tables show the first comparison with the DOWA
operator being used in Table I and the Clus-DOWA operator
in Table II, while the results of using the proposed AI method
that obtained in the first comparison are also utilised for the
second comparison as listed in Table III.

It is obvious that for the first comparison, overall, the
AI method outperforms the IA method, especially when the
number of observations becomes large. The accuracy of the
proposed approach is generally higher than that of its opposite
process. This is achieved with less computational complexity
(as pointed out previously).

Note that the accuracy attainable by the AI method is
not so good as its counterpart in the second comparison
when the number of observations is small. However, it is
important to point out that the computational overheads of
IA is significantly greater than that of AI. Thus, IA may
be difficult for particular GDM applications with a larger
number of opinions or where a timely generation of solutions
is required. This is verified by the result in that the accuracy
of AI improves and becomes comparable to that of IA as
the number of observations is increased. This implies that the
proposed approach is suitable for complex systems in GDM.
In addition, the accuracy of using the Clus-DOWA operator
is consistently (with just one exception) higher than that of
utilising the DOWA operator.

V. CONCLUSION

This paper has presented an OWA-based FRI technique
for GDM. The proposed RF set theoretic approach and the
extended T-FRI are employed for aggregating individuals’
preferences and interpolating the final decision in a purely
data-driven manner. According to the simulated experimenta-
tion, the proposed technique can reduce the system processing

time, while assuring the decision accuracy. This demonstrates
that the proposed work is useful for GDM in complex systems.

Although promising, there is still room to improve the
current approach. For instance, only centralised clusters are
considered for aggregation in this work. It may be beneficial
to investigate how the approach would perform when faced
with distributed clusters [20]. In this case, a similarity measure
would be required. Also, redundant opinions may be removed
by classifier ensemble reduction [22] to increase group diver-
sity and produce better results. Additionally, other aggregation
operators [23], [24], [25] and FRI methods [26], [27] could
also be applied. It would be interesting to compare the results
with those. The effect of the proposed technique on the overall
efficacy of real-world applications remains active research.
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