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Abstract—In this paper we explore the characteristics of Type-
1 Fuzzy Set agreement models based on interval data through
contrasting statistical measures of the fuzzy models and the raw
data respectively. We create Type-1 Fuzzy Set models using the
Interval Agreement Approach, and then extract a preliminary set
of attributes that encapsulate aspects of the agreement models.
In order to explore what these attributes can tell us, we compare
them with a set of traditional statistical measures of consensus
which are applied to the raw data. Two interval-valued survey
data sets are employed in this study, a synthetic data set consisting
of 30 groups of 10 experts rating 25 objects which is used to
provide a large example, and a real-world data set consisting
of 7 groups of 4-8 cyber-security experts rating 26 security
components that was collected during a decision making exercise
at GCHQ, Cheltenham, UK. We show that while there are
areas in which traditional methods and the attributes extracted
from the Type-1 Fuzzy Set agreement models overlap, there are
also attributes that do not appear to be replicated, suggesting
that these attributes contain additional information about the
consensus within the groups. A discussion of the results is
provided, along with the conclusions that can be drawn and
considerations for future work on this subject.

Index Terms—Survey Data, Correlation Coefficients, Interval
Agreement Approach, Agreement Modelling, Computing With
Words, Type-1 Fuzzy Sets

I. INTRODUCTION

The ability to measure the level of consensus between sets
of observations or measurements has long been considered a
vital tool for researchers in a wide range of fields. Quantifying
consensus provides the means to make direct comparisons
between experts, observations and heterogeneous data sources.
For example, we may want to assess the level of agreement
between different groups of experts or gauge the likelihood
of a potential causal relationship, e.g., body weight and high
blood pressure.

There are a wide variety of traditional models that are used
to measure consensus, the majority of which measure the
extent to which there is a linear or monotonic relationship
between raters. Linear relationships are those that can be
modelled using a straight line, and monotonic relationships are
those only interested in the order in which objects have been
placed (ranking). Some of the most commonly used methods
are Pearson’s r [1], Spearman’s Rho [2], Kendall’s Tau [3],
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Kendall’s W [4], Cohen’s Kappa [5] and Intraclass Correlation
Coefficients (ICC) [6].

In the research presented in this paper we will obtain
some attributes of consensus from Type-1 Fuzzy Set (T1FS)
agreement models created using the Interval Agreement Ap-
proach IAA [7]. The TAA is a method of creating T1FSs and
General Type-2 Fuzzy Sets (GT2FSs) from interval-valued
survey data. The resulting sets provide a completely data-
driven model that captures the variation within an individual
expert over multiple surveys (intra-expert variation) and the
variation between different experts (inter-expert variation) [7].

In previous work, we have shown how sets created us-
ing the TAA can be used in practical applications [8], [9],
creating word and concept models for use in a Computing
With Words (CWW) application [10], [11]. Here, we focus
on extracting statistical information from such models (word
and concept), as we believe this can further their utility and
our understanding of the models. In this work, we explore
the similarities/differences between the T1FS models created
using the TAA, and traditional consensus measures applied
to the raw data. Two data sets are used for this purpose,
a synthetic data set and data from a real-world case study.
In both data sets, a number of groups of experts provide
ratings of a number of objects. Kendall’s W and the ICC
are used for comparisons involving all groups and objects as
they are appropriate for measuring consensus with multiple
experts/multiple objects; Standard Deviation will be used in
examples looking at just one object.

There are many ways in which the T1FS models can be
evaluated to gauge consensus, in this study a set of early evalu-
ation methods have been identified in order to investigate what
the T1FS models encapsulate. While they do not completely
capture the characteristics of the consensus modelled in the
T1FS models, they do provide a numerical representation of
some aspects of the agreement (consensus) model, allowing
comparison with the outputs of traditional methods.

As the T1FS models incorporate all of the data, and are a
model of the agreement between experts, we can reasonably
expect them to capture aspects of consensus that are not
captured by traditional methods. More fundamentally, if the
results produced by IAA can be completely replicated using
traditional methods, then it would be more computationally
efficient to use those methods in cases where only the statis-



tical summaries of the agreement, rather than the overall FS
model are needed.

The following section will review relevant work in the liter-
ature, provide an overview of the techniques employed in this
research and give details of the data sets that are used. Section
IIT describes a synthetic example showing how measures of
consensus can be obtained from T1FSs created using the IAA,
and compares the results with traditional methods. Section IV
demonstrates the proposed approach using the real world case
study described, again comparing the results with traditional
methods. Section V provides some discussion of the results
and what they mean to the process of data analysis. Finally,
Section VI presents the conclusions that can be drawn from
the work, and considers directions of future study.

II. BACKGROUND

In this section we will review the techniques that are
employed in this research.

A. Correlation Coefficients

The measurement of correlation/consensus between multi-
ple data sources is a practice which occurs in almost every
field of research. The methods to measure correlation have
been created over a very long period of time, and most of
them work in a very similar way.

In previous work we have used traditional correlation
coefficients to examine variation in opinion between cyber-
security experts when ranking technical attacks on a proposed
government system [12]. The aim of the work was to identify
areas where there is an established consensus of opinion,
where there is significant disagreement, to identify individuals
who are consistently making judgements that strongly disagree
with the norm and to show how aggregation can reduce
the effects of variation. Two techniques were used to gauge
consensus. The first was to calculate group mean rankings
for each group of experts and the overall groups of experts
and compare them with individual experts using Spearman’s
Rho. The second approach used Kendall’s W to examine the
variation within groups of experts. The first approach allows
us to see how experts are dispersed around the mean ranking,
giving an index of how each deviates from the mean. The
second approach corresponds to comparing each expert with
every other expert. Using these methods we were able to
show that while there is some variation in the opinions of
experts, there is a definite consensus of opinion, and that group
aggregate rankings are more consistent than the individual
experts’ rankings.

Spearman’s Rho [2], also called Spearman’s Rank Corre-
lation Coefficent, measures the statistical dependence of two
sets of rankings (ordinal data). The coefficient is a number
in [-1,1] that indicates the level of correlation; 1 denotes a
perfect positive correlation, 0 means there is no correlation,
and -1 denotes a perfect negative correlation. Kendall’s W
[4], also called Kendall’s Coefficient of Concordance, is also
used with ordinal data, and allows a correlation coefficient
to be computed for more than two raters, the result being a

value between O (no correlation) and 1 (perfect correlation).
There are many similar methods for measuring correlation
in data, the main variations are whether they can be applied
to more than two raters, and the type of data (i.e., nominal,
ordinal, interval and ratio) that they are intended to be used
with. Table I gives an overview of some popular methods of
measuring correlation. The Test Type column lists whether a
measure makes assumptions about the distribution of the data
- parametric (P) - or not - non-parametric (NP) - the Data Type
column specifies the type(s) of data that each measure can be
used with (interval, ratio, ordinal or nominal), the Corr. Type
column describes the kind of relationship the method measures
between raters (linear or monotonic) and the Raters column
lists whether the method can be applied to just two raters or
a group of two or more raters.

TABLE 1
CORRELATION COEFFICIENTS - SUMMARY
Test Type Data Type Corr. Type  Raters
Pearson’s r P Int./Rat. Lin. 2
Spearman’s Rho NP Ord. Mono. 2
Kendall’s Tau NP Ord. Mono. 2
Kendall’'s W NP Ord. Mono. 2+
Cohen’s Kappa NP Nom. Lin. 2
1CC NP Int./Rat./Ord.  Lin./Mono. 2+

Although all of these methods work in a similar way, each
is tailored to work in specific circumstances and measure
correlation in a set way. For example Pearson’s r is used to
measure correlation between ratings that are interval or ratio
data when a normal distribution can be assumed; Spearman’s
Rho is used to measure correlation between ordinal (ranked)
data and does not assume that there is a normal distribution;
Kendall’s W is like Spearman’s Rho but can be used with
more than two sets of ratings.

Intraclass Correlation Coefficients (ICC) are a set of six
measures that are used to measure the reliability of raters in
a variety of circumstances [13]. Table II describes each of
the six forms as described in [13]. The columns show each
form of ICC from ICC(1,1) to ICC(3,k), the rows describe
what type of test each is (e.g., ‘One Way’ or “Two Way’), and
the characteristics of the data they are used with (e.g., ‘Fixed
Judges’ or ‘Random Judges’).

TABLE 1T
SIX FORMS OF ICC

1 21 31 1k 2k 3k

One Way . .
Two Way ) . ° °
Fix Jdg . °
Rand Jdg . ) . .
Abs Agree . . . °
Cons . °
Ind Rating . ) .
Mean Rating . ° °

To decide which of these measures is appropriate, a series
of questions should be asked. 1) Is the order of the measures
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(ratings) important? If it isn’t a one way model is used, if
it is, a two way model is used. 2) Are the judges a random
sample from a larger population, or a fixed population? 3)
Do differences in the judges mean ratings matter? i.e., if
judge a consistently gives higher ratings than judge b is it
important (absolute agreement), or are we just interested in
the order they have placed the targets in (consistency)? 4)
Are the ratings from individual judges, or are they the mean
of multiple judges ratings? Using these questions a suitable
measure can be selected.

In this study we extract consensus values from T1FSs
created using the TAA [7] with synthetic and real-world data
sets that contain experts’ ratings of a set of objects. For
comparison, Kendall’s W [4] and ICC [13] are used with the
raw data to measure the level of consensus. As we have seen,
these methods appropriate when the data contains multiple
judges rating multiple objects, as is the case in this work.
This allows us to explore the nature of the values extracted
from the T1FSs, and to inform our understanding of what they
represent.

B. The Interval Agreement Approach (IAA) [7], [9]

We proceed by giving a brief overview of the IAA. In
previous work we showed how T1 and zSlices based GT2FSs
can be constructed from interval-valued survey responses using
the TAA [7], [9]. The TAA consists of two steps. In the first,
interval-valued data from multiple surveys of a single user
is used to compute a T1FS that captures and models the
opinion of an individual. The degree of membership to the
TIFS represents the intra-user agreement, that is, how much
agreement there is over multiple surveys for the same user.
In the second step, a number of T1FSs (each representing
multiple surveys of a single participant) are combined to
create a zSlices based GT2FS. In this set, as before, the
primary domain captures the agreement that the users have
with themselves over repeated surveys. The secondary do-
main represents the inter-user agreement, that is, the level of
agreement between multiple users. The GT2FSs capture both
the intra- and inter-user agreement in two distinct domains.
Note that it is possible to ‘swap’ the modelling of the intra-
user uncertainty in the primary membership and the inter-
user uncertainty modelling in the secondary membership. This
is useful in some applications where, for example, only one
sample is available per user but many different users have been
sampled. The FSs produced using the IAA use all available
data and are solely determined by the data. There is no pre-
processing of the data, and no assumptions are made regarding
the distribution of the data.

In this paper, we will use the TAA to construct T1FSs
that capture and represent the inter-expert variation in both
a synthetic data set and a real-world data set. We extract char-
acteristics (e.g., fuzziness and height) of the resulting T1FS
models in order to compare and contrast them with traditional
statistical consensus analysis methods applied directly to the
raw data.

C. Data

Two sets of data are used in this study, a synthetic data set,
and a real-world data set collected during a survey exercise.

The synthetic data set consists of 30 groups of experts,
each containing 10 experts. Each simulated expert has interval-
valued ratings of 25 objects. This synthetic example has
been created to provide a large scale example (avoiding
the statistical pitfalls with small sample sizes), that is of
the same format as the real-world data set, which is small
in comparison. The intervals were generated around ran-
dom start points, with end points selected from a normal
distribution of values centred on zero. This ensures that
smaller intervals were more likely, and that there is some
coherence in the ratings provided by the ‘experts’. The data
set we have generated is a useful resource for creating
and evaluating models, and making comparisons between
methods/models. The data set we have used can be found
at http:/fima.ac.uk/resources/WCCI2014_NumExample.zip. In
this paper we show an initial application of the data set.

The real-world data set was collected in a survey exercise
involving 39 cyber security experts from seven groups drawn
from government and commercial backgrounds. The study
formed part of collaborative research conducted by GCHQ
- The UK’s signals intelligence and information assurance
agency, and the University of Nottingham. The experts took
part in an exercise that was designed to elicit expert opinion
on the difficulty of technical attacks, and the difficulty of com-
promising specific security components within those attacks.

A scenario was presented to the experts that detailed a
proposed UK government system that included details of
the system, its components and a series of possible attacks.
Experts were then asked to rank the attacks in order of
difficulty and rate the difficulty of compromising/bypassing
each of the security components. In this research it is the
security component ratings that we are interested in.

Experts’ ratings were elicited using a novel approach that
allowed the capturing of both their opinion of the difficulty of
compromising/bypassing a component and their certainty in
their answer. Answers were expressed by drawing an ellipse
over a scale O to 1, the intersection points of which were used
to create intervals. The width of the interval indicates the level
of uncertainty the expert has expressed, the wider the interval
is the more uncertain the expert is. We believe that using
a single pen stroke to denote uncertainty intervals is more
intuitive and easier to perform than drawing separate lines for
each end point of an interval. Figure 1 shows two example
answers with a) less uncertainty and b) more uncertainty.
Figure 2 shows a subset of the data, Group A’s ratings of
Component 1.

(a) (b)

Fig. 1. Interval responses, where ‘a’ is a less uncertain response and ‘b’ is a
more uncertain response
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Fig. 2. Group A’s interval ratings of the difficulty of compromising Compo-
nent 1

Further details of the case study and the subsequent analysis
can be found in [12].

III. SYNTHETIC EXAMPLE

First, we will demonstrate the extraction of attributes of
consensus using the synthetic example described in the pre-
vious section. Using the IAA, T1FSs were created for each
group, for each item being rated. Figure 3 shows an example
of the sets created, in this case for Group 1’s rating of Object
1. Table III shows the raw interval data used to create the
T1FS shown in Fig. 3. One of the effects of using the IAA is
that where there are non-overlapping intervals in the raw data,
non-convex fuzzy sets are created as can be seen in Fig. 3.
This is intended, as stated previously the IAA does not make
assumptions about the distribution of the created fuzzy sets
and is solely data-driven. Further discussion on this can be
found in [7] and [9].

1.0Y
0.9
0.8
0.7
0.6

o Jﬁﬁﬂﬂ

0.2
0.1

0.0 X
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fig. 3. TIFS created for synthetic Group 1’s interval ratings of Object 1

The T1FSs created are a model of the agreement of the
experts’ individual interval ratings of each object. Here, we
will explore the use of attributes of the models to indicate
characteristics of groups of experts. In this initial study, we
have identified a set of preliminary attributes that can be
obtained from the fuzzy agreement models. Table IV shows a

TABLE IIT
RAW DATA FOR GROUP 1’S INTERVAL RATINGS OF OBJECT |

Expert L R

1 031 049
2 027 027
3 0.13 032
4 0.15 031
5 0 0.05
6 0.02 029
7 0 0.11
8 033 045
9 0.06 044
10 0.04 052

list of the attributes extracted, and their values when computed
for the TIFS shown in Fig. 3.

TABLE IV
T1FS ATTRIBUTES FOR GROUP 1, OBJECT 1
Ave Fuzziness Area Core
Abs Dev Size
0.25 0.75 0.19 0.14
Support Height Spread
Size
0.52 0.52 0.25

Each of these values provides information about the group
of experts. The Average Absolute Deviation tells us how much
deviation from the centroid there is (on average) in the T1FS,
Fuzziness employs the measure of fuzziness presented in [14]
to quantify the vagueness of each T1FS, Area is the area under
the curve of a T1FS, Core Size is the distance between the
left most point of the maximum p value of the T1FS and
the right most point, Support Size measures the width of the
set. Height indicates how much agreement there is within the
group, where they all agree the height will be 1, lower values
indicate less agreement, and Spread is an alternative measure
of the distribution of the set that produces values closer to 1
when Height is 1 and Support Size is close to 0, and closer
to 0 as the Support Size approaches 1. Spread is calculated
using (1), where F' is a T1FS agreement model.

Spread(F) = Height * (1 — SupportSize) (1

Traditionally, a measure such as Standard Deviation would
be used to measure variation between experts. Table V shows
the Standard Deviations of the minimum, mean and maximum
of the intervals for Group 1, Object 1. These three values have
been computed as calculating the Standard Deviation for just
one value (e.g., the mean) will give a very limited picture of
the variation in the intervals for each expert. In contrast, the
attributes of the TI1FS models are a result of combining all
of the intervals together using the TAA. The model produced
gives us more information than looking at the individual inter-
vals, as it shows where there is agreement/discord within the
group. We are then able to extract attributes of the agreement
model that take into account all of the data contained in the
intervals, and how they relate to one another.
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TABLE VII
COMPARISON OF ATTRIBUTES FOR GROUPS 1-30, OBJECTS 1-25 WITH KENDALL’S W AND ICC

Mean Mean Mean Mean Mean Mean Mean
Ave Abs Dev  Fuzziness Area  Core Size Support Size Height Spread
Kendall’s Max -0.52 -0.10 -0.38 -0.13 -0.43 -0.57 0.07
Kendall’s Mean -0.14 0.21 0.11 -0.22 -0.35 -0.32 0.19
Kendall’s Min -0.12 0.05 0.05 -0.28 -0.26 -0.24 0.11
ICC1 Max -0.52 -0.10 -0.38 -0.13 -0.43 -0.57 0.07
ICCI Mean -0.14 0.21 0.11 -0.22 -0.35 -0.32 0.19
ICC1 Min -0.12 0.05 0.05 -0.28 -0.26 -0.25 0.11
ICC2 Max -0.52 -0.10 -0.38 -0.13 -0.43 -0.57 0.07
ICC2 Mean -0.14 0.21 0.11 -0.22 -0.35 -0.32 0.19
ICC2 Min -0.12 0.05 0.05 -0.28 -0.26 -0.25 0.11
ICC3 Max -0.52 -0.10 -0.38 -0.13 -0.43 -0.57 0.07
ICC3 Mean -0.14 0.21 0.11 -0.22 -0.35 -0.32 0.19
ICC3 Min -0.12 0.05 0.05 -0.28 -0.26 -0.24 0.11
ICC1k Max -0.53 -0.10 -0.39 -0.13 -0.44 -0.58 0.08
ICC1k Mean -0.14 0.22 0.12 -0.23 -0.35 -0.31 0.19
ICC1k Min -0.12 0.06 0.06 -0.29 -0.26 -0.25 0.11
ICC2k Max -0.53 -0.10 -0.39 -0.13 -0.44 -0.58 0.08
ICC2k Mean -0.14 0.22 0.12 -0.23 -0.35 -0.31 0.19
ICC2k Min -0.12 0.06 0.06 -0.29 -0.26 -0.25 0.11
ICC3k Max -0.53 -0.10 -0.39 -0.13 -0.44 -0.58 0.08
ICC3k Mean -0.14 0.22 0.12 -0.23 -0.35 -0.31 0.19
ICC3k Min -0.12 0.06 0.06 -0.29 -0.26 -0.25 0.11
TABLE V being compared with the attributes of the T1FS models in this
STANDARD DEVIATIONS FOR GROUP 1, OBJECT 1 or any of the subsequent examples, as it is not suitable for
Min  Mean  Max use on more than 2 sets of ratings. Values shown in italics
0.13 0.12 0.16 denote that the p-value is less than 0.05 and those in bold
have a correlation coefficient that indicates strong correlation
(>=0.5).
TABLE VI

COMPARISON OF ATTRIBUTES FOR GROUPS 1-30, OBJECT 1 WITH
STANDARD DEVIATION

Ave Fuzziness Area Core
Abs Dev Size
Min Std Dev 0.12 -0.09 -0.22 0.27
Mean Std Dev 0.09 -0.33 -0.32 0.36
Max Std Dev 0.44 -0.13 0.18 0.19
Support Height Spread
Size
Min Std Dev 0.27 0.28 -0.18
Mean Std Dev 0.42 0.42 -0.40
Max Std Dev 0.60 0.59 -0.62

A. Comparison

Each attribute informs us about the agreement/coherence of
the group of experts. In order to explore potential relationships
between the attributes of the TIFS models, and the values
produced using the Standard Deviation, we now compare the
attributes of the T1FSs for all 30 groups (for Object 1) with the
Standard Deviations of the minimum, mean and maximum of
the experts’ intervals. Table VI shows the Pearson’s Correla-
tion Coefficients for each of the attributes when compared with
the Standard Deviations of the minimum, mean and maximum
of the intervals from each group of experts. It should be noted
that Pearson’s Correlation Coefficient is being used to compare
the attributes of the T1FS models, and the outputs of the
traditional methods when applied to the raw data. It is not

Looking at the table, we can see that Support Size, Height
and Spread closely correspond with the Standard Deviations
of the mean and the maximum, and the Average Absolute
Deviation is closely correlated with the Standard Deviation
of the maximum. This suggests that these values measure
similar (though not identical) characteristics of the group of
experts. The correlation between the remaining values and
the traditional methods ranges from weak to moderate. From
this we can deduce that these values capture something that
is different to the Standard Deviation. Also shown is that
there are considerable differences in correlations with Standard
Deviations for each interval value. The reason for this may be
that each Standard Deviation value is capturing the variation in
a separate, and distinct, part of the data. As stated previously,
the T1FS models encapsulate all of the data in an agreement
model, and therefore the attributes obtained from the models
are impacted by the whole data set.

In this example we have focused on one object, and the
Standard Deviations of the experts’ interval ratings of that
object. In the next example we extend this to look at experts’
ratings of a set of 25 objects, and compare the outputs of
traditional methods applied to the raw data with the attributes
we have extracted from our T1FS models. Table VII shows
the results.

As in the previous example, it can be seen that some of

the values extracted match those produced using traditional
methods more closely than others. In this case the Mean
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Fig. 4. TIFSs for Group A-G’s assessments of component (hop) 26

Average Absolute Deviation, Mean Area, Mean Support Size,
and Mean Height produce results that are closely correlated
with the outputs of traditional methods when applied to the
maximums of the intervals. As before, the remaining attributes
vary from weak to moderate correlation with the traditional
methods, and there is considerable differences between corre-
lations with traditional methods applied to the minimum, mean
and maximum of the interval data. It is interesting that Spread

.0 X
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

.0 X
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

is not strongly correlated with any of the methods used, as
it was strongly correlated with the Standard Deviation of the
maximums of intervals in the previous example. It is possible
that while this attribute shared some characteristics with the
Standard Deviation, it is different to Kendall’s W and the ICC.

In view of the examples shown in this section, it can be seen
that while there are some similarities between the attributes
obtained from the T1FS models and the traditional methods
used, as expected, there are also many differences. Attributes
including Fuzziness and Core Size never show better than
moderate correlation with Standard Deviation, Kendall’s W
or the ICC, which implies that they measure other aspects of
agreement.

In the next section, data from a real-world case study is
used to demonstrate the acquisition of the identified attributes
in a practical example.

IV. CASE STUDY

In this section we explore the use of T1FS models created
with the IAA for a real-world case study to derive character-
istics of the ratings of groups of cyber-security experts. Data
collected from technical experts at GCHQ is used to create a
set of TIFS models that capture the opinions of 7 groups of
experts on the overall difficulty of compromising each of 26
security components. As an example, Fig. 4 shows the T1FSs
created using all 7 groups’ ratings of Component 26.

In some groups (i.e., Figs. 4b, 4c, 4e and 4g) it can be seen
that there is no area where all experts are in agreement (i.e.,
the height is smaller than 1). Where p = 1 all experts are
in agreement. It is clear however, that there is a consensus
of opinion within all groups that this security component is
relatively easy to compromise/bypass. It can also be seen that
some groups have produced sets with a larger support size,
that is, they are wider. This indicates that there is either more
variation in opinion within these groups, or the there are higher
levels of uncertainty in the experts’ assessments. Also of note
is the number of levels within each group, which reflects the
number of individuals within each group. For example, there
are 8 members of Group F, and 4 members of Group D.

TABLE VIII
COMPARISON OF ATTRIBUTES FOR GROUPS A-G, COMPONENT | AND
STANDARD DEVIATIONS OF INTERVALS

Value Ave Fuzziness Area Core
Abs Dev Size
Min 0.51 -0.45 -0.18 0.08
Mean 0.25 -0.84 -0.57 -0.05
Max 0.06 -0.92 -0.73 0.01
Value  Support Height Spread
Size
Min 0.51 0.61 -0.45
Mean 0.72 0.73 -0.69
Max 0.65 0.64 -0.65

A. Comparison
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TABLE IX

COMPARISON OF ATTRIBUTES FOR GROUPS A-G, COMPONENTS 1-26 WITH KENDALL’S W AND ICC

Mean Mean Mean Mean Mean Mean Mean
Ave Abs Dev  Fuzziness Area  Core Size Support Size Height Spread

Kendall’s Max -0.30 0.37 0.06 0.25 -0.78 -0.88 0.73
Kendall’s Mean -0.40 0.32 -0.05 0.27 -0.81 -0.86 0.78
Kendall’s Min -0.78 0.36 -0.53 0.40 -0.85 -0.73 0.89
ICC1 Max -0.18 0.41 0.23 0.52 -0.79 -0.88 0.73
ICC1 Mean -0.31 0.18 0.04 0.41 -0.77 -0.80 0.75
ICC1 Min -0.65 0.14 -0.45 0.18 -0.70 -0.62 0.76
ICC2 Max -0.19 0.37 0.22 0.49 -0.79 -0.87 0.73
ICC2 Mean -0.33 0.18 0.02 0.41 -0.77 -0.80 0.76
ICC2 Min -0.68 0.15 -0.47 0.22 -0.72 -0.62 0.78
ICC3 Max -0.16 0.18 0.20 0.34 -0.70 -0.80 0.65
ICC3 Mean -0.40 0.11 -0.10 0.35 -0.73 -0.73 0.74
ICC3 Min -0.75 0.16 -0.57 0.33 -0.71 -0.55 0.79
ICC1k Max 0.29 -0.03 0.50 0.05 -0.27 -0.48 0.17
ICClk Mean -0.03 -0.39 0.05 -0.14 -0.22 -0.30 0.23
ICC1k Min -0.53 -0.20 -0.59 -0.24 -0.24 -0.14 0.32
ICC2k Max 0.28 -0.11 0.46 -0.04 -0.23 -0.44 0.15
ICC2k Mean -0.05 -0.40 0.02 -0.15 -0.20 -0.27 0.22
ICC2k Min -0.56 -0.21 -0.63 -0.18 -0.25 -0.12 0.34
ICC3k Max 0.22 -0.34 0.30 -0.25 -0.11 -0.29 0.07
ICC3k Mean -0.14 -0.45 -0.15 -0.21 -0.12 -0.14 0.16
ICC3k Min -0.65 -0.19 -0.74 -0.01 -0.25 -0.04 0.36

from the models for each group in order to infer some statisti-
cal properties of each model. Table VIII shows the Pearson’s
Correlation Coefficient for each value when compared with the
standard deviation of each interval endpoint and the means of
the intervals.

The results show that there is some variation in the level of
correlation between the attributes of the T1FS model and the
Standard Deviations of the intervals. Support Size and Height
closely match the Standard Deviations of the minimum, mean
and maximums of the intervals, suggesting that they capture
similar characteristics of the data. Average Absolute Deviation,
Fuzziness, Area and Spread agree to some extent with the
Standard Deviations, but not all, indicating that there are some
differences in what they represent. Finally, Core doesn’t match
any of the Standard Deviations at all, from this we can assume
that it is capturing something that is not captured by the
Standard Deviation, and possibly, any of the other attributes.

In the next set of comparisons, models of all 26 security
components will be used. This allows us to examine the
consensus of the experts’ ratings of components using both
traditional methods and using values extracted from TI1FS
agreement models. Table IX shows the Pearson’s Correlation
Coefficient for the attributes of the T1FS models, and values
computed when Kendall’s W and ICC are applied to the
minimum, mean and maximum of the intervals the experts
provided.

As in the previous example, there is some variation in
the level of correlation between the outputs of the traditional
methods and the attributes extracted from the T1FS agreement
models. Mean Support Size, Mean Height and Mean Spread
are all strongly correlated with the outputs of Kendall’s W and
ICC1-3 suggesting that they measure similar properties, but are
not strongly correlated with ICC1k-3k which are used when

the values entered are mean values as opposed to individual
values. Mean Absolute Average Deviation, Mean Fuzziness,
Mean Area, and Mean Core Size occasionally show strong
correlation, but on the whole they do not match the outputs of
the traditional methods. This tells us that the characteristics
captured in these attributes cannot be replicated with the
traditional methods used.

V. DISCUSSION

In this work we have shown that there are attributes of
TI1FS agreement models that closely match those produced
by selected traditional statistical methods, suggesting that they
capture similar properties and could be used for the same
types of application. We have also shown that there exist
attributes that capture information that cannot be replicated
using the selected traditional statistical methods. These at-
tributes are perhaps more interesting as they illustrate that the
IAA generated T1FS models capture more characteristics of
the uncertainty in expert opinion than the selected statistical
methods. The process of combining intervals to produce
T1FS models provides information about the consensus of
opinion that cannot be gained through the traditional statistical
methods. The TAA discards none of the raw data, as such,
no information is lost. Traditional statistical methods typically
discard most of the raw data to produce a single value. For
some applications this may be appropriate, however, when a
more complete model of agreement and uncertainty is required
the TAA created models offer an ideal solution. What the
additional information tells us about the groups of experts’
agreement, and how/where it can be applied will be the subject
of future research.

In this initial study we have chosen standard deviation,
Kendall’s W and ICC for comparison. Clearly, there are many
other traditional statistical methods that we could compare
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against, however, they all involve taking a data set and
significantly reducing it to produce a measure of a particular
characteristic of the raw data, discarding most of the informa-
tion present in the data.

We have selected a preliminary set of attributes in order to
make direct comparisons with the selected traditional methods.
In reality, there are an almost infinite number of attributes
and combinations of attributes that we could extract from the
model, and those selected certainly do not encapsulate all of
the characteristics of the models.

There are many other attributes that we could extract. For
example, skew and kurtosis are particularly appropriate for
the T1FS models produced in this research. The skewness
of a distribution measures its asymmetry. In the case of a
TI1FS agreement model it may be that agreement is greater
toward one end of the scale. If agreement is greater at the
lower end of the scale (and the tail is longer on the right hand
side) it is called positive skew, and if the reverse is true it
is called negative skew. Measuring skewness can inform us
about where the weight of opinion lies. Kurtosis is a measure
of the peakedness of distribution, that is, how high the peak
is in comparison with the rest of the distribution. In the terms
of a TIFS agreement model, kurtosis provides a measure of
the point with the greatest agreement, and how this compares
with agreement over the rest of the scale. A distribution with
a high peak and heavy tails has positive kurtosis (also termed
leptokurtic) and a distribution with a low peak and light tails
has negative kurtosis (also termed platykurtic). Measuring
kurtosis tells us whether agreement is focused and high, or
spread out over the scale and low. Both of these measures
represent useful attributes of the agreement of a group of
experts, and as such, will be of interest in future work.

When considering the consensus of opinion between groups
of experts on multiple objects/security components we have
currently employed the mean values of attributes extracted
from TIFS agreement models. While this does give us an
overview of each group, it also removes information, creating
one value to represent many values. A more satisfactory
method of analysing such data would be the use GT2FSs
created using the TAA. This involves combining each group’s
T1FSs agreement model of a particular object/component to
create an overall model incorporating all groups, rather than
inspecting each group’s TI1FS model in isolation [7]. As
with the T1FS agreement models, attributes can be extracted
from the GT2FS agreement models that tell us about the
consensus within the groups. Unlike the T1FS models, a
GT2FS agreement model can also provide information about
the consensus between groups.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that TIFS agreement models
contain attributes such as Support Size, Height and Spread,
that measure similar characteristics of group agreement to
standard deviation, Kendall’s W and the ICC. This infers
that these attributes can be used in similar applications to
the traditional methods. We have also shown that the T1FS

models contain additional information such as Core Size
and Fuzziness that cannot be completely replicated using the
selected traditional methods. This highlights the advantage
of using TIFS models over statistical methods in that no
information is discarded, so an almost infinite number of
descriptive attributes can be derived.

In addition to this we have also contributed a significant
synthetic data set consisting of 30 groups, each containing 10
simulated experts with interval ratings of 25 objects. This data
set is a freely available resource for use in creating, evaluating
and comparing models and methods. The data set can be found
at http://ima.ac.uk/resources/WCCI2014_NumExample.zip

This research represents the beginning of a course of
study. In future work we will consider what these preliminary
attributes can tell us about the agreement modelled in the
T1FSs, and extract additional attributes including skew and
kurtosis. We will also extend our study to include the use
of GT2FS agreement models, in order to obtain information
about both intra- and inter-expert agreement.
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