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Abstract—Fuzzy rule interpolation (FRI) is a well established
area for reducing the complexity of fuzzy models and for making
inference possible in sparse rule-based systems. Regardless of
the actual FRI approach employed, the interpolative reasoning
process generally produces a large number of interpolated rules,
which are then discarded as soon as the required outcomes have
been obtained. However, these interpolated rules may contain
potentially useful information, e.g., covering regions that were
uncovered by the original sparse rule base. Thus, such rules
should be exploited in order to develop a dynamic rule base for
improving the overall system coverage and efficacy. This paper
presents a genetic algorithm based dynamic fuzzy rule interpo-
lation framework, for the purpose of selecting, combining, and
promoting informative, frequently used intermediate rules into
the existing rule base. Simulations are employed to demonstrate
the proposed method, showing better accuracy and robustness
than that achievable through conventional FRI that uses just the
original sparse rule base.

I. INTRODUCTION

Fuzzy rule interpolation (FRI) [1], [2], [3], [4] is of partic-
ular significance for reasoning in the presence of insufficient
knowledge. Given a sparse rule base, if an observation has
no overlap with antecedent values, no rule can be invoked in
classical fuzzy inference, and therefore no consequence can be
derived. FRI techniques can support inference in such cases.
Most existing FRI systems, regardless of their underlying
theory and implementation, tend to process a large amount
of interpolated rules, which are generally discarded once the
outcomes in response to the given observations are derived.
However, interpolated rules may contain potentially useful
information, e.g., covering regions that were not covered by the
original rule base. If dynamically and intelligently maintained
these rules may help greatly improve the overall interpolative
coverage and efficacy. This process can be especially beneficial
if the frequently appearing observations are of high similarity,
where a dynamically created rule may reduce the overheads
of interpolation.

A number of techniques [5], [6], [7], [8], [9] exist in
the field of dense fuzzy rule-based systems and adaptive
fuzzy control, which support dynamic modifications to a given
dense rule base. There are also approaches developed for the
automatic generation of fuzzy rule-based models [10], [11],
[12], using techniques such as neural network [10], genetic
algorithm [11], [12], etc. These techniques learn from the
data in order to refine a given rule-based system. They can
maintain a concurrent, real time rule base for inference and
thus, entail more appropriate reasoning results. Unfortunately,

such approaches are not directly applicable to sparse rule-based
systems due to their assumption of fully covered rules, as well
as the underlying computational differences between the use
of compositional rule of inference and rule interpolation.

A dynamic fuzzy rule interpolation approach [13] has been
introduced to better exploit the interpolation results provided
by a given FRI method. However, this approach relies heavily
on the use of the standard k-means clustering algorithm. Yet,
for many application problems, it is difficult to predict the
value of k (the number of clusters) [14]. This paper improves
upon the original approach, by employing a genetic algorithm
(GA) based clustering technique [15], [16], [17] in place
of k-means clustering. In this work, the collection of the
interpolated rules is pre-partitioned into hyper-cubes (multi-
dimensional blocks), in order to reduce the search complexity
of the GA process. The non-empty hyper-cubes are then
identified and used as the input into GA. After a certain
number of generations, GA identifies a “best” chromosome
(cluster arrangement) based on a given fitness function such
as the Dunn Index [18]. Here, a chromosome is viewed as
a combination of strong and weak clusters, where the weak
clusters are merged into the closest strong clusters in order
to obtain the final result. In the end, the densest clusters that
have accumulated a sufficient number of candidate rules are
selected for rule aggregation and promotion.

The remainder of this paper is organised as follows. Section
II introduces the theoretical underpinnings of FRI and GAs,
and explains the scale and move transformation based approach
to FRI (T-FRI) that is used in the current implementation of
the GA-based dynamic FRI. Section III illustrates the proposed
method. Section IV provides an example, demonstrating the
procedures of the proposed approach, and verifies its cor-
rectness and accuracy by comparing its outputs to those of
conventional FRI. Finally, Section V concludes the paper and
suggests a number of future areas of extension.

II. THEORETICAL BACKGROUND

A. Transformation-Based Fuzzy Rule Interpolation

This section provides an outline of T-FRI, including both
the underlying concepts and the interpolation steps. For sim-
plicity, in this work, fuzzy sets are represented using triangular
membership functions. Suppose that an original, sparse rule
base R exists, with rules Ri ∈ R and an observation O:

Ri: IF x1 is Ai,1, · · · , and xj is Ai,j , · · · , and XN is Ai,N ,
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THEN y is Bi
O: A◦,1, · · · , A◦,j , · · · , A◦,N

where Ai,j = (a0, a1, a2) is the triangular linguistic term for
rule Ri, defined on the domain of the antecedent variable xj ,
j ∈ {1, · · · , N}, where N is the total number of antecedents,
and Bi is the consequent. The observed fuzzy set of variable
xj is denoted by A◦,j . The representative value rep(A) of a
triangular fuzzy set is defined as the mean of the X coordinates
of the triangle’s three points: the left and right extremities of
the support a0, a2 (with membership values = 0), and the
normal point a1 (with membership value = 1).

rep(A) = (a0 + a1 + a2)/3 (1)

The following outlines the core of the T-FRI, more details
can be found in [19], [20].

1) Determine the Closest Rules for the Observation: The
distance between Ri and O is determined by computing the
aggregated distance of all antecedent variables:

d(Ri, O) =

√√√√ N∑
j=1

d2j , dj =
d(Ai,j , A◦,j)

rangexj

(2)

where d(Ai,j , A◦,j) = |rep(Ai,j)− rep(A◦,j)| is the distance
between two fuzzy sets in the jth antecedent dimension,
with rangexj

= maxxj − minxj over the domain of the
variable xj . dj ∈ [0, 1] is therefore the normalised result of
the otherwise absolute distance measure, so that distances are
compatible with each other across different variable domains.
The M , M ≥ 2 rules which have the least distance measure-
ments, with regard to the observed values A◦,j are then chosen
to perform the interpolation in order to obtain the conclusion
B◦.

2) Construct the Intermediate Rule: Let the normalised
displacement factor ωi,j , as shown in Eqn. 3, denote the weight
of the jth antecedent of the ith rule:

ωi,j =
ω†i,j∑M
i=1 ω

†
i,j

(3)

As Ai,j and A◦,j may totally coincide with each other, the
value of d(Ai,j , A◦,j) may equal 0. This will make ω†i,j to be
infinite. So, the following non-increasing function is used to
represent the weight:

ω†i,j = exp−d(Ai,j ,A◦,j) (4)

The so-called intermediate fuzzy terms A††j are constructed
from the antecedents of the M rules.

A††j =
M∑
i=1

ωi,jAi,j (5)

These are then shifted to A†j such that they have the same
representative values as those of A◦,j :

A†j = A††j + δjrangexj (6)

where δj is the bias between A◦,j and Aj† on the jth variable
domain:

δj =
rep(A◦,j)− rep(Aj†)

rangexj

(7)

Similar to Eqn. 6, the shifted intermediate consequence B†

can be computed, with the parameters ωBi and δB being
aggregated from the corresponding values of Aj†, such that:

ωBi
=

1

N

N∑
j=1

ωi,j , δB =
1

N

N∑
j=1

δj (8)

3) Scale Transformation: Let A††j = (a0
††, a1

††, a2
††)

denote the fuzzy set generated by the scale transformation in
the jth antecedent dimension. By using the scale rate sj , the
current support of A†j , (a0

†, a2
†) is transformed into a new

support (a0††, a2††), such that a2†† − a0†† = sj × (a†2 − a
†
0).

a0
†† =

a0
†(1+2sj)+a1

†(1−sj)+a2†(1−sj)
3

a1
†† =

a0
†(1−sj)+a1†(1+2sj)+a2

†(1−sj)
3

a2
†† =

a0
†(1−sj)+a1†(1−sj)+a2†(1+2sj)

3

sj =
a2
††−a0††
a2†−a0†

(9)

From the above and the given observation terms A◦,j , the scal-
ing factor sB for the consequent is calculated using Eqn. 10:

sB =

∑N
j=1 sj

N
(10)

4) Move Transformation: A††j is subsequently moved using
the move rate mj as given in Eqn. 11, so that the final
transformed fuzzy set matches the shape of the observed value
A◦,j . {

mj =
3(a0−a0††)
a1††−a0†† , a0 ≥ a0

††

mj =
3(a0−a0††)
a3††−a2†† , otherwise

(11)

From this, the move factor mB for the consequent is calculated
such that:

mB =

∑N
j=1mj

N
(12)

The final interpolated result B◦ can now be estimated by
applying the scale and move transformation to B†, using the
parameters sB , and mB .

B. Genetic Algorithms

Genetic Algorithms (GAs) are class of stochastic search
procedures that are inspired by Darwinian principle of survival
of the fittest individuals and natural selection [21]. Their
operation is dependent on two important operators: crossover
and mutation. The population (the set of chromosomes) is
initially generated randomly and their members are then s-
elected for reproductive process with respect to their fitness
values. The chromosomes with higher fitness values have better
chances to reproduce. The reproductive process is repeated
until desired conditions are met, such as a desired fitness level,
or a maximum number of generations. The generic procedure
of GAs can be summarised as follows [15], [16]:

• Initialisation: Generate random population P of |P|
chromosomes [X1, X2, ...., X|P|], where each chro-
mosome Xi is an order collection of genes =
[xi1, . . . , x

i
r, x

i
r+1, . . . , x

i
|Xi|].
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• Fitness Calculation: Evaluate the fitness f(Xi) of
each chromosome Xi in the population P, ∀i ∈
{1, ..., |P|}.

• Chromosome Selection: Select two parent chromo-
somes Xp and Xq from a population P according to
their fitness (the better fitness, the bigger chance to be
selected).

• Crossover: With a crossover rate δc, cross over the
parents Xp and Xq to form new offsprings (X

′

p and
X
′

q). If no crossover was performed, the offsprings are
exact copies of their parents.

• Mutation: With a mutation rate δm, mutate the off-
springs (X

′

p and X
′

q) at each locus (position in chro-
mosome).

• Acceptance: The new offsprings (X
′

p and X
′

q) then
together form the new population Pnew, and are used
for the subsequent generation.

• Repeat: If the given condition is not satisfied, repeat
the process from the step-Fitness Calculation.

• Termination: If the termination condition is satisfied,
stop, and return the best chromosome Xbest in the
final population.

III. GA-BASED DYNAMIC FUZZY RULE INTERPOLATION

Fig. 1. Procedure of GA-Based Dynamic FRI

This section describes the proposed GA-based dynamic
FRI, the overall process of its working is presented in Fig. 1.
Generally speaking, there initially exists a set of original (s-
parse) rules R. While running the FRI system, an interpolation
mechanism such as T-FRI gradually fills a pool of interpolated
rules R′. The domains of those antecedents appearing in R′
are partitioned into a set of hyper-cubes H. These hyper-cubes
are examined to find all non-empty blocks H∗, so that the
GA-based clustering algorithm can be employed to find the
“best” clustering arrangement leading to a set of strong hyper-
cubes H1 and another of weak hyper-cubes H0. The strong
hyper-cubes are candidate cluster centres in the final clustering
outcome. The weak ones are the hyper-cubes that have much
less concentration of rules, which are merged into the strong

hyper-cubes in order to form the final arrangement. Using
GA-based clustering allows the best clusters to be determined
without the need to pre-specify the number of clusters k,
which is otherwise required by the standard k-means clustering
method [14]. After the clustering process, the clusters that
have accumulated a sufficient number of interpolated rules
(say, more than a certain threshold σ) are selected. Finally,
an aggregation process is applied to those selected clusters, in
order to construct and promote new rules to become members
of the rule base R.

This approach is intuitive and no restriction is imposed
over the use of any specific FRI method. The main benefit
is to greatly reduce the overheads of interpolating similar,
commonly observed values once similar cases have been
dealt with, so that only straightforward application of the
compositional rule of inference is needed to be carried out.

The following details the key procedures involved in this
approach, including antecedent partitioning, interpolated rule
clustering and rule promotion. In this work, without losing
generality the distance d(Rp, Rq) between two rules Rp ans
Rq is defined by:

d(Rp, Rq) =

√√√√ N∑
1

(rep(Ap,i)− rep(Aq,i))2

rangexi

(13)

A. Partitioning of Input Space

A grid-based partitioning method is used to identify the
uncovered regions of R and the most frequently interpolated
areas that are covered by R′. The antecedent domain is
partitioned into a set of hyper-cubes H, by dividing the value
ranges of the antecedent variables. A given rule R, which
may be an original rule Rk or an interpolated rule R

′

k is
then assigned to the hyper-cube Hp by checking whether its
antecedent values lie within the boundaries of Hp:

R ∈ Hp if rep(Ak,j) ∈ [minHp,j ,maxHp,j), j ∈ {1, . . . , N}
(14)

where Ak,j is the value of the jth antecedent of the rule R.

Ideally, the total number of hyper-cubes and their sizes
should be dynamically adjusted according to the current s-
tate of the (increasing less) sparse rule base. However, for
simplicity, the pre-determined partitions are considered in the
current implementation, where the input dimensions are evenly
divided into η intervals. The total number of hyper-cubes |H|
is therefore ηN . Whilst all the hyper-cubes are checked, only
the non-empty hyper-cubes H∗ are to be used for the later
clustering process.

H∗ ⊆ H,∀H ∈ H∗, |H| 6= 0 (15)

B. Clustering of Interpolated Rules

A modified genetic algorithm as given in Alg. 1 is used
for clustering, which groups similar interpolated rules R′ ∈ H
together, forming the clusters. In this work, the customization
and implementation of the GA is specified as follows:
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Algorithm 1: Genetic Algorithm for Clustering
Pnew, new population
X
′

i , i
th chromosome of Pnew

Xbest, Xbest ∈ P, f(Xbest) =max
∀X∈P

f(X)

f(Xi), fitness value of Xi

δc , crossover rate
r , random number, where 0 ≤ r ≤ 1
kmax , maximum number of generations
while (kmax 6= 0) do

Pnew = φ
for (i = 1; i < |P|; i+ 2) do

X
′

i = roulettewheelselection(P)
X
′

i+1 = roulettewheelselection(P)
if (r < δc) then

X
′

i = crossover(X
′

i , X
′

i+1, true)

X
′

i+1 = crossover(X
′

i , X
′

i+1, false)

X
′

i = mutate(X
′

i)

X
′

i+1 = mutate(X
′

i+1)

Pnew = Pnew + [X
′

i , X
′

i+1]

kmax = kmax − 1
P = Pnew

return Xbest

1) Chromosome and Population Representation: The
length of chromosome |X| is set to the total number of non-
empty hyper-cubes |H∗|. Each chromosome is a sequence
of 0s and 1s as shown in Fig. 2. The gene 0 represents
weak cluster at that position, and the gene 1 represents a
potential presence of a cluster, or a strong cluster. The initial
population P [X1, X2, ...., X|P|] is generated randomly, to start
the GA search process, where the size of the population |P|
is adjusted in relation to the number of non-empty hyper-
cubes H∗. In the GA literature, a population between 20
to 30 chromosomes is typically employed in implementation
though a longer population may be utilised [22], [23]. Being
a preliminary investigation, a fixed population size is adopted
herein.

Fig. 2. Chromosome Representation in GA-based Dynamic FRI

2) Fitness Calculation: The fitness function is a problem-
dependent parameter in GAs, which decides on the quality
of individual chromosomes. In this work, a chromosome
represents a potential cluster arrangement, and the Dunn Index
(DI) [18] is utilised to assess its quality on the basis of cluster
isolation and compactness. A higher value of DI indicates a
more favourable result:

f(Xi) = min
p,q∈{1,...,i},p6=q

{ mpq

maxr∈{1,...,i} sr
} (16)

where sr and mpq are the intra-cluster (compactness) and inter-
cluster (isolation) distance measurements, respectively:

sr =

√√√√ ∑
R′∈Cr

d(R′, µr)2

|Cr|
, mpq = d(µp, µq) (17)

In the above, Cr is the rth cluster, the distance between a
given interpolated rule R′ and the centroid µq of a cluster Cq
is calculated in a way similar to Eq. 13 should that:

∀R′j , R′k ∈ R′, d(R′j , µq) = d(R′k, µq) (18)

where

d(R′, µq) =

√√√√ N∑
1

(rep(A′i)− µq,i)2, R
′ ∈ R′ (19)

3) Selection, Crossover and Mutation: Based on the fitness
values, parent chromosomes are selected to generate offsprings
in the next population using the roulette wheel selection
algorithm [24], as summarised in Alg. 2. In roulette wheel
selection, each chromosome is assigned a segment of roulette
wheel, with a size proportional to its fitness value. Naturally,
the bigger the fitness value is, the larger the segment will be.

Algorithm 2: roulettewheelselection(P)
P = [X1, ...., X|P|], population
Xi, i

th chromosome of population P
f(Xi), fitness value of Xi

r , random number, where 0 ≤ r ≤ 1

threshold = r ×
∑|P|
i=1 f(Xi)

for ∀i ∈ {1, . . . , |P|} do
if (threshold > 0) then

threshold = threshold− f(Xi)
else

return Xi

Crossover and mutation control the generation of off-
springs. Crossover process exchanges information between two
parent chromosomes while generating the two offsprings. The
rate of crossover δc is generally high at about 70%−95% [22].
The mutation operation tries to avoid premature convergence
and explore potential alternative solution regions. However,
high mutation rate δm has a negative impact on the search
ability of the GA and therefore, is set to a very low value
[22].

4) Termination: The entire reproductive process is repeated
until the maximum number of generations kmax is reached.
When the GA terminates, the best chromosome Xbest of the
final population is treated as the search outcome.

5) Cluster/Hyber-cube Merging and Filtering: As previ-
ously explained, the “best” chromosome indicates the best
clustering strategy determined by the GA. It shows whether
a given hyper-cube is to be assigned as a candidate cluster
centre (a strong hyper-cube H1 ∈ H1), with which one or more
weak hyper-cubes H0 ∈ H0 may be merged subsequently.
This arrangement is awarded with the highest fitness value
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Algorithm 3: crossover(X
′

i ,X
′

i+1, left)

Xi = [xi1, . . . , x
i
r, x

i
r+1, . . . , x

i
|X|]

xir, r
th gene of ith chromosome Xi

r , random integer, where 1 ≤ r ≤ |P|
if (left = true) then

return [xi1, . . . , x
i
r] + [xi+1

r+1, . . . , x
i+1

|X′i+1|
]

else
return [xi+1

1 , . . . , xi+1
r ] + [xir+1, . . . , x

i
|X′i |

]

Algorithm 4: mutate(X
′

i )

r , random number, where 0 ≤ r ≤ 1
δm , mutation rate
xij , j

th gene of ith chromosome Xi

for ∀j ∈ {1, . . . , |X ′i |} do
if (r < δm) then

xij = ¬xij

return X
′

i

(as judged by metrics such as the Dunn Index shown in Eq.
16) over the search process concerned, thereby forming the
final clustering outcome. The process which combines the
strong and weak hyper-cubes/clusters is outlined in Alg. 5.
A selection process is then carried out in order to choose one
or more clusters of rules as the candidates for rule promotion.
This process may be implemented as picking the clusters which
contain more than σ rules, and in case of a tie, the most
compact (see Eq. 17) clusters will be selected.

Algorithm 5: merge(H1, H0)

H0
i ∈ H0, ith weak hyper-cube

H1
H0

i
∈ H1, the closest strong hyper-cube to H0

i

µH0
i
, centroid of hyper-cube H0

i

for ∀H0
i ∈ H0, i ∈ {1, ..., |H0|} do

find H1
H0

i
= argminH1∈H1 |µH1 − µH0

i
|

H1
H0

i
= H1

H0
i
∪H0

i

return H1

C. Dynamic Rule Promotion

Following the clustering and selection process, a group of
informative rules R′ ∈ Cq ⊆ H∗ are taken for further generali-
sation in an effort to form a new, aggregated rule, which is pure
robust and is hereafter referred to as R∗. This work adopts a
weighted combination method, using the cluster centroid µq to
compute the contributions from the individual candidate rules.
Similar to the process of constructing intermediate rules as
described in the T-FRI approach [19], [20], a matrix wij of
dimension (|Cq| , N+1) is used. It indicates the weight of A′ij
of an interpolated rule R′i ∈ Cq regarding the jth antecedent
A∗j of R∗:

wi,j =
1

d(A′i,j , µq,j)
, i ∈ {1, . . . , |Cq|}, j ∈ {1, . . . , N} (20)

and that of B′i to B∗:

wi,N+1 =
1

d(B′i, µq,N+1)
(21)

The normalised weights can also be obtained:

w′i,j =
wi,j∑|Cq|
i=1 wi,j

(22)

From this, the components of the dynamically promoted
new rule R∗ is constructed as follows:

A∗j =

|Cq|∑
i=1

w′i,jA
′
i,j , j ∈ {1, . . . , N}, B∗ =

|Cq|∑
i=1

w′i,N+1B
′
i

This newly promoted R∗ is then added to the original (sparse)
rule base such that R := R ∪ {R∗}, while the rules involved
in the aggregation process are removed from the pool of
interpolated rules: R′ := R′ \Cq . This partitioning-clustering-
promotion procedure is applied for all hyper-cubes satisfying
|H∗p | ≥ σ. The entire dynamic FRI process may repeat until
the original rule base reaches a state with sufficient coverage
of the problem domain. The resultant, complete algorithm for
dynamic interpolation supported by a GA is given in Alg. 6.

Algorithm 6: GA-based Dynamic Interpolation(R, R′ ,σ)
R, original sparse rule base
R′ , interpolated rule base
R∗, dynamically generated new rule
H, all partitioned hyper-cubes
H∗ = H1 ∪H0, set of non-empty hyper-cubes
H1, set of strong hyper-cubes
H0, set of weak hyper-cubes
C, set of clusters
Ci, i

th cluster of C
σ , threshold for promoting new rules
H = partition(R′)
H∗ = {H|H ∈ H, |H| 6= 0}
H1 = GA(H∗)
C = merge(H1,H0)
for ∀Ci ∈ C do

if |Ci| > σ then
R∗ = aggregate(Ci)
R = R ∪ {R∗}
R′ = R′ \ Ci

D. Complexity Analysis

The proposed dynamic approach can be decomposed into
three core parts: rule base partitioning, GA-based clustering,
and rule promotion. The complexity of the rule base parti-
tioning procedure is shown in Eq. 23, which depends on the
number of rules in the interpolated rule base |R′ |, the number
of rule antecedents N , and the number of partition intervals
η:

Opartition = O(|R
′
|Nη) (23)

The complexity of the GA-based clustering operation given
in Eq. 24 is affected by the maximum number of generations
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kmax, the size of the population |P|, and the complexity of the
fitness evaluation Ofitness. Additional factors such as the use of
genetic operators [22], [24] also play a role, but their impact
varies depending on their actual implementations. Thus,

Oga = O(|P|kmax) ·Ofitness (24)

where

Ofitness = O(|H|+ |R
′
|2 + |R

′ |2

|H|2
+H2) (25)

The fitness complexity Ofitness combines the cost of chro-
mosome transformation: O(|H|), the cost of the hyper-cube
merging process: O(|R′ |2), and finally the complexity of
the Dunn Index calculation, which is based on both intra-
and inter-cluster distance calculations. The complexity of rule
promotion depends on the number of clusters |C| (derived from
the output of GA), the number of interpolated rules |R′ |, and
the number of antecedent dimensions N , such that

Opromotion = O(
|R′ |N
|C|

) (26)

The overall complexity of the proposed GA-based dynamic
fuzzy rule interpolation approach is therefore the sum of the
three above, i.e., Opartition +Oga +Opromotion.

IV. SIMULATION-BASED EVALUATION

A numerical example is employed to demonstrate the
process of the proposed approach, as well as to evaluate its
performance. A function of three crisp input variables, shown
in Eq. 27 is chosen to populate a sparse rule base R of size
100.

y = 1 +
√
x1 +

1

x2
+

1√
x33

, x1, x2, x3 ∈ [1, 20] (27)

An initial fuzzy rule is generated by fuzzifying the crisp
inputs and their associated function output, where a numerical
value a is converted to a fuzzy set A with a support length of 1:
A = (a−0.5, a, a+0.5), Rep(A) = a. This provides a simple
non-linear rule base suitable for the purpose of this preliminary
investigation. The experiment in this section invokes three
different values of η, where the antecedent dimensions are
evenly partitioned into η ∈ {4, 5, 6} intervals, as a result,
43 = 64, 53 = 125, and 63 = 216, hyper-cubes can be created.
The parameters of the GA are set to the following values:
crossover rate δc = 0.7, mutation rate δm = 0.05, population
size |P| = 20, and maximum generation kmax = 100.

A. GA-Based Clustering Results

The GA-based clustering algorithm is performed over 500
interpolated rules, where 90, 132 and 167 new rules have
been promoted for intervals 4, 5, and 6, respectively. The
representative values of the consequent of the dynamically
promoted rules are recorded. They are then compared to
the results of conventional interpolation (ε%dvi), and to the
ground truths calculated using the base function (ε%dvt). The
differences between conventional interpolation and the ground
truths (e%ivt) are also provided. Here the percentage error
ε% = ε/rangey is calculated relative to the range of the
consequent variable. Since stochastic elements are present in
the initial rule generation, as well as within the clustering

procedure, the GA dynamic process is repeated 50 times for
each set of the parameter values. Table I shows the averaged
value ε% and the standard deviations of ε%.

TABLE I. GA-BASED CLUSTERING RESULTS

η = 4 η = 5 η = 6

ε%dvi ε%dvt ε%ivt ε%dvi ε%dvt ε%ivt ε%dvi ε%dvt ε%ivt

AVG 2.68 2.24 2.07 2.38 1.24 2.45 3.47 2.06 3.74
SD 2.77 2.01 3.35 2.70 1.25 2.63 3.03 1.97 3.73

According to the simulation results, for η = 5 and 6, the
implemented algorithm promotes more accurate rules, with
derived consequent values closer to the ground truth, than those
obtainable using conventional interpolation. For this example
problem, the best parameter configuration is η = 5, which
produces both accurate and stable rules. For the configuration
of η = 6, the promoted rules are also closer to the ground truth
than the outcomes obtained by the conventional T-FRI. These
results imply that the rules promoted using intervals η = 5 and
η = 6, once added to the rule base, will not only avoid the
need of future interpolations of similar observations, but also
improve the inference accuracy (i.e., the quality of the rule
base) overall. Note that large intervals (η = 4) do not yield
good quality rules for this experimental scenario. This is as
can be expected, because the size of the individual hyper-cubes
are too large to form any meaningful clustering arrangement.
The use of the GA also greatly relaxes the needs to specify
decent starting conditions, since its stochastic mechanisms are
insensitive to the initial states.

B. Rule Base Fulfilment

An extended dynamic rule promotion process is also per-
formed for the same intervals η ∈ {4, 5, 6} but with a different
number of interpolation rules 250, 500, and 750, respectively.
The aim is to observe the level of fulfilment of the sparse
regions in the rule base, assuming the proposed dynamic
process is in its normal operation (i.e., perform interpolation
consecutively). Fig. 3 illustrates graphically the number of
fulfilled regions H∗ in R, and the number of rules |R| in
relative to the number of iterations carried out. Here, the
same partitioning process is carried out on the original (sparse)
rule base, which acts as a preliminary yet compatible way of
measuring rule base coverage. The graphs show the values of
|R| and |H∗| varying throughout the whole process as rules
having been promoted may be subsequently removed as new
interpolated rules are recorded in the following iterations.

The coverage improves gradually over time as new rules
are promoted and added to R. For the case of η = 4, all
original sparse rule-base regions are filled in 38 iterations with
238 original rules as the final size of the rule base. However,
when η = 5 and η = 6, the rule base can not fully cover the
problem space but is closer to fulfilling all regions. In case of
the interval η = 5, 120 hyper-cubes are filled in 125 hyper-
cubes through 118 iterations with 525 as the final size of the
rule base. Similarly, in case of the interval η = 6, 193 hyper-
cubes are filled in 216 hyper-cubes through 127 iterations with
570 original rules in the final rule base.

Both sets of experiments (accuracy and fulfilment), once
analysed together, help to reach the conclusion that the initial,
sparse rule base is gradually refined into a denser rule base.
The overall accuracy of the resultant rule base is also improved.

2203



Fig. 3. Iterative GA Based Dynamic FRI Results
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V. CONCLUSION

This paper has presented a GA-based, dynamic FRI ap-
proach. While running the dynamic FRI process, the interpo-
lated rules are analysed, selected, aggregated, and promoted
when appropriate into the original sparse rule base. According
to experimental simulations, the accuracy of using the rule base
containing both the original and promoted rules outperform
that of using just the original when the conventional T-FRI is
employed. It is interesting to note that the resultant system may
gradually relax the need of FRI while maintaining an efficient
yet accurate reasoning system. This is because the rule base
is enriched gradually such that it is no longer sparse and the
compositional rule of inference can be applied directly.

An intelligent method for configuring the rule base par-
titioning remains a vital part of future development. Addi-
tionally, the use of state-of-the-art aggregation methods [25],
[26] may further improve the quality of the promoted rules.
Ideas developed for dynamic rule learning [10], [11], [12]
and nature-inspired clustering algorithms [15], [16], [17] may
also provide useful insights. While the T-FRI approach is
employed in the paper to perform interpolation, the flexibility
of the proposed approach may allow the use of more general,
similarity-based calculations [27], [28], which would support
different choices of similarity measures. Although the current
focus of the work is on rule promotion (addition), it is also
necessary to examine the scenario of dynamic rule base con-
solidation including the removal of redundant and inconsistent
rules, which is an integral component of a truly intelligent and
dynamic approach.
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