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Abstract—Cluster ensemble offers an effective approach for
aggregating multiple clustering results in order to improve
the overall clustering robustness and stability. It also helps
improve accuracy by combing clustering results from compo-
nent methods that utilise different parameters (e.g., number of
clusters), avoiding the need for carefully pre-setting the values of
such parameters in a single clustering process. Since founded,
many topics regarding cluster ensemble have been proposed
and promising results gained. These include the generation of
ensemble members and consensus of ensemble members. In
this paper, link-based consensus methods for the ensemble of
fuzzy c-means are proposed. Different from traditional clustering
techniques, the clusters which are generated by fuzzy c-means
are fuzzy sets. The proposed methods therefore employ a fuzzy
graph to represent the relationships between component clusters
upon which to derive the final ensemble clustering results.
Using various benchmark datasets, the proposed methods are
tested against typical traditional methods. The experimental
results demonstrate that the proposed fuzzy-link-based clustering
ensemble approach generally outperforms the others in terms of
accuracy.

I. INTRODUCTION

Clustering is one of the important approaches within the
framework of unsupervised learning which is helpful for
finding the hidden structure of unlabelled data sets. In general,
the task of clustering is to assign objects to groups (namely
clusters) such that objects in the same group are similar to
each other, and dissimilar to those in the other clusters [1].
A good number of clustering algorithms have been proposed
in the literature, and successfully applied to a range of all
data sets [2]. For a given problem, different algorithms, and
indeed even the same algorithm with different parameter
settings (e.g., the number of clusters assumed), typically lead
to different solutions [3]. Hence, an inexperienced user runs
the risk of picking an inappropriate clustering method. Also, in
unsupervised learning, there is usually no ground truth against
which the result can be evaulated. Therefore it is extremely
difficult for users to decide on which algorithm to employ
given their carefully selected problem domains [4].

To overcome the aforementioned limitations, improving
the robustness as well as the accuracy of individual cluster-
ing methods, clustering ensemble has emerged as effective
solutions. Similar to the classifier ensemble [5] and feature
selection ensemble [6], cluster ensemble combines results of
various clustering algorithms and may do so in different ways.
One of the main objectives of the combination is to achieve

accuracy superior to those of individual clustering [7]. By
combining multiple partitions of a set of objects into a single
consolidated clustering, the performance of cluster ensembles
generally depends on both the quality and the diversity of
ensemble components. This has been empirically verified [2],
[4]. Consequently, two essential steps are identified that are
commonly involved in the development of clustering ensemble:
1) the generation of clustering base members, and 2) the
consensus of them.

A number of methods have been proposed that have helped
to address these issues. For example, in order to ensure
diversity of component clustering means, different parameter
configurations of a given clustering algorithm have been tested
[8], [9]; re-sampling techniques [10] have also been applied to
diverse base clusters [11], [12], [13]. In particular, regarding
the techniques for the issue of consensus, existing methods
include: feature-based approach where each base-clustering
member provides cluster labels as new features describing data
points, which is then utilised to formulate the final solution
[14], [15]; pairwise similarity-based approach which creates
a matrix, containing the pairwise similarity measures amongst
data points, then any similarity-based clustering algorithm (say,
hierarchical clustering) can be applied [8]; graph-based ap-
proach which manipulates data partitions by exploiting graph
representation [7], [16].

Although much effort has been made in the development
of clustering ensemble, modelling a mechanism that is ef-
fective for integrating multiple data partitions in a cluster
ensemble is far from trivial. The development and application
of cluster ensembles are still at an early stage [17]. Most
of the existing clustering ensemble methods are based on
crisp base clusterings. However, interesting departures from
the traditional work have recently been reported, such as that
reported in [18] where the problem of aggregating “soft”
base-clustering members is defined. Following this desirable
trend, in this paper, a link-based consensus approach for
building ensembles of fuzzy c-means is proposed. Different
from ensembles of crisp clusters, the proposed method is
able to handle fuzzy components. The work also differs from
the link-based crisp clustering ensemble [3], [19], since it
employs a fuzzy graph < {C̃1, ..., C̃n}, L̃ > to represent the
relationships between base-clusters and to refine the pairwise
similarity matrix for generating the ensembles. With a number
of benchmark datasets [20], the proposed methods are tested
against their crisp counterparts and those that utilise a fuzzy co-
association matrix without link-based refinement. The experi-
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Fig. 1. Clustering Ensemble

mental results demonstrate that the fuzzy link-based clustering
ensemble methods developed herein perform better than their
counterparts in terms of accuracy.

The remainder of this paper is organised as follows. Section
II introduces the basics of clustering ensemble. Section III
defines fuzzy co-association matrix and link-based pairwise
similarity matrices, and presents their applications to agglom-
erative clustering in an attempt to create ensembles of fuzzy
clusters. Section IV reports on the experimental evaluation
of the proposed approach and discuss the results. Finally,
Section V concludes the paper with suggestions for further
development.

II. PRELIMINARIES

A. Clustering Ensemble

Formally, the clustering ensemble problem can be de-
scribed as follows. Let X = {x1, · · · , xN} be a set of N
data points and Π = {π1, · · · , πm, · · · , πM} be M base-
clustering members. Each base-clustering member returns a
set of clusters πm = {Cm1 , · · · , Cmk , · · · , CmKm

} such that⋃Km

k=1 C
m
k = X , where Km is the number of clusters construct-

ed by that member. For each xi ∈ X and each base-clustering
member πm ∈ Π, Cm(xi) ∈ πm denotes the cluster label
to which the object xi belongs in πm. The task of clustering
ensemble is to find a new clustering result π∗ given a data set
X which summarises the information embedded in the whole
cluster ensemble Π.

As indicated previously, two key procedures are involved
in the development of a clustering ensemble technique. First,
base clustering members are generated, typically by artificial-
ly diversifying methods for parameter settings and data re-
sampling. Second, a consensus function is then applied on
those base clustering members to generate the final clustering
result. The procedure of clustering ensemble is illustrated in
Figure 1.

A consensus function can be generally viewed as a map
from a set of base-clustering members to one final partition
of the original data f : Π → π. Once the base-clusters are
generated from the data, a variety of consensus functions that
are readily available may be applied to derive the final data
partition. Most of the consensus functions utilise an ensemble-
information matrix which aggregates the base-clustering mem-
bers. Given the ensemble of Fig. 2, two types of such a matrix:
the label-assignment matrix and the binary cluster-association
matrix are illustrated in Tables I and II, respectively.

Fig. 2. Examples of Ensemble-information Matrices

TABLE I. LABEL-ASSIGNMENT MATRIX

π1 π2 π3

x1 C1
1 C2

1 C3
1

x2 C1
1 C2

1 C3
1

x3 C1
1 C2

1 C3
1

x4 C1
1 C2

2 C3
1

x5 C1
2 C2

2 C3
1

x6 C1
2 C2

1 C3
2

x7 C1
2 C2

1 C3
2

TABLE II. BINARY CLUSTER-ASSOCIATION MATRIX

C1
1 C1

2 C2
1 C2

2 C3
1 C3

2

x1 1 0 1 0 1 0
x2 1 0 1 0 1 0
x3 1 0 1 0 1 0
x4 1 0 0 1 1 0
x5 0 1 0 1 1 0
x6 0 1 1 0 0 1
x7 0 1 1 0 0 1

If a crisp clustering algorithm such as k-means is used in the
generation of base-clusters, the association degree of a data
point belonging to a specific cluster is either 1 or 0. Usually,
a categorical data clustering algorithm is further applied to
this type of ensemble-information matrix to achieve the final
partition of the original data. Alternatively, an ensemble may
be represented as a graph, where the nodes are base-clusters
or data points and links between them define the relationships
holding amongst the clusters and points. Graph partition meth-
ods can then be applied to the graph in order to obtain a
clustering ensemble output [16].

B. Pairwise Similarity Matrix for Cluster Ensemble

Apart from the consensus functions described above, pair-
wise similarity matrices form another type of consensus meth-
ods. There have been various approaches for this. Take the
co-association (CO) matrix [8] as an example: Given N
data points, the functionality of each base-clustering member
πm ∈ Π,m = 1, · · · ,M is equivalent to transferring the data
into an N ×N similarity matrix, using Eqn. (1) below:

Sm(xi, xj) =

{
1, if Cm(xi) = Cm(xj)

0, otherwise.
(1)

Having obtained all the M similarity matrices regarding the
base-clustering members, they are aggregated to form the so-
called co-association matrix using Equation (2).

CO(xi, xj) =
1

M

M∑
m=1

Sm(xi, xj). (2)
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The entries in a CO matrix therefore capture the similarities
between data points xi and xj , i, j ∈ {1, 2, ..., N}.

Many pairwise similarity based clustering algorithms can
be applied to such a CO matrix. The agglomerative clustering
is often employed to derive the final partitions [8]. The main
drawback of using a crisp CO matrix is that many entries of it
are zeros, which implies that two corresponding data points are
assigned to different clusters by all base-clustering members.
Investigations revealed that the zero-similarity values can be
as much as 75% in some UCI datasets [19]. Unfortunately,
this characteristic is commonly encountered with the crisp
clustering ensembles, thereby significantly limiting the quality
of the final data partition that is to be generated by any given
consensus function [3].

In order to modify such sparse-information ensemble ma-
trices, link-based refining methods are herein proposed. In
particular, the fuzzy c-means are employed to generate base-
clustering members. This leads to the following CO matrix-
based method for fuzzy c-means ensemble, nick-named FCO
hereafter. To further improve the quality of FCO, two link-
based methods (to be named as FLink and FCTS) are also
designed for its refinement.

III. PAIRWISE SIMILARITY MATRICES FOR FUZZY
C-MEANS CLUSTERING ENSEMBLE

A. FCO: Co-association Matrix for Fuzzy C-means Ensem-
ble

Fuzzy c-means is an effective method to generate a fuzzy
partition of a given data set. Each cluster in a partition π̃m
is a fuzzy set C̃mk , k = 1, · · · ,Km where C̃mk (xi) ∈ [0, 1]
represents the degree of a data point xi ∈ X belongs
to the corresponding fuzzy cluster. Usually, this degree is
normalised with all the clusters in a partition to satisfy that∑Km

k=1 C̃
m
k (xi) = 1.

Following the representational form used in crisp clustering
ensemble (for notational consistency), the similarity measure
of two objects xi, xj ∈ X with respect to each base-clustering
member, Sm̃(xi, xj) and subsequently, the FCO matrix are
defined in Eqn. (3) and Eqn. (4) respectively:

Sm̃(xi, xj) =

Km∑
k=1

(C̃mk (xi) ∧ C̃mk (xj)) (3)

FCO(xi, xj) =
1

M

M∑
m=1

Sm̃(xi, xj). (4)

Since
∑Km

k=1 C̃
m
k (xi) is normalised to 1, it follows that

Sm̃(xi, xj) ∈ [0, 1] and FCO(xi, xj)) ∈ [0, 1]. Note that
Eqn. (3) is a generalised version of Eqn. (1). If the degree
of a data point belongs to a crisp cluster is represented as
C̃mk (xi) ∈ {0, 1}, then Eqn. (3) can also be applied to crisp
cluster ensemble equivalently.

One of the properties of fuzzy c-means is that most of the
data points have non-zero memberships to many or even all
clusters. This feature is very helpful for clustering ensemble
helping to retain more details of the base-clustering members

in the pairwise similarity matrix. Even two data points which
are not assigned in the same cluster in crisp clustering can also
have non-zero values in the FCO matrix with regard to the
definition Eqn. (4). This gives potentially finer discrimination
of the data points.

B. FLink: Link-based Pairwise Similarity Matrix for Fuzzy
C-means Ensemble

In clustering ensemble, base-clustering members are usual-
ly generated from the same dataset. Hence, the resulting base-
clusters in a cluster ensemble may share common data points.
These shared data points create the linkage amongst base-
clusters and therefore, it is possible to estimate the similarity
of any base-cluster pair by exploring the underlying link
information [21]. Note that the concept of a graph formulated
from a set of base-clusters and a set of weighted links between
them has been introduced previously, as of [19]. Given a cluster
ensemble as defined in Section II-A, a graph < V,L > can
be constructed where V =

⋃M
m=1 πm = {C1, · · · , Cn}, n =∑M

m=1Km is the set of vertices each representing a base-
cluster, and L is a set of weighted links between the clusters.
The weighted links between base-clusters Ci and Cj is defined
as:

w(Ci, Cj) =
|Ci ∩ Cj |
|Ci ∪ Cj |

(5)

where |U | stands for the cardinality of the set U .

In crisp cluster ensemble, however, base-clusters within the
same base-clustering member do not have common data points
with each other, that is, ∀Cmk , Cml ∈ πm, if k 6= l then Cmk ∩
Cml = ∅. The weights of those links between the clusters
within the same base-clustering member are of a value of zero.
Further refinement will therefore be necessary before they can
be used in the emerging ensemble. In order to retain more
information from base-clustering members and refine the FCO
matrix for fuzzy c-means ensembles, a fuzzy graph of fuzzy
c-means ensemble is proposed.

Formally, given a set of fuzzy base-clusters C =
{C̃1, · · · , C̃n} on a dataset {x1, · · · , xN}, a fuzzy graph
< C, L̃ > is defined on the set of the fuzzy base-clusters where
L̃ is a fuzzy set of links defined on C×C. The membership of
a link (C̃i, C̃j), i, j = 1, · · · , n to the fuzzy set L̃ is computed
by

L̃(C̃i, C̃j) =

∑N
t=1(C̃i(xt) ∧ C̃j(xt))∑N
t=1(C̃i(xt) ∨ C̃j(xt))

(6)

where C̃i(xt) indicates the the degree of a data point xt
belonging to a fuzzy cluster C̃i. Obviously, L̃(C̃i, C̃j) ∈ [0, 1],
L̃(C̃i, C̃i) = 1 and L̃(C̃i, C̃j) = L̃(C̃j , C̃i). The degree
assigned to the link connecting fuzzy clusters C̃i and C̃j is thus
defined in accordance with the proportion of their overlapping
degree on all data points in X . In so doing, even for two
fuzzy base-clusters within the same base-clustering member,
the weight of the link between them is possible to be of a non-
zero value. As such, in general, each base-cluster may have a
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link to all the other base-clusters, and the fuzzy degree of a
given link represents the similarity between the corresponding
two base-clusters.

Given a fuzzy graph, link-based pairwise similarity matrix
of data points can be introduced using the fuzzy weights
associated with the links. In particular, for the a clustering
member π̃m, the link-based similarity of data points xi and xj
can be estimated by

LSm̃(xi, xj) =


1, if i = j

L̃(arg C̃mmax(xi), arg C̃mmax(xj))×
(C̃mmax(xi) ∧ C̃mmax(xj)), otherwise

(7)

where C̃mmax(xi) =
∨Km

k=1 C̃
m
k (xi) and arg C̃mmax(xi) ∈ πm

representing the fuzzy cluster in which xi has the maximum
membership. In case of a draw, a random pick is made
amongst those even clusters. From this, it has a natural appeal
to define the similarity of two data points in the overal-
l fuzzy c-means clustering ensemble as: FLink(xi, xj) =∑M
m=1 FSm̃(xi, xj)/M .

Different from FCO, the link-based based similarity de-
fined in Eqn. (7) only associates a data point xi to the cluster
of which xi has the maximum membership degree. If two
data points happen to have the maximum degrees in the same
cluster, then their similarity values assigned by LSm̃ is deemed
to be the smaller degree value of the two, since L̃(C̃i, C̃i) = 1.
Otherwise, the link-based similarity of two data points xi and
xj is defined as the smaller value of their respective maximum
degrees times the weight of the link between those two base-
clusters where xi and xj have the maximum degree values.

Note that non-zero weighted links may exist not only
between base-clusters within a single base-clustering member,
e.g., ∃L̃(C̃mk , C̃

m
l ) > 0, but also between base-clusters cross

base-clustering members, e.g., ∃L̃(C̃mk , C̃
n
l ) > 0,m 6= n. As

LSm̃ does not employ links cross base-clustering members, it
can be computed efficiently in terms of both time and memory
space required. However, in crisp clustering ensemble, links
cross base-clustering members are employed to estimate the
similarity within base-clustering members using means such as
the connected-triple [22], thereby improving the quality of the
final ensemble result. Inspired by this observation, and to test
whether the cross links may indeed help refine FLink(xi, xj)
further while allowing for consistent comparison with link-
based crisp clustering ensemble, the connected-triple is also
applied to L̃ in the present work as described below.

C. FCTS: Connected-triple-based Pairwise Similarity Matrix
for Fuzzy C-means Ensemble

The connected-triple approach has been used in a biblio-
graphic dataset which has rich links between data points. It
assumes that if two nodes are both connected to a third node
then it is indicative of similarity between those two nodes. The
connected-triple is also applied to the weighted crisp cluster
ensemble graph < V,L > of Eqn. (5) to generate the similarity
of nodes within clustering members [19]. Specifically, the

weighted connected-triple deems the similarity of two base-
clusters Ci and Cj as the sum of the minimum weights to
every common neighbour of theirs:

w′(Ci, Cj) =
n∑
t=1

(w(Ci, Ct) ∧ w(Cj , Ct)) (8)

where n =
∑M
m=1Km denotes the total number of base-

clusters of all base-clustering members. w′(Ci, Cj) may also
be normalised such that n w′(Ci, Cj) = w′(Ci, Cj)/w

′
max,

where w′max is the maximum w′(Ci, Cj) value of any two
base-clusters Ci and Cj . Having obtained this, the similarity
of two data points xi and xj with base-clustering member Cm
can be defined by

S′m(xi, xj) =

{
1, if Cm(xi) = Cm(xj)

n w′(Cm(xi), C
m(xj))×DC, otherwise

(9)
where DC ∈ [0, 1] is a constant decay factor. The connected-
triple-based similarity matrix for base-clusters is defined the
same as Eqn. (2): CTS(xi, xj) =

∑M
m=1 S

′
m(xi, xj)/M .

In a similar way, the fuzzy version of CTS can be
introduced, where L̃(C̃i, C̃j) is refined using the connected-
triple to become L′(C̃i, C̃j) =

∑n
t=1 L̃(C̃i, C̃t) ∧ L̃(C̃j , C̃t),

and then normalised to n L′(C̃i, C̃j) = L′(C̃i, C̃j)/L
′
max,

where L′max is the maximum L′(C̃i, C̃j) value of any two
fuzzy base-clusters C̃i and C̃j . Therefore, the similarity of
two data points xi and xj with base-clustering member C̃m
can be modified to:

LS′m̃(xi, xj) =


1, if i = j

L′(arg C̃mmax(xi), arg C̃mmax(xj))×
(C̃mmax(xi) ∧ C̃mmax(xj)), otherwise

(10)

where C̃mmax(xi) =
∨Km

k=1 C̃
m
k (xi) and arg C̃mmax(xi) ∈ πm

represents the fuzzy cluster of which xi has the maximum
membership. As before, if a draw incurs, one of those even
clusters is randomly taken. The similarity of two data points
in the overall fuzzy c-means clustering ensemble is computed
by FCTS(xi, xj) =

∑M
m=1 FS

′
m̃(xi, xj)/M .

In spite of the CTS, other link-based methods such as
the SimRank-based algorithm [19] can also be modified to
support fuzzy c-means ensemble. However, the implementation
of link-based similarity methods (including the CTS) similar-
ly involve high computational complexity. This drawback is
inherent to the algorithms, whose simplified variation may not
be able to maintain the original performance [23]. Hence, the
FCTS, which requires less computational time compared with
the others, is developed in this work.

D. Link-based Fuzzy C-means Ensemble

The overall process of using the proposed matrices in
building clustering ensembles is similar to that of the existing
work that uses pairwise similarity matrices (e.g., [9]). To save
space only the two main steps are outlined below:
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1) Fuzzy c-means are used on the dataset X for M times
to generate fuzzy base-clusters. The diversity of base-
clustering members is ensured by a combination of
re-sampling the original datasets, different numbers
of learned clusters, and different initial centroids
for fuzzy c-means. Note that in theory, many other
methods used in crisp clustering ensemble can also
be used in place of fuzzy c-means ensemble, though
the current work only uses the latter for simplicity.

2) Any of the three proposed methods (FCO, FLink,
FCTS) can be used to generate a pairwise similarity
matrix of data points, exploiting the information
embedded in base-clustering members. From this, a
pairwise similarity based clustering algorithm, such
as hierarchical clustering, can then be employed to
generate the final partition of the dataset as the output
of cluster ensemble.

IV. EXPERIMENTATION AND EVALUATION

This section presents an experimental evaluation of the
proposed work. It first outlines the set-up of the experiments
carried out and then discusses the results obtained. One ex-
periment is designed to test the trend of accuracy when the
diversity of base-clustering members is changed, and the other
to compare the performances of different methods.

A. Experimental Set-up

To evaluate the performance of proposed methods, they
are experimentally tested over seven datasets obtained from
UCI benchmark repository [20], where true labels of instances
are known but are not explicitly used in the cluster ensemble
learning process. The details of these datasets are summarised
in Table III. The final results of the resulting cluster ensembles
are evaluated in terms of accuracy as the group truth for each
dataset is known.

TABLE III. SUMMARY OF DATASETS USED

Datasets Instances Attributes Classes

Iris 150 4 3
Wine 178 13 3
Parkinsons 195 22 2
Glass (Identification) 214 9 6
Ecoli 336 7 8
Ionosphere 351 34 2
(Pima Indians) Diabetes 768 8 2

The fuzzy c-means clustering algorithm is used to generate
the base clustering members. Thirty clustering-members are
created (M = 30) and the cluster centroids are randomly
initialised in each run. Two agglomerative clustering approach-
es (complete-linkage and average-linkage) [9] are selected to
implement the consensus function. These consensus functions
divide data points into clusters using the underlying similarity
matrix FLink, FCO, FCTS, or CTS. For fair comparison,
the number of final clusters on each dataset is set to that of its
true classes and the decay factor (DC) of CTS is commonly
set to 0.5 [19], and the base-clustering results used in CTS
are defuzzified from the base fuzzy c-means used in the other
three fuzzy methods.

B. Results and Discussion

1) Sensitivity of proposed methods: This is to check the
robustness of the approach against the diversity of base-
clustering members. To vary the base-clustering members, the
maximum number of base-clusters max(Km) in each test
is set from 3 to 30 with an increment step of 3, and the
number of base-clusters in each clustering-member Km is
randomly chosen from [3,max(Km)]. Figure 3 shows the
change of accuracy with respect to the increase of diversity in
base-clustering members where agglomerative clustering with
average-linkage is used as the consensus function. Each point
in Fig. 3 is an averaged value of 50 runs.

For five of the seven datasets, the accuracies of the three
proposed methods (FLink, FCTS and CTS) generally in-
crease along with the increase of diversity. This indicates that
the use of link-based pairwise similarity matrices in fuzzy c-
means ensemble entails more differences in base-clustering
members, which in turn allows the generation of better results.
The outcome of using FCO seems to be more stable as
compared with link-based methods. This indicates that FCO is
not sensitive to the number of clusters in each base-clustering
member. An intuitive explanation is that in fuzzy c-means, each
data point has gained a certain membership to all the clusters.
Thus, the base-clustering members which have a smaller
number of clusters can retain as much information as the ones
of a lager cluster number. However, the accuracy of FCO
is not so high as that achievable by the link-based methods
in general. This shows that although fuzzy c-means can help
FCO to keep more information for building ensemble, the
link-based refinements are helpful in generating more effective
pairwise similarity matrices.

2) Accuracy comparison between link-based methods:
This is to further analyse the results achievable by the link-
based methods, using a fixed number (Km = d

√
Ne) or

a random number (Km ∈ [3, d
√
Ne]) of clusters in each

base-clustering member. The resultant accuracies are shown in
Tables 3 and 4 respectively, where the best-2 results on each
dataset is highlighted in boldface and each number in these
tables is an averaged value based on 50 runs. To validate the
significance of the experimental results, the paired-t tests are
carried out between FLink and the rest on each dataset. In
these tables, the sign “(-)” indicates that the corresponding
result is significantly (p < 0.05) worse than that of FLink,
while “(*)” indicates that one is significantly better than that
of FLink. In each “pair” of results, the generation of base-
clustering members is based on the same number of clusters
and same initialisation centroids.

The results show that for both fixed and random Km, the
use of link-based pairwise similarity matrix FLink leads to
the best average accuracy over the seven datasets, in build-
ing fuzzy c-means ensembles. However, the performance of
FCTS is not significantly better than FLink in general. This
implies that the connected-tripe method does not necessarily
further refine FLink effectively. Note that both FLink and
FCTS achieve a better accuracy than CTS on most of the
datasets. Although the CTS which employs the connected-
triple to infer the similarities amongst clusters within each
base-clustering member, it seems that the inferred similarities
are not as effective as those generated by the fuzzy links L̃
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Fig. 3. Trend of Accuracy Change against Diversity (FCO: –o–, FLink: –x–, FCTS: –M–, CTS: –+– )

TABLE IV. COMPARISON OF ACCURACY - FIXED CLUSTER NUMBER

Complete-link Average-link
FLink FCO FCTS CTS FLink FCO FCTS CTS

Iris 86.36 87.60(*) 80.97(-) 71.35(-) 77.53 80.91(*) 67.20(-) 76.80
Wine 94.51 91.58(-) 94.45 80.75(-) 94.45 90.31(-) 94.44 71.99(-)
Parkinsons 81.92 81.54(-) 81.92 76.18(-) 81.92 75.38(-) 82.05 80.58(-)
Glass 48.25 45.37(-) 48.31 52.60(*) 51.31 47.79(-) 49.28(-) 57.34(*)
Ecoli 79.53 76.15(-) 79.90(*) 75.29(-) 82.86 64.99(-) 83.58(*) 77.29(-)
Ionosphere 64.10 64.10 64.10 64.10 64.10 64.10 64.10 64.10
Diabetes 66.64 66.87(*) 66.63 65.82(-) 66.65 66.91(*) 66.66 65.65(-)

Means 74.4728 73.3157 73.7547 69.4409 74.1176 70.0552 72.4729 70.5357

TABLE V. COMPARISON OF ACCURACY - RANDOM CLUSTER NUMBER

Complete-link Average-link
FLink FCO FCTS CTS FLink FCO FCTS CTS

Iris 86.21 85.52 85.73 85.51 85.12 85.03 84.81 86.15
Wine 95.16 91.40(-) 95.13 86.58(-) 95.33 93.02(-) 95.38 91.72(-)
Parkinsons 75.84 76.27 76.28(*) 75.38(-) 75.84 79.57(*) 76.45 75.38(-)
Glass 52.83 51.20(-) 52.53 52.74 52.98 51.33(-) 52.84 53.53(*)
Ecoli 78.98 77.11(-) 79.33 76.92(-) 79.24 75.89(-) 78.95 78.86
Ionosphere 68.43 68.17 67.35 70.51(*) 70.83 64.39(-) 69.38(-) 70.79
Diabetes 66.71 66.63 66.73 66.92(*) 66.68 66.74 66.71 65.94(-)

Means 74.8800 73.7571 74.7257 73.5086 75.1457 73.7100 74.9314 74.6243

in FLink and FCTS. Particularly, FLink can use the fuzzy
links L̃(C̃mk , C̃

m
l ) where k, l = 1, · · · ,Km directly without

inferring them from L̃(C̃mk , C̃
n
l ),m 6= n, the time for running

the connected-triple method (or the other similar refinement) is
saved. In conclusion, FLink entails higher accuracy but lower
time-consumption than CTS.

V. CONCLUSION

This paper has presented the notion of co-association
matrix and those of link-based pairwise similarity matrices for
fuzzy c-means cluster ensemble. The proposed matrices take

the advantage of fuzzy c-means in that each data point can
have a membership to all clusters. A set of fuzzy links between
base-clusters is defined and a fuzzy graph is employed to gen-
erate the link-based similarity matrices. Experimental results
on seven UCI datasets indicate that the proposed approach
generally outperforms the conventional CTS. Furthermore, the
link-based methods also help to build better pairwise similarity
matrices as compared to the non-link based matrix FCO.

Whilst promising, the present work opens up an avenue for
further investigation. For instance, many other base-clustering
member generating methods such as re-sampling may also be
applied. It would be useful to investigate the performance of
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the proposed fuzzy graph using different consensus functions.
It is also interesting to examine whether any methods based
on fuzzy graph theory rather than the connected-triple may be
more suitable and efficient in dealing with the proposed fuzzy
graphs.
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