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Abstract—Aggregation operators are useful tools which
summarise multiple inputs to a single output. In practice,
inputs to such operators are variables which represent different
criteria, measurements, or opinions from experts. In this
paper, a nearest neighbour-guided induced OWA operator,
abbreviated as kNN-IOWA, is proposed as a special case of the
generic induced OWA where the input arguments are ordered
by the average distances to their k nearest neighbours. The
weighting vectors in kNN-IOWA are defined, which are used
to interpret the overall behaviour of the operator’s reliability.
kNN-IOWA is applied for building aggregated fuzzy relations
between academic journals, based on their indicator scores. It
combines the similarities between academic journals to assess
their performance with respect to different journal impact
indicators. The work is compared against different types of
aggregation operator and tested on six bibliometric datasets. The
results of experimental evaluation demonstrate that kNN-IOWA
outperforms other aggregation operators in terms of standard
accuracy and within-1 accuracy. The proposed method also
exhibits the advantages of being more intuitive and interpretable.

I. INTRODUCTION

Aggregation of several input values into a single output val-
ue is an indispensable tool in a wide range of applications such
as human resource management [1], group decision making [2]
and journal ranking [3]. Different types of aggregation operator
have been proposed in the literature. A popular aggregation
method is the Ordered Weighted Averaging (OWA) operator
originally introduced in [4]. It provides a parameterised family
of aggregation operators, including as special cases the maxi-
mum, the minimum and the average calculus [5].

Academic journal ranking is a specific application problem
addressed here in which OWA may also play a significant role.
The most recent methods for the ranking of academic journals
require automated assessment of journal quality. Many on-line
academic publication databases do offer various information
about journals’ impact indicators such as the Thomson Reuters
Impact Factor (IF) [6], the Eigenfactor [7] and the 5-year
IF [8]. However, each indicator has its own strengths and
limitations, and their results can be quite diverse [9]. An
intuitive way to improve the reliability of such indicators is
the integration of multiple metrics. For instance, the Choquet
integral classifier [10] has been employed to combine different
indicator scores that are reported in the Thomson Reuters
Journal Citation Report (JCR) [11] in order to predict the
journal ranks (as published in the ERA 2010 [12]). Instead of
direct aggregation of the individual scores, another direction is

to fuse the distances measured over journals that are placed in
a multi-dimensional space with each dimension representing
a certain impact indicator [13]. OWA can also be employed
to aggregate fuzzy similarities between journals in terms of
their impact indicators, thereby generating clusters of journals
that reflect their indicator scores [3]. Whilst promising, there
is much to be done in making these techniques more robust
and generic in order to support activities such as research
excellence assessment [14].

To enhance the reliability in performing aggregation of
publication impact indicators for the task of academic jour-
nal ranking, this paper proposes a nearest neighbour-guided
induced OWA operator, denoted as kNN-IOWA hereafter, for
developing aggregated fuzzy relations between journals, based
on their impact indicator scores. The proposed operator is a
special case of the Induced OWA (IOWA) [15], [16], [17], with
two characters that distinguish it from other IOWA operators:
1) the elements of the order inducing vector that is associated
with the arguments represent their relative reliabilities, and 2)
the value of the reliability measure depends on the distribution
of the arguments. That is, for each individual argument, its
average distance to the other k nearest arguments [18] is
calculated and transformed into its corresponding element in
the order inducing vector.

The resulting kNN-IOWA is employed to support the clas-
sic c-means clustering algorithm where clusters of journals are
constructed according to their kNN-IOWA aggregated relations
over the indicator scores. Such derived clusters are more
interpretable and intuitive than the original indicator scores.
The proposed method is tested on six datasets of journals from
different research areas. The results demonstrate that kNN-
IOWA helps perform journal quality clustering, revealing the
relative impact of academic journals effectively.

The remainder of this paper is organised as follows. Section
II introduces the basics of the OWA and IOWA aggregation
operators. Sections III and IV define kNN-IOWA and de-
scribe its application to c-means clustering for journal ranking,
respectively. Section V presents the experimental evaluation
of the proposed approach and discusses the results. Finally,
Section VI concludes the paper and points out directions for
further development.
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II. PRELIMINARIES

A. OWA Aggregation

Definition 1: [4] A mapping Aowa : <n → < is called an
OWA operator if

Aowa(a1, · · · , an) =
n∑
i=1

wiaπ(i)

where aπ(i) is a permutation of ai ∈ <, i = 1, · · · , n, which
satisfies that aπ(i) is the i-th largest amongst all ai, and wi ∈
[0, 1], i = 1, · · · , n is a collection of weights that satisfies∑n
i=1 wi = 1.

For simplicity, the arguments and weights of an OWA
operator are hereafter denoted as the argument vector A =
(a1, · · · , an) and the weighting vector W = (w1, · · · , wn),
respectively.

Different choices of the weighting vector W can lead to
different aggregation results. The ordering of individual inputs
in the argument vector A presents OWA with an inherent nature
of nonlinearity. Three special cases of the OWA operator are
the classical mean, max and min operators. The mean operator
results by setting Wmean : wi = 1/n, the max by Wmax : w1 =
1 and wi = 0 for i 6= 1, and the min by Wmin : wn = 1 and
wi = 0 for i 6= n. Obviously, an important feature of OWA is
that it is an operator which satisfies

min{a1, · · · , an} ≤ Aowa(A) ≤ max{a1, · · · , an}.

Such an operator provides aggregation between the maximum
and minimum of the values that the arguments may take. It is
also idempotent; that is, if all ai = a then Aowa(a1, · · · , an) =
a.

A property that is commonly used to interpret the overall
behaviour of an OWA aggregation operator is orness/andness
[4]. It gives an indication of whether an OWA aggregation
behaves similarly to conjunction (influenced by smaller inputs)
or disjunction (influenced by larger inputs). In particular, the
orness measure of an OWA operator with the weighting vector
W is defined by

orness(W ) =
1

n− 1

n∑
i=1

((n− i)wi). (1)

It can be calculated that orness(Wmean) = 0.5, orness(Wmax) =
1 and orness(Wmin) = 0. A useful method for generating the
OWA weights is by the use of a so-called stress function [19],
enabling formal characterisation of the resulting OWA aggre-
gation operator. This can be accomplished using a function
h : [0, 1]→ <+ to stress the places where to obtain significant
values for the weighting vector. Formally, a weighting vector
of OWA is defined by a stress function h as follows.

Definition 2: [19] Let h : [0, 1] → <+ be a non-
negative function on the unit interval. The OWA weights
W = (w1, · · · , wi, · · · , wn) can be defined as:

wi =
h( in )∑n
i=1 h(

i
n )
. (2)

This method of obtaining the OWA weighting vector has
a number of useful features. For instance, the h(x) values

associated with the lower portion of the left side of [0, 1] reflect
those weights associated with the larger argument values, while
the values associated with the right side of the unit interval
reflect the weights associated with the smaller values in the
aggregation. Other properties are omitted here but can be found
in [19], [20], [21].

B. Induced OWA Aggregation

A key step of OWA aggregation is the ordering of
the arguments which transforms the original argument vec-
tor (a1, · · · , ai, · · · , an) into an ordered argument vector
(aπ(1), · · · , aπ(i), · · · , aπ(n)). The ordering used in OWA de-
pends upon the actual value of the arguments as aπ(i) is the
i-th largest of the arguments. A more general strategy towards
the ordering of the arguments has been proposed in [15].
This has led to the development of a generalised approach
to OWA aggregation, termed the Induced OWA (IOWA). In
IOWA, each of the input values is represented as a two-
tuple 〈ui, ai〉 that is referred to as an OWA pair. The input
arguments (a1, · · · , ai, · · · , an) are ordered on the basis of
the values ui. In particular, the procedure for calculating the
IOWA aggregation over these OWA pairs is defined by

Aiowa(〈u1, a1〉, · · · , 〈un, an〉) =
n∑
i=1

wiaπ′(i)

where aπ′(i) is from the permutation of 〈ui, ai〉 which satis-
fies that 〈uπ′(i), aπ′(i)〉 has the i-th largest amongst all ui,
and wi ∈ [0, 1], i = 1, · · · , n is a collection of weight-
s which satisfies that

∑n
i=1 wi = 1. U = (u1, · · · , un)

is called the order inducing vector. The bounding proper-
ty exhibited by IOWA aggregation is similar to that by
OWA: min{a1, · · · , an} ≤ Aiowa(〈u1, a1〉, · · · , 〈un, an〉) ≤
max{a1, · · · , an}. Idempotency also holds in IOWA: If all
ai = a then Aiowa(〈u1, a1〉, · · · , 〈un, an〉) = a, no matter
which order inducing vector U and weighting vector W are
used. Note that if two or more OWA pairs have identical
values of ui, their argument values are averaged firstly before
aggregation.

The introduction of inducing vector helps improve the
flexility of the ordering process in OWA aggregation. OWA
operators can be rephrased as special cases of IOWA operators
where ui = ai for all i = 1, · · · , n. In IOWA, different order
inducing vectors can lead to different results of aggregation.
Hence, the interpretation of orness of the weighing vectors is
also dependent on the choice of a certain order inducing vector.

In the following, a novel approach to developing IOWA
is proposed by exploiting the neighbourhood information of
a given argument. In particular, the k-Nearest-Neighbour In-
duced OWA (kNN-IOWA) is introduced, where the k nearest
neighbours of an argument ai are employed to generate its
order inducing value ui, and the orness of W is interpreted as
its reliability [22].

III. k-NEAREST-NEIGHBOUR INDUCED OWA

The weighting vectors in OWA and IOWA are normally
argument-independent as they are not necessarily related to
the inputs they are applied to. However, with the argument-
dependent approach, weights are indeed determined on the
basis of the input arguments. In particular, the Depend OWA
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(DOWA) operators [23] utilise weighting vectors that are
derived in accordance with the values of arguments. In kNN-
DOWA [22] for example, the reliability of an argument is
defined as the appropriateness of using that argument as the
aggregated outcome, aiming to decrease the effect of potential
outliers in input arguments.

The concept of reliability has a strong initiative appeal.
This is because it helps differentiate amongst a collection of
arguments such that an argument whose value is similar to
its k neighbours [18] is deemed reliable and can be assigned
with a higher weight. In contrast, an argument that is largely
different from its neighbours is discriminated as an unreliable
member. Formally, the reliability measure of an argument ai,
i = 1, · · · , n in kNN-DOWA is defined as:

Rki = 1−

k∑
t=1
|ai − nait |

max
i∈{1,··· ,n}

{
k∑
t=1
|ai − nait |}

(3)

where nait , t = 1, · · · , k is the t-th nearest neighbour of the
argument ai, and the distance measure d used to perform
neighbour-searching is d(ai, aj) = |ai − aj |, where i, j =
1, · · · , n. Note that other distance metrics may be used for this.
However, for computational simplicity, the absolute distance
metric is used here.

Having obtained the reliability values of all arguments
concerned, they are normalised to form the weighing vectors
in kNN-DOWA. Given the reliability value of each argument
Rki , the corresponding kNN-DOWA operator Akdowa : <n → <
can be specified by

Akdowa(a1, · · · , an) =
n∑
i=1

wki ai (4)

where wki = Rki /
∑n
j=1R

k
j . kNN-DOWA is order independent

(termed neat in the literature) [24], as it generates the same
outcome regardless of the order of argument values.

kNN-DOWA has been applied to the task of alien detec-
tion, where different similarity measures of textual entities
are combined. One crucial assumption in kNN-DOWA is
that arguments which have high reliability values should be
highly weighted. However, empirical results have shown that
in certain situations, dependent weights do not always perform
as expected. Besides, retaining more diversity of base members
in the aggregated output is sometimes preferable [25], [26].
Inspired by these observations, and in order to generalise the
dependent determination of the weighting vectors in kNN-
DOWA, the k-Nearest-Neighbour-Induced OWA is herein pro-
posed.

kNN-IOWA is designed to be a special case of IOWA,
where each input two-tuple is 〈Rki , ai〉 with Rki representing
the reliability measure of ai as with kNN-DOWA, where k is a
predefined number of nearest neighbours to be considered. Par-
ticularly, the input arguments (a1, · · · , ai, · · · , an) are ordered
with respect to their induced values (Rk1 , · · · , Rki , · · · , Rkn).
Formally, kNN-IOWA is a mapping Akiowa : <n → < and the
kNN-IOWA aggregation over the given arguments is calculated
as follows:

Akiowa(a1, · · · , an) = Aiowa(〈Rk1 , a1〉, · · · , 〈Rkn, an〉)

=
n∑
i=1

wiaπk(i)

(5)

where aπk(i) is from the permutation of OWA pairs
〈Rπk(i), aπk(i)〉 which satisfies that Rπk(i) has the i-th largest
amongst all Rki , and wi ∈ [0, 1], i = 1, · · · , n is a collection
of weights that satisfies

∑n
i=1 wi = 1.

As a special case of IOWA, the bounding property
of kNN-IOWA is similar to that of the IOWA operators:
min{a1, · · · , an} ≤ Akiowa(a1, · · · , an) ≤ max{a1, · · · , an}.
The idempotency also holds: If all ai = a then
Akiowa(a1, · · · , an) = a. Note that if two or more arguments
have an identical value of the reliability measure, their argu-
ment values are averaged before being aggregated.

Interestingly, the weights in kNN-IOWA are independent
of the argument values. Any weights that satisfy

∑n
i=1 wi =

1 can be employed in the process of aggregating the sorted
arguments. This flexibility in weight determination offers a
degree of freedom to control the behaviour of the resulting
kNN-IOWA aggregation operator. The stress function which
is designed for obtaining weights in OWA can be employed
in kNN-IOWA in a similar way as with the existing work,
in implementing the control of the reliablility of kNN-IOWA.
This work has an intuitive appeal in that high weights are
associated with large reliability values. The reverse holds also;
if high weights are associated with small reliability values the
aggregated outcome will then be not reliable or trustworthy.
In the situation where users have no a-priori knowledge of
weight settings, both the weighting vectors of high reliability
and those of low reliability need to be tested first, and the one
with better performance is selected. After that, a limited local
search may be applied to decide on the appropriate element
values of the weighting vector.

IV. kNN-IOWA AGGREGATION OF JOURNAL
SIMILARITIES

With the aid of on-line academic publication databases
such as Web of Knowledge, IEEE Xplore, and DBLP [27],
the calculation of individual journal impact indicators can be
carried out efficiently. A number of indicators are widely ac-
cepted and applied by scholars, which typically aim to evaluate
a single journal or usually focus on one particular aspect of
journal quality. Most of the journal impact indicators assign
a score (a numerical value) to the journal under evaluation.
Although many journal impact indicators have been proposed
and applied to the evaluation of journal quality, none of these
are sufficient to characterise all aspects of journal impact by
itself in the real-world. Novel evaluation tools will help.

Note that when human experts assess the quality of a-
cademic journals, comparison of the scores is commonly
and sensibly used to support their judgement. Based on this
observation, the similarities between journals with respect to
the indicators, rather than the raw scores, are here considered
in ranking journals in terms of their quality. To compensate for
the potential bias of using single indicators, thereby enriching
the reliability of fuzzy similarity relations amongst journals,
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kNN-IOWA is herein employed to integrate fuzzy similarity
measures. This also offers a useful testbed to examine the
utility of the above-proposed kNN-IOWA aggregation.

Given a set of academic journals J = {j1, · · · , jn} and a
journal impact indicator I : J → <, fuzzy similarity measures
can be employed to perform pairwise comparison of journal
indicator scores into a similarity relation SI : J × J → [0, 1].
For example:

SI(jx, jy) = 1− |I(jx)− I(jy)|
max
ji∈J
{I(ji)} −min

ji∈J
{I(ji)}

(6)

SI(jx, jy) = exp

(
− (I(jx)− I(jy))2

2δ2

)
(7)

SI(jx, jy) = max

(
min

(
I(jy)− (I(jx)− δ)
I(jx)− (I(jx)− δ)

,

(I(jx) + δ)− I(jy)
(I(jx) + δ)− I(jx)

)
, 0

)
(8)

where I(jx) and I(jy) denote the scores of journal jx, jy ∈
J assigned by the indicator I , and δ2 is the variance of the
scores {I(ji)|ji ∈ J}. Other definitions for implementing the
transformation can be found in the literature [28].

More generally, given J and a set of journal impact
indicators I = {I1, · · · , In}, the fuzzy similarity between two
journals jx, jy ∈ J with respect to the indicator Ii ∈ I is
represented by SIi(jx, jy), and the kNN-IOWA aggregation
of these similarities between jx and jy can be computed by

Sk(jx, jy) = Akiowa(SI1(jx, jy), · · · , SIn(jx, jy)) (9)

where the weighting vector may be defined offline (say, by
the user) or learned from historical data, and SIi(jx, jy)
are ordered with respect to their reliability values which
are subsequently based on their k nearest neighbours. The
transformation from individual indicator scores Ii(jx), Ii(jy)
to the similarity relations SIi(jx, jy) can be achieved in a
straightforward manner, using either of Eqns. (6)–(8).

To illustrate the computation process of Sk(jx, jy), sup-
pose that three journals are individually evaluated using four
separate indicators: IF (I1), 5-year IF (I2), Eigenfactor (I3)
and Immediacy Index (I4), as listed in Table I. Also, without
losing generality, suppose that the fuzzy similarity relation with
respect to each indicator is evaluated by the use of Eqn. (6).
This leads to the following similarities between journal j1 and
j2, which are each assigned with respect to one of the four
individual indicators: SI1(j1, j2) = 0.46, SI2(j1, j2) = 0.50,
SI3(j1, j2) = 0 and SI4(j1, j2) = 0.43. Suppose that 2NN-
IOWA (i.e., k = 2) is adopted to perform aggregation. Two
nearest neighbours are therefore considered in calculating the
reliability of arguments. This results in the ordered argument
vector of (0.46, 0.43, 0.50, 0), with the corresponding order
inducing vector (0.92, 0.87, 0, 0.88). Given that the weighting
vector in A2

iowa is W = (0.40, 0.30, 0.20, 0.10), the aggregation
result of the four fuzzy similarities between j1 and j2 is
S2(j1, j2) = 0.410. Comparatively, with the same W , the

TABLE I. EXAMPLES OF JOURNALS

I1 I2 I3 I4

j1 7.806 10.716 0.00571 0.867
j2 5.027 7.228 0.05002 0.591
j3 2.683 3.752 0.00895 0.387

aggregated similarity between j1 and j2 using the original
OWA operator is 0.422, which is closer to the argument of
largest value (0.50, given by the 5-year IF) rather than the
argument which has the largest reliability (0.46, given by the
IF). Intuitively, in the tasks such as journal ranking, a reliable
aggregated output is preferable to the aggregated output that
is simply close to a single extreme argument.

Generally speaking, the pairwise relations obtained by the
application of kNN-IOWA can be utilised in a variety of
similarity/distance-based learning algorithms. In this paper,
it is employed to aid in performing c-means clustering of
academic journals with respect to their scores against different
impact indicators. The task of clustering is to assign objects
to groups (namely clusters) such that objects in the same
group are similar to each other, and dissimilar to those in
the other clusters [29]. Journal clustering is no exceptional,
seeking to partition a collection of academic journals using
the fuzzy relations between journals that are aggregated by
kNN-IOWA. Note that a number of generic clustering methods
may be employed to implement this. Amongst them, the c-
means algorithm is popular, due to its simplicity and success
in solving real-world problems [30], [31], [32]. Thus, c-means
is herein integrated with kNN-IOWA to perform academic
journal clustering.

It is worth indicating that the computational results from
applying the proposed aggregation operator are easier to in-
terpret (than the concept of orness), owing to the use of the
reliability measure for order inducing. This is of particular
significance to performing journal ranking and assessment, as
it mirrors the way that human experts make such decisions,
where multiple indicators are necessary whilst only one overall
impact value (that takes into consideration of the multiple
indicators) is ultimately employed when judging a journal’s
standing.

V. EXPERIMENT AND EVALUATION

A. Experimental Set-up

In order to evaluate the performance of different aggre-
gation operators for journal ranking, their clustering results
are compared with human expert decisions as reflected in the
Ranked Journal List (RJL) that is provided by the ERA 2010
[10]. RJL has involved a large group of scholars to rank a
large number of academic journals. Although many debates
surrounded the end result of RJL, it has been employed by
scholars as a benchmark to compare journal ranking outcomes.
Following this, in the present experiments, the result of RJL
(2010) is assumed to be the ground truth in comparing the
“accuracy” of different methods. Each journal in RJL has a
rank in the domain Labels = {A*, A, B, C}, where the label
A* indicates top journals in a certain research area, and the
significance of journals decreases from it down to the label
C. Each journal studied in the experiments below is therefore
assigned a label also taken from this domain.
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In collecting sets of data to carry out the experiments,
journals from six areas in the JCR Science Edition 2010 are
selected:

• Agriculture (Agricultural Economics & Policy, Agri-
cultural Engineering, Dairy & Animal Science, Mul-
tidisciplinary);

• Chemistry (Analytical, Applied, Inorganic & Nuclear,
Medicinal, Multidisciplinary, Organic, Physical);

• Computer Science (Artificial Intelligence, Cybernet-
ics, Hardware & Architecture, Information Systems,
Interdisciplinary Applications, Software Engineering,
Theories & Methods);

• Materials Science (Biomaterials, Ceramics, Charac-
terization & Testing, Coatings & Films, Composites,
Multidisciplinary, Paper & Wood, Textiles);

• Medicine (General & Internal, Legal, Research &
Experimental, Medical Ethics, Medical Informatics,
Medical Laboratory Technology);

• Physics (Applied, Atomic, Molecular & Chemical,
Condensed Matter, Fluids & Plasmas, Mathematical,
Multidisciplinary, Nuclear, Particles & Fields).

Amongst them, only those journals that are ranked both in RJL
and indexed by the JCR are considered as valid data objects
(in order to have the ground truth to entail comparison). If
a journal is missed from the JCR, then it is removed from
the experimental data. A summary of the resulting datasets is
shown in Table II.

Scores for seven indicators as reported in the JCR Sci-
ence Edition 2010 are selected to generate fuzzy similarities
amongst journals. These indicators are: Total Cites (number
of times a journal being cited in 2010); IF; 5-year IF; Im-
mediacy Index (ratio of cites to the current articles over the
number of those articles); Cited Half-Life (median age of the
articles cited); Eigenfactor; and Article Influence (ratio of the
Eigenfactor score to the total number of articles considered).
All these indicators are normalised to [0, 1] before they are
employed to generate similarity relations between journals.

Two criteria, “accuracy” and “within-1 accuracy” [10]
are adopted in order to analyse the consistency between the
proposed approach and RJL. Here, accuracy is defined as
the ratio of correctly clustered objects to the total number
of objects in the dataset. The label of majority journals in
each cluster is deemed as the rank of the journals within it.
The correctly clustered objects are in turn deemed to be the
journals whose assigned ranks are consistent with their ranks in
the expert-devised RJL. Within-1 accuracy is a relaxed version
of the standard accuracy measure; it is often adopted when
cluster labels can be ordered. Following this criterion, an A*-
rated journal is regarded to be a correctly classified object if
it is classified as A* or A. Similarly, an A-rated journal is
deemed correctly classified if the result is A*, A, or B, and so
on.

B. Results and Discussion

To examine the relationship between journal clustering
accuracy and the reliability of the weighting vectors for kNN-
IOWA (that is equivalent to the orness for OWA), twenty

TABLE II. A SUMMARY OF THE DATASETS USED

Number of Instances A* A B C Total

Agriculture 3 35 39 31 108
Chemistry 37 70 95 143 345
Computer Science 44 101 108 67 320
Material Science 26 61 80 61 228
Medicine 20 39 73 107 239
Physics 30 50 73 56 209

weighting vectors are generated using linear stress functions
with the orness values approximately uniformly distributed
from zero to one. Figure 1 shows the change of accuracy (Y-
axis) with respect to the orness(W ) of the weighing vectors
(X-axis) in both kNN-IOWA and OWA. Each point in Fig.
1 is an averaged value of 50 random centroid initialisation,
and Eqn. (6) is employed to generate the similarity between
journals regarding each indicator. To facilitate comparison,
DOWA [23] and kNN-DOWA are also implemented, with
their results shown in Fig. 1 as straight dot-lines. Further, the
other two similarity measures Eqn. (7) and Eqn. (8) are also
employed to carry out clustering to enrich the comparison.
The best averaged results are reported in Table III, where the
results on each dataset are given in the format of “aggregation
operator-accuracy(%)-reliability/orness”.

For five of the six datasets, the accuracies achieved by
the use of non-dependent aggregation operators (kNN-IOWA
and OWA) generally increase along with the increase of the
reliability/orness of the weighting vectors. The performance of
kNN-IOWA in relation to the weighting vectors of extreme
reliability values is more stable than that of OWA. This
indicates that the use of nearest neighbours as guidance for
ordering arguments entails more reliable output in aggregation
operators, which in turn allows the generation of better results
in journal ranking. Figure 1 also shows that the kNN-IOWA is
not very sensitive to the selection of k on the tested datasets.
Expect on the agriculture dataset, the results of k = 1, 3, 5 have
similar trends when orness(W ) is changed and their accuracies
start to show differences only when orness(W ) ≈ 0.75.

Note that the outcomes of using dependent weighting
vectors in DOWA are not so good as those of using depen-
dent weighting vectors in kNN-DOWA. This may be due to
the fact that the kNN-based operators, including both kNN-
DOWA and kNN-IOWA, are able to assign high weights to
arguments which are close to the other relevant arguments,
while DOWA only emphasises on the arguments close to their
means. Thus, if individual journal indicators focus on rather
different aspects, say the calculation of IF and five-year IF
includes self-citations while that of Eigenfactor and Article
Influence excludes self-citations, then kNN-based methods can
achieve better results than DOWA. However, the accuracy
reachable by using dependent weighting vectors is not so high
as that achievable by the use of carefully selected weighting
vectors. This shows that although dependent methods can
help aggregation operators to learn weights from arguments,
human intervention for carefully choosing the weights is still
necessary in situations where higher accuracies are required.

Generally, the weighting vectors which have orness(W ) >
0.5 achieved the best results in terms of both the standard
accuracy and within-1 accuracy. This indicates that the weight-
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Fig. 1. Trend of Accuracy Change against Reliability

TABLE III. COMPARISON OF BEST ACHIEVED RESULTS

Eqn. (6) Eqn. (7) Eqn. (8)
Accuracy Within-1 Accuracy Within-1 Accuracy Within-1

Agriculture 3NN-57.93-0.527 5NN-96.22-0.527 3NN-58.12-0.516 3NN-96.88-0.833 5NN-57.60-1.000 5NN-96.78-1.000
Chemistry 5NN-63.85-0.889 5NN-98.46-0.944 5NN-64.38-0.944 5NN-98.13-0.944 1NN-64.13-0.944 5NN-97.15-0.622
Computer Science 5NN-43.84-0.667 OWA-86.89-0.667 5NN-44.47-0.423 OWA-89.74-0.833 3NN-44.41-1.000 OWA-86.84-0.333
Material Science OWA-47.19-1.000 5NN-91.41-0.622 1NN-47.20-0.722 1NN-90.93-0.667 OWA-47.89-0.722 5NN-91.18-0.503
Medicine OWA-60.95-0.889 OWA-92.01-0.889 OWA-61.72-0.889 OWA-91.49-0.944 1NN-58.12-0.889 OWA-88.75-0.944
Physics 5NN-46.75-0.833 3NN-91.00-0.722 5NN-45.35-0.889 1NN-94.01-0.833 1NN-47.85-0.577 1NN-93.88-0.722

ing vectors that exhibit a high reliability are preferable when
kNN-IOWA/OWA operators are used for journal clustering.
The results also show that if journals have high similarities
for more than one indicator, the aggregated impact scores of
journals may also be similar. This may be expected as there
are only seven individual indicators considered.

It is interesting to note that the aggregated fuzzy relation
has shown a higher accuracy and within-1 accuracy when
compared with the use of Manhattan distance [33] (which
is commonly adopted in classical clustering algorithms). In
fact, if the fuzzy similarity for each indicator is generated
using Eqn. (6) with orness(W ) = 0.5, the accuracies of all
non-dependent aggregation operators are identical to those
obtained using Manhattan distance-based c-means, which is
clearly reflected by the intersections on orness(W ) = 0.5 in
Fig. 1.

VI. CONCLUSION

This paper has presented a nearest neighbour-guided in-
duced OWA operator, kNN-IOWA. The proposed aggregation

operator has the strength of controlling the reliability of the
aggregated output. It has been applied for building aggregated
fuzzy relations between academic journals, on the basis of
the individual indicator scores of the journals concerned.
Three fuzzy similarity measures are used to construct different
similarity measures between journals, and twenty weighting
vectors which cover the range of orness(W ) from 0 to 1
are compared. Experimental results on six data sets indicate
that the proposed approach can outperform OWA, DOWA and
kNN-DOWA, if appropriate weighting vectors are selected.

Note that a group of journals of a certain rank may often
be heavily overlapped with journals of other ranks. Therefore,
the low accuracy of journal ranks using clustering is not
unexpected. After all, most of the journals are not obviously
better or worse than others, although their ranks are more
likely to be affected by the preference of the human assessors.
Besides, the assumed ground truth is itself not necessarily
accurate. In light of this, it may be interesting to develop an
objective means for determining the relative ranking positions
of academic journals using only aggregation operators on those
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indicators. Also, there are many other similarity measures and
clustering methods available in the literature than what have
been utilised in the present work. These may be employed as
alternative. Such work remains active research.
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