
Extending FML with Evolving Capabilities through
a Scripting Language Approach

Giovanni Acampora, Marek Reformat and Autilia Vitiello

Abstract— The introduction of Fuzzy Markup Language
(FML) in 2004 has initiated an important trend in Com-
putational Intelligence research: the application of new web
technologies to create more flexible and hardware indepen-
dent environment for deploying “fuzzy ideas”. FML allows
researchers and engineers to focus on problem solving activities
bypassing additional difficulties related to programming or
physical equipment constraints. From that moment on, many
researches have been using FML and other XML-based lan-
guages for modeling and developing fuzzy systems. However,
in spite of their hardware interoperability, XML languages are
able to model a fuzzy system in static way and, consequently,
they do not provide any support for modelling “evolving”
and temporal-based fuzzy systems, as such Timed Automata
based Fuzzy Controllers. To address this deficiency, this paper
introduces an extension of FML called FMLScript. It is based
on a scripting language concept and allows for modeling XML-
based systems that can dynamically modify their configurations.
As the consequence, a better expressive power can be achieved
when compared with static modelling approaches. This is shown
in a case study involving a smart grid control.

I. INTRODUCTION

IN 1965, Lofti Zadeh has introduced the Fuzzy Logic
as a mathematical tool useful for describing inference

engines similar to human reasoning in its capabilities to
manipulate knowledge and generate decisions in uncertain
and vague environments. Indeed, fuzzy reasoning integrates
an alternative way of thinking, which allows the modelling of
uncertain systems by using a higher level of abstraction aris-
ing from human knowledge, skills and expertise. However, in
spite of its original and pioneering aims, currently the fuzzy
computation is predominantly aimed at designing and devel-
oping intelligent systems belonging to the area of industrial
controllers and decision making frameworks. This choice is
mainly due to the fact that, as stated by Lotfi Zadeh in his
principle of incompatibility, fuzzy frameworks are simpler to
design, develop and maintain than their counterparts based on
traditional engineering approaches such as the proportional
plus integral plus derivative (PID) methodology.

Since its first application in the area of intelligent systems,
by E.H. Mamdani, fuzzy logic has been used in numerous
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application scenarios both in the area of pure engineering and
social, economical and political sciences. However, in spite
of its massive applicability, the design activity of a fuzzy
system may be affected by some strong troubles related to
the implementation of a given fuzzy system on heterogeneous
hardware architectures, each one characterized by a proper
set of electrical/electronic/programming constraints. These
difficulties could become more critical in ubiquitous and
pervasive scenarios where the different components of a
fuzzy system can be distributed and deployed to a collection
of interacting and heterogeneous hardware devices.

In the early 2000s, XML technologies were experiencing a
kind of rebirth due to their use in defining new protocols for
distributed communication and data abstraction such as Web
Services. This second life of XML has led researchers to
investigate the possibility of integrating these technologies
for data abstraction with the theory of fuzzy sets in order
to create a software tool capable of supporting scientists
and engineers to design fuzzy systems and controllers in a
hardware independent way. The name of the first XML-based
language for designing fuzzy systems was Fuzzy Markup
Language(FML). In detail, FML is a XML-based language
whose main aim is to bridge the fuzzy systems design
gaps by introducing an abstract and unified approach for
describing fuzzy systems. Thanks to its benefits, FML has
been sponsored by the IEEE CIS to become the first IEEE
standard technology in the area of computational intelligence.

However, due to the rigidity and staticity of XML rep-
resentation, both FML and other XML-based languages for
modelling fuzzy systems are not able to describe innovative
topologies of fuzzy systems methodologies that change the
configuration of a given system (in terms of rules and vari-
ables) during the time in order to always provide the better
performance in different scenarios such as, for example, the
Timed Automata-based Fuzzy Systems (TAFCs).

In order to bridge this design gap, in this paper, we aim
at extending FML with a new feature able to dynamically
change the XML structure of a fuzzy systems at the same
way as the JavaScript approach evolves a HTML webpage.
In particular, our approach enhance FML with a scripting
language able to modify the object model that represents a
fuzzy system and, as a consequence, improves the modelling
capabilities of this markup language. As shown through a
case study on smart grid control, FML scripts enable a full
representation of TAFC and they allow systems’ designers to
develop hardware-independent fuzzy systems yielding better
performance than conventional FML modelling.
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II. FML AND OTHER XML-BASED LANGUAGES
FOR FUZZY SYSTEMS DESIGN

The term fuzzy-XML could be interpreted in two ways.
One of them focuses on expressing fuzzy relations between
XML (eXtensible Markup Language) elements. In such a
case, XML language itself experiences some level of fuzzi-
ness [1]. And the other way - addressed here - focuses on
XML-based languages suitable for scripting specifications of
fuzzy systems. One of the first works addressing the issue
of specifying fuzzy-based systems using XML language has
been reported in [2]. It is a simple approach that uses DTD
(Document Type Definition) to define fuzzy related terminol-
ogy and fuzzy data. A fuzzy inference is accomplished via
applying a “fact-base” to a “rule-base”. A “fact-base” is a file
containing facts defined as a combination of real world ob-
servations and linguistic variables represented by continuous
fuzzy sets. Multiple fuzzy sets, numbers, and intervals are
defined in DTD files for reference purposes. A “rule-base”,
on the other hand, includes a complex structure describing
if-then rules and fuzzy operators. Each rule requires identifi-
cation of compatibility, certainty, aggregation and inference
operators, as well as linguistic variables and terms as parts of
antecedent(s) and consequent. An accumulation operator is
required in the case of multiple rules. Another methodology
is presented in [3]. The approach targets reuse and adopts
the idea of building complex constructs based on simple
ones. The following composition has been adopted to depict
a fuzzy system: a component “fuzzy rule system” - which is
a special case of a map, layout suitable for description of any
system - contains a “fuzzy block” that can be considered a
primitive building block mapping inputs to outputs. Further,
a “fuzzy block” contains “fuzzy rule bases”, “bindings” and
“linguistic contexts”. Linguistic contexts contain definitions
of linguistic variable and crisp variables types. An interesting
aspect is an arrangement of contexts and variable types into
a tree-like structure, i.e., contexts as directories, and types as
files. This allows for an elegant way of defining and storing
variables in variety of contexts. Fuzzy rule base is a one
type fuzzy rule - absoluteRule - that carries a real valued
weight, antecedent and consequent. It is like a template
with parameters. These parameters are associated with real
objects via bindings. Syntax and semantics are defined us-
ing XML Schema and XML Transformation. Disadvantages
of the approach are redundant information and complexity
of representation of fuzzy systems - it requires a special
attention to ensure correctness of bindings and uniqueness
of variables. The important advantage is the ability to use
the approach to represent any Soft Computing structures as
elements of a map/layout describing any possible system. An
approach that combines DTD with XML Schema is described
in [4]. The authors encapsulate common fuzzy elements so
they can be used in any description of a fuzzy system.
They propose a “Fuzzy System Model” that is represented
as a hierarchy of multiple main components. The top level
contains “Input base”, “Membership function repository”,
“Inference Engine”, “Operator repository”, “Rule base”,

“Defuzzification”, and “Output base”. The lower levels are
dedicated to fuzzy system data types. Such data types as:
linguistic variables, linguistic terms, membership functions,
operators and rules are defined and used on numerous
occasions in main components. A model specification is
a composition of nested (based on Fuzzy System Model)
DTD files and XML Schemas referenced from an XML
file. If XML Schemas are used, the fuzzy design can be
more precise but it requires longer schema descriptions
then. Another proposed specification language is XFSML
- it is an acronym of compleX/eXtensible Fuzzy Systems
Modeling/Markup Language [5]. This language focuses on
the structure of a system, not on its functionality. There are
no definitions of fuzzy functions - they are defined externally,
and provided as libraries. A fuzzy system is an XML file - its
name is the system’s name - that contains four nodes: “do-
mains”, “partitions”, “relations”, and “modules”. A “domain”
describes the universe of discourse of variables of the system.
“Partitions” describe membership functions on the domains.
The “relation” node defines a membership functions over
a pair of domains. The node “modules” included multiple
subsections describing different types of components that are
included in the system: fuzzy decision trees, tables and sets of
fuzzy rules, conjunctive fuzzy rules and complex fuzzy rules.
The approach seems relatively simple, however it seems
that it can lead to redundant information and difficulties in
having control over the whole described system. Based on
the description if looks a fuzzy system is a single XML
file - there is no indication if XML schema is used at all -
and any fuzzy operators (membership functions, norms, de-
fuzzification methods) are imported from external libraries. A
very interesting approach to represent fuzzy business process
models is presented in [6]. The authors propose a machine-
readable representation of fuzzy-EPC models in XML. It is
called fuzzy-EPML and is based on EPC Markup Language
(EPML [7]). Fuzzy-EPC (Even-driven Process Control [8])
models are expressed using ARIS (architecture of integrated
information system) language constructs [9], and enriched
with fuzzy attributes, functions and relations used for control
and regulation of decision situations relevant to companies’
processes. Multiple XML Schemas are used to define fuzzy-
EPML data types and elements including fuzzy attributes,
defuzzification methods, fuzzy operators and variables, as
well as fuzzy functions, fuzzy classification systems and
classic fuzzy systems. Many of them are extensions of
simpler elements or EMPL-basic types and operators. XML
Schemas used here prevent redundancy of definitions of sys-
tem components. This is accomplished via cross-referencing
of XML elements. The Fuzzy Markup Language (FML) used
here and proposed in [10][11] is a specification language that
provides an integrated approach to design centralized and
distributed fuzzy controllers in a hardware independent way.
It embraces two well-know fuzzy controllers: the Mamdani
controller, and the Takagi-Sugeno-Kang controller. FML con-
tains three components: XML documents as descriptions of a
fuzzy logic control systems using a markup language, XML
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Fig. 1. The Document Object Model (DOM) defined by the HTML
representation of webpage

Schema that defines elements of the language and its building
blocks, and eXtensible Stylesheet Language Transformations
(XSLT) used to convert a fuzzy controller description into
a specific programming language. The fundamental idea
of FML is to treat a fuzzy controller as a labeled tree.
Each node of this tree is labeled with an XML tag and
represents a single part/aspect/concept of a controller. The
XML tags are equipped with attributes that allow customize
and instantiate a model. The “Knowledge Base” subtree
contains tags identifying used fuzzy variables, fuzzy terms,
and shapes of fuzzy membership functions. The “Rule Base”
subtree is used to define a rule base set. All elements of rules
are defined using nodes and their respective XML tags. The
FML context-free grammar is modeled via XML Schema.

III. FMLSCRIPT: A SCRIPTING LANGUAGE FOR FML

In this section, FMLScript, the scripting language for
enhancing FML capabilities, is introduced. Our idea is based
on the same motivations that led to the emergence of
JavaScript (or similar technologies) in the context of the
design of HTML webpages. Initially, HTML was introduced
as a markup language for describing the presentation and
visualisation of distributed and digital contents through a
computer program as a web browser. However, the capabil-
ities of HTML were too limited to enable a full interaction
among users and webpages. For this reason, JavaScript has
been designed to improve HTML features and achieve a more
dynamic interaction in web navigation. This improvement
was mainly due to the capability of JavaScript to dynamically
modify the Document Object Model (DOM), a hierarchical
and object-oriented representation of a HTML webpage. As
shown in Fig. 1, the DOM contains all of the information
related to a given HTML page such as links, forms, text
boxes and so on. JavaScript uses an object-oriented syntax
to access this information and modify it appropriately.

As both HTML and FML grammars have been designed
by using markup language technologies, at the same way as
a HTML description induces an object model that JavaScript
programs can access to change the configuration of a web-
page, a FML-based description of a fuzzy system generates

Fig. 2. The Fuzzy Object Model (FOM)

a hierarchical structure (object model) composed of all the
components of the system: variables, fuzzy sets, clauses,
rules and so on. We show this structure, called Fuzzy Object
Model (FOM), in Fig. 2.

The existence of the FOM in the FML scenario naturally
leads to the definition of a new object-oriented language,
the FMLScript. This language allows to modify the col-
lection of FOM objects and develop FML-based models
of fuzzy systems that change their configuration over time.
Hence, FMLScript comes with a built-in library of objects
related to the components of a fuzzy system. Each object
has properties that describe it and that can be accessed
through a collection of setter and getter methods. Table I
reports a set of correspondences among FML tags, FOM
objects and a subset of FMLScript methods acting on the
related FOM objects. FMLScript instructions are inserted in
FML codes at the same way as JavaScript instructions are
embedded in HTML codes, that is, by means of two tags:
<FMLScript> and </FMLScript>. These tags usually go
between the </Rulebase> tag and the </FuzzyController>
tag, although can be placed anywhere in the FML code. As
other object-oriented languages, FMLScript uses variables to
store information. The declaration of a variable contains the
data type such as int, float and so on, followed by the variable
name. FMLScript uses the naming conventions of several
languages: variables must start with either a letter or the
underscore character, and, after the first character, they can
have numbers. Besides, the variable names are case-sensitive.

The Listing 1 shows the described basics of FMLScript,
i.e., where FMLScript is placed in FML code, how to
comment, how to declare a variable and how to change the
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TABLE I
A SUBSET OF CORRESPONDENCES AMONG FML TAGS, FOM OBJECTS AND FMLSCRIPT METHODS.

FML Tag FML Tag Attribute FOM objects FMLScript Methods

<FuzzyController> name, ip FuzzyController
setName(nameController),
setIp(ip), ...

<KnowledgeBase> ip KnowledgeBase setIp(ip)

<FuzzyVariable>
name, scale, domainLeft, do-
mainRight, type, defuzzifier,
accumulation, defaultValue

FuzzyVariable
setName(nameVariable),
setDefuzzifier(defuzzifier),
setDomainRight(upperValue),...

<Rulebase>
name, type, activationMethod,
andMethod, orMethod RuleBase

setName(nameRulebase),
setOrMethod(orMethod), ...

<Rule>
name, connector, operator,
weight Rule

setName(nameRulebase),
setOperator(method), ...

shape of a triangular fuzzy set, named “rancid”, belonging
to the fuzzy variable named “food”.

<F u z z y C o n t r o l l e r>
<KnowledgeBase>

<F u z z y V a r i a b l e name = ‘ ‘ food ’ ’
d o m a i n l e f t = ‘ ‘ 0 . 0 ’ ’ d o m a i n r i g h t = ‘ ‘1 0 .0 ’ ’
s c a l e = ‘ ‘ ’ ’ t y p e = ‘ ‘ i n p u t ’’>

<FuzzyTerm name = ‘ ‘ d e l i c i o u s ’ ’
complement = ‘ ‘ f a l s e ’’>
<L e f t L i n e a r S h a p e

param1 = ‘ ‘ 5 . 5 ’ ’
param2 = ‘ ‘10 .0 ’ ’ />

</FuzzyTerm>
<FuzzyTerm name = ‘ ‘ r a n c i d ’ ’

complement = ‘ ‘ f a l s e ’’>
<T r i a n g u l a r S h a p e

param1 = ‘ ‘ 0 . 0 ’ ’
param2 = ‘ ‘ 2 . 0 ’ ’
param3 = ‘ ‘5 .5 ’ ’ />

</FuzzyTerm>
</ F u z z y V a r i a b l e>

. . .
</KnowledgeBase>
<RuleBase>
. . .
</RuleBase>

<FMLScript>
/∗

Access t o FOM o b j e c t s
t o modify t h e FML Fuzzy System

∗ /

F u z z y V a r i a b l e v ;
FuzzyTerm t ;

v = KnowlegdeBase . g e t V a r i a b l e ( ‘ ‘ food ’ ’ ) ;
t = v . getFuzzyTerm ( ‘ ‘ r a n c i d ’ ’ ) ;
t . g e t T r i a g u l a r S h a p e ( ) . s e tPa ram3 ( 6 . 7 5 ) ;

</FMLScript>
</ F u z z y C o n t r o l l e r>

Listing 1
AN EXAMPLE OF FMLSCRIPT

FMLScript provides the abilities to modify the logic flow
of the program and to perform loops such as if-then and if-
then-else, while, for, break and continue. In order to call over

and over bits of FMLScript without having to rewrite them
every time, FMLScript allows to define functions as below.

typeReturn funtionName(parameterList){
statement;
return(ret val);
}

Functions’ naming rules are the same as those for vari-
ables. After the function name comes a list of parameters and,
closed in curly braces, the body of the function containing
a set of statements you want to run when the function is
called. On reaching a return statement, control of the program
returns to the calling function. The bracketed value ret val is
the value which is returned from the function whose type is
defined by typeReturn.

However, modifications of the FOM by means of getter
and setter methods provided by FMLScript are not enough
to allow FML to improve its modeling capabilities. Indeed,
the FOM provides FML with a mechanism to select “what”
to change in a fuzzy system, but no information about
“when” to change “what” is provided. As a consequence,
the definition of a collection of additional “time-related”
classes in the FMLScript language is necessary to define
the temporal evolution of the FOM and the corresponding
fuzzy system. In particular, new classes such as Timer and
TimeConstraint can enable FMLScript to create a collection
of additional objects that, opportunely used, allow FML to
establish when to change the FOM structure and represent
fuzzy systems in a more dynamic way. The Timer class
is used to define new variables that count the number of
milliseconds elapsed from a given time. In particular, let t
be a FMLScript object defined by using the Timer class,
then the method named start() is invoked on t (formally
t.start()) to activate the timer t; the method reset() is invoked
on t (formally t.reset()) to set the counter of t to zero; the
method stop() (formally t.stop()) is invoked on t to stop it
and the method restart() (formally t.restart()) is invoked on t
to resume the time progress for it. Variables defined as Timer
are necessary to create so-called “temporal constraints”, i.e.
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conditional expressions used by FMLScript to check when
the FOM structure should be changed. FMLScript enables the
definition of these temporal constraint variables by using the
timeConstraint class. In particular, a timeConstraint object
is a binary conditional expression based on t ◦m, where t
is Timer object, m is a real number and ◦ ∈ {==, <,>
,<=, >=}. Together with the Timer and TimeConstraints
classes, FMLScript provides the TimeConstraints objects
with a powerful method, named onTime, used to trigger the
appropriate script when a temporal constraint on a given
timer object is satisfied. In general, the triggered script is
used to access to the FOM and modify some components of
the FML fuzzy system. The syntax of the onTime method
is:

c.onTime(UserFunctionName())

where c is a timeConstraints object defined on a Timer t
and UserFunctionName is the name of a user defined script.

Listing 2 shows how FMLScript uses Timer and Time-
Constraints objects to change the shape of a fuzzy variable
exactly after 20 seconds from the moment in which the FML
system started its execution.

<F u z z y C o n t r o l l e r>
<KnowledgeBase>

. . .
</KnowledgeBase>
<RuleBase>

. . .
</RuleBase>

<FMLScript>

/∗
Access t o FOM o b j e c t s
t o modify t h e FML Fuzzy System

∗ /

F u z z y V a r i a b l e v ;
FuzzyTerm t ;
Timer t = new Timer ( 0 ) ;
T i m e C o n s t r a i n t c ;
c = new T i m e C o n s t r a i n t ( ‘ ‘ t == 2 0 0 0 ’ ’ ) ;

c . onTime ( ‘ ‘ c h a n g e F u z z y V a r i a b l e F u n c t i o n ( ) ’ ’ ) ;

t . s t a r t ( ) ;

vo id c h a n g e F u z z y V a r i a b l e F u n c t i o n ( ) {
v = KnowlegdeBase . g e t V a r i a b l e ( ‘ ‘ food ’ ’ ) ;
t = v . getFuzzyTerm ( ‘ ‘ r a n c i d ’ ’ ) ;
t . g e t T r i a g u l a r S h a p e ( ) . s e tPa ram3 ( 6 . 7 5 ) ;

}
</FMLScript>
</ F u z z y C o n t r o l l e r>

Listing 2
AN EXAMPLE OF FMLSCRIPT WITH TIMER AND TIMECONSTRAINT

OBJECTS.

IV. CASE STUDY: SMART GRID CONTROL

This section illustrates the benefits provided by the in-
troduction of FMLScript. In order to achieve this aim, we
refer to a case study in the smart grid domain. We show

how FMLScript is able to model new emergent topologies of
fuzzy systems such as TAFCs (Timed Automata based Fuzzy
Controllers [12]) which allow to control voltage regulation
in a smart grid better than conventional ones.

Smart grids are active, flexible and self-healing energy net-
works which marries information technology with the current
electrical infrastructure in order to empower consumers to
manage their energy usage and save money without compro-
mising their lifestyle. In distributed and heterogeneous envi-
ronments as the smart grids, it is desirable to have a software
tool capable of supporting scientists and engineers to design
fuzzy systems and controllers in a hardware independent way.
Therefore, FML is highly suitable to be applied in smart grid
scenarios. However, because of the rigidity and staticity of
XML representation, FML is not completely able to manage
the intrinsic time varying phenomena affecting the smart grid
operation. FMLScript overcomes the FML limitation thanks
to the capability to model new dynamic fuzzy systems such
as TAFCs. Hereafter, after a brief description of TAFCs,
we describe how FMLScript can model a TAFC for voltage
regulation in a smart grid.

TAFCs are evolvable fuzzy systems highly suitable for
modeling dynamic systems thanks to the capability of mod-
ifying models’ behavior over time. In detail, TAFCs’ be-
haviour is modeled by means of an opportune fuzzy con-
troller which represents the so-called control configuration
of the TAFC. According to time related events, the current
control configuration of a TAFC can be changed by applying
some so-called transformation operators. These operators
perform changes on fuzzy controllers such as adding or
deleting a variable, adding, removing or changing rules in the
rule base, adding, deleting or changing a term to a variable
and so on. In this vision, a TAFC lives a sequence of discrete
temporal periods, named control eras, each one characterized
by a specific control configuration. In order to manage the
switching between control eras, TAFCs exploit a modified
version of Timed automata [13]. Briefly, a timed automaton
is a standard finite-state automaton extended with a finite
collection of real-valued clocks providing a straightforward
way to represent time related events. In particular, timed
automaton’s transitions are labeled with so-called guards
representing conditions on clocks and symbols on alphabet
Σ representing events. A transition may be taken only if the
current values of the clocks satisfy the guard and the specified
event is occurred. By using a timed automaton, TAFCs are
able to manage the control configurations by associating
each of them with a state in the timed automaton, whereas,
symbols and clocks characterizing transitions determine re-
spectively how and when to execute the switching among
successive control eras. Futher, TAFCs exploit an extended
version of timed automata since transition edges are char-
acterized also by a set of the aforementioned transformation
operators aimed at changing the current control configuration
of the modeled system in the next one. In conclusion, it is
possible to define a TAFC as a pair (F 0, TC) where F 0

is the initial control configuration, represented by a fuzzy
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controller, modeling the control behaviour of system during
first phase of its existence, and TC is an extended timed
automaton describing the dynamic evolution of the system.

(a) Fuzzy Controller C

(b) Timed automaton TA

Fig. 3. The TAFC T regulating the reactive power flows injected by a DG
unit in a smart grid.

In [14], TAFCs are used to regulate power flow injected
by the Distribution Generation (DG) units embedded in a
smart grid to enable the integration of renewable energy
resources (such as wind and solar). The designed TAFC
T = (C, TA) is shown in Fig. 3. In detail, the fuzzy controller
C is composed of two input variables, the mean grid voltage
magnitude (VM ) and the difference between the mean grid
voltage magnitude and the local bus voltage magnitude (DVi)
and an output one, the reactive power flow (DQ). The rule
base is composed of 11 rules defined by a domain expert. The
designed fuzzy inference engine computes the conventional
Mamdani’s inference method [15], whereas, the defuzzifier
is the mean of maxima method [16]. As for the timed
automaton TA, it is composed by seven states S1, S2, . . . , S7.
Each state stores a control configuration able to regulate the
reactive power flow during the corresponding control era.

The transitions are labeled with guards on clock x (which
keeps track of elapsing time in minutes) and the symbols
a, b, c, d, e, f which represent events related to the voltage
magnitude values as follows:

• a : M < 0.99
• b : M > 1.01
• c : M > 0.99
• d : M < 1.01
• e : M < 0.97
• f : M > 1.03

For sake of simplicity, in the Fig. 3, the description
of the transformation operators is replaced by a function
φi,j capable of defining the set of operators necessary for
transforming the control configuration related to the state
Si in the control configuration related to the state Sj . For
example, the function φ1,2 moves the control configuration
in the state S1 to the control configuration in the state S2 by
changing some rules and the names and parameters of two
fuzzy terms of the fuzzy variable VM .

In spite of FML advantages, it is not possible to model
a dynamic fuzzy system such as a TAFC. Indeed, FML
succeeds to model the initial control configuration of a TAFC
but it cannot do the same with the dynamic features of TAFCs
such as changing and switching concepts, the clock idea,
and so on. FMLScript overcomes the FML limitation by
succeeding to model TAFCs in a hardware independent way
as shown below. As said, the fuzzy controller C composing
the TAFC T for voltage regulation can be modeled through
the static capabilities of FML. As an example, listing 3
models a portion of knowledge base of the controller C,
i.e., the input variable VM , and listing 4 defines the first rule
of the rulebase.

. . . . . .
<KnowledgeBase>

<F u z z y V a r i a b l e name = ‘ ‘VM ’ ’ d o m a i n l e f t = ‘ ‘ 0 . 8 ’ ’
d o m a i n r i g h t = ‘ ‘ 1 . 2 ’ ’ s c a l e = ‘ ‘ ’ ’

t y p e = ‘ ‘ i n p u t ’’>
<FuzzyTerm name = ‘ ‘ very low ’ ’

complement = ‘ ‘ f a l s e ’’>
<L e f t L i n e a r S h a p e Param1 = ‘ ‘0 .89 ’ ’

Param2 = ‘ ‘0 .98 ’ ’ />
</FuzzyTerm>
<FuzzyTerm name = ‘ ‘ zero ’ ’

complement = ‘ ‘ f a l s e ’’>
<T r i a n g u l a r S h a p e Param1 = ‘ ‘0 .9 5 ’ ’

Param2 = ‘ ‘ 1 . 0 ’ ’
Param3 = ‘ ‘1 .05 ’ ’ />

</FuzzyTerm>
<FuzzyTerm name = ‘ ‘ v e r y h i g h ’ ’

complement = ‘ ‘ f a l s e ’’>
<R i g h t L i n e a r S h a p e Param1 = ‘ ‘1 . 03 ’ ’

Param2 = ‘ ‘1 .09 ’ ’ />
</FuzzyTerm>

</ F u z z y V a r i a b l e>
. . . . . . . .

<KnowledgeBase>
. . . . .

Listing 3
FML CODE TO MODEL A PORTION OF THE KNOWLEDGE BASE OF THE

CONTROLLER C
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. . . . . . .
<RuleBase name = ‘ ‘ Rulebase1 ’ ’

a c t i v a t i o n M e t h o d = ‘ ‘MIN’ ’ andMethod = ‘ ‘MIN’ ’
orMethod = ‘ ‘MAX’ ’ t y p e = ‘ ‘ mamdani ’’>

<Rule name = ‘ ‘ reg1 ’ ’ c o n n e c t o r = ‘ ‘ or ’ ’
o p e r a t o r = ‘ ‘MAX’ ’ w e i g h t = ‘ ‘1.0 ’ ’>

<Anteceden t>
<Clause>

<V a r i a b l e>VM</ V a r i a b l e>
<Term>v e r y h i g h </Term>

</ Clause>
<Clause>

<V a r i a b l e>DVi</ V a r i a b l e>
<Term>PS</Term>

</ Clause>
</ An teceden t>
<Consequent>

<Clause>
<V a r i a b l e>DQ</ V a r i a b l e>
<Term>PB</Term>

</ Clause>
</ Consequent>

</Rule>
. . . . . . . .

</RuleBase>
. . . . . . . .

Listing 4
FML CODE TO MODEL THE FIRST RULE OF THE RULE BASE OF THE

CONTROLLER C

As for the dynamic features of the TAFC T , they can be
modeled through FMLScript as shown in listing 5. In detail,
the automaton states can be represented as a FMLScript
variable, in our case, the variable s. The clock x, instead,
can be modeled by using a Timer object, in our case, the
Timer t. As for the guards and the symbols on transitions,
they can be defined by using, respectively, TimeConstraint
objects (c1, c2, and so on) and FMLScript variables (M ).
The management of the transitions having the same guard
can be done through a FMLScript function. In our case,
the function transitionOnC1() is related to the first two
transitions having the guard x >= 60, instead, the function
transitionOnC2() is related to the next four transitions
having the guard x >= 75. Finally, the transformation op-
erators can be directly implemented through the exploitation
of the predefined FMLScript methods acting on FOM. As an
example, listing 6 shows the definition of the aforementioned
function φ1,2 of the timed automaton TA by using FMLScript
code.

The introduction of FMLScript allows to improve voltage
regulation in the considered smart grid scenario as shown
in Fig. 4. Indeed, thanks to the definition of the TAFC T
by using FMLScript, both reactive power costs and voltage
magnitude are improved with respect to a FML-based fuzzy
controller F .

V. CONCLUSIONS

In the recent years, new topologies of fuzzy systems
capable of modelling real scenarios in a more detailed and
accurate way have been emerging. These new fuzzy system
modelling approaches, such as Timed Automata based Fuzzy
Controllers, are more realistic thanks to their ability to

<FMLScript>
i n t s =1 ; / / t h e c u r r e n t s t a t e
Timer t =new Timer ( 0 ) ; / / t i m e r model ing c l o c k x
f l o a t M; / / t h e symbols

/∗ gua rd on t r a n s i t i o n s from S1 t o S2 and
from S1 t o S3 i n m i l l i s e c o n d s ∗ /
T i m e C o n s t r a i n t c1 ;
c1 = new T i m e C o n s t r a i n t ( ‘ ‘ t >= 3 6 0 0 0 0 0 ’ ’ ) ;
c1 . onTime ( ‘ ‘ t r a n s i t i o n O n C 1 ( ) ’ ’ ) ;

/∗ gua rd on t r a n s i t i o n s from S2 t o S4 , from S2 t o S5 ,
from S3 t o S4 and from S3 t o S5 i n m i l l i s e c o n d s ∗ /
T i m e C o n s t r a i n t c2 ;
c2 = new T i m e C o n s t r a i n t ( ‘ ‘ t >= 4 5 0 0 0 0 0 ’ ’ ) ;
. . . . .
t . s t a r t ( ) ; / / t i m e r i s s t a r t e d

vo id t r a n s i t i o n O n C 1 ( ) {
t . s t o p ( ) ;
i f ( s ==1)

i f (M<0.99 | | M>1.01){
/ / moves t h e c o n t r o l c o n f i g u r a t i o n from S1 t o S2

ph i12 ( ) ;
s =2 ;
c2 . onTime ( ‘ ‘ t r a n s i t i o n O n C 2 ( ) ’ ’ ) ;

}
e l s e i f (M>0.99 && M<1.01){

/ / moves t h e c o n t r o l c o n f i g u r a t i o n from S1 t o S3

ph i13 ( ) ;
s =3 ;
c2 . onTime ( ‘ ‘ t r a n s i t i o n O n C 2 ( ) ’ ’ ) ;

}
t . r e s t a r t ( ) ;

}

vo id t r a n s i t i o n O n C 2 ( ) {
t . s t o p ( ) ;
i f ( s ==2)

i f (M<0.97 | | M>1.03){
/ / moves t h e c o n t r o l c o n f i g u r a t i o n from S2 t o S4

ph i24 ( ) ;
s =4 ;
. . . . .

}
e l s e i f (M<0.99 | | M>1.01){

/ / moves t h e c o n t r o l c o n f i g u r a t i o n from S2 t o S5

ph i25 ( ) ;
s =5 ;
. . . . .

}
e l s e

i f ( s ==3)
i f (M<0.97 | | M>1.03){

/ / moves t h e c o n t r o l c o n f i g u r a t i o n from S3 t o S4

ph i34 ( ) ;
s =4 ;
. . . . .
}
e l s e i f (M<0.99 | | M>1.01){

/ / moves t h e c o n t r o l c o n f i g u r a t i o n from S3 t o S5

ph i35 ( ) ;
s =5 ;
. . . . .
}

t . r e s t a r t ( ) ;
}
. . . . . .
<FMLScript>

Listing 5
FMLSCRIPT CODE FOR MODELING TAFC T
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<FMLScript>
vo id ph i12 ( ){

F u z z y V a r i a b l e v ;
FuzzyTerm t ;
v = KnowlegdeBase . g e t V a r i a b l e ( ‘ ‘VM ’ ’ ) ;
t = v . getFuzzyTerm ( ‘ ‘ ve ry low ’ ’ ) ;
t . setName ( ‘ ‘ low ’ ’ ) ;
t . g e t L e f t L i n e a r S h a p e ( ) . s e tPa ram1 ( 0 . 9 5 ) ;
t . g e t L e f t L i n e a r S h a p e ( ) . s e tPa ram2 ( 0 . 9 9 ) ;

t = v . getFuzzyTerm ( ‘ ‘ v e r y h i g h ’ ’ ) ;
t . setName ( ‘ ‘ high ’ ’ ) ;
t . g e t L e f t L i n e a r S h a p e ( ) . s e tPa ram1 ( 1 . 0 2 ) ;
t . g e t L e f t L i n e a r S h a p e ( ) . s e tPa ram2 ( 1 . 0 5 ) ;

Rule r ;
C l a u s e s c ;
r = RuleBase . g e t R u l e ( ‘ ‘ reg1 ’ ’ ) ;
c= r . g e t C o n s e q u e n t ( ) . g e t C l a u s e s ( ) ;

f o r ( i n t i =0 ; i<c . s i z e ( ) ; i ++)
i f ( c . g e t C l a u s e ( i ) . g e t V a r i a b l e ( ) . e q u a l s ( ‘ ‘DQ’ ’ ) ) {

c . g e t C l a u s e ( i ) . se tTerm ( ‘ ‘ PS ’ ’ ) ;
b r e a k ;
}

. . . . .
}
<FMLScript>

Listing 6
FMLSCRIPT CODE FOR MODELING THE FUNCTION φ1,2 OF THE TIMED

AUTOMATON TA

express not only static but particularly dynamic and tem-
poral aspects of systems. However, XML-based modelling
languages, including FML, are not able to model these new
topologies of fuzzy systems. They lack mechanisms and
constructs to represent time managed events and modifica-
tions. In this paper we introduce and describe FMLScript.
It is a script-based language that enhances FML modeling
capabilities to handle dynamic features of new and innovative
fuzzy structures. FMLScript possesses multiple features that
improve modeling of real-world industrial systems. The
application of both FMLScirpt and FML to model a smart
grid controller is presented and described in the paper.
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