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Abstract—Fuzzy rule interpolation offers a useful means for
enhancing the robustness of fuzzy models by making inference
possible in systems of only a sparse rule base. However in
practical applications, the rule bases provided may contain
irrelevant, redundant, or even misleading antecedents, which
makes the already challenging tasks such as inference and
interpolation even more difficult. The majority of the tech-
niques developed in the literature assumes equal significance
of rules and their antecedents, which may lead to biased or
incorrect reasoning outcomes. This paper investigates similar
problems being tackled in the area of feature selection, in
an attempt to identify techniques that can be applied to
measure the significance of rule antecedents. In particular,
two feature evaluation methods based on correlation analysis
and fuzzy-rough set theory have been examined, in order to
reveal their effectiveness in determining the importance of
individual antecedents, and their capabilities for discovering
subsets of antecedents that provide similar reasoning accuracies
as a larger set of antecedents used in the original rules. In
addition, the significance values measured by the proposed
method are treated as the weights associated with the relevant
rule antecedents, in an effort to facilitate more appropriate
selection of, and interactions with the rules in performing
both forward and backward fuzzy rule interpolation via scale
and move transformation-based methods. Experimental studies
based on a practical scenario concerning terrorist activities and
also synthetic random data are conducted, demonstrating the
potential and efficacy of the proposed work.

I . I N T R O D U C T I O N

FUZZY-RULE-INTERPOLATION (FRI) [1], [2] is of
particular significance for reasoning in the presence of

insufficient knowledge or sparse rule bases. When a given
observation has no overlap with antecedent values, no rule
can be invoked in classical (fuzzy) rule-based inference,
and therefore no consequence can be derived. However, the
techniques of FRI can support inference in such situations.
However, despite this potential, FRI techniques are relatively
rarely applied in practice [3]. One of the main reasons is that
real-world applications generally involve rules with a large
number of antecedents, and the errors accumulated throughout
the interpolation process may affect the accuracy of the final
estimation. More importantly, a rule base may consist of
less relevant, redundant or even misleading variables, which
may further deviate the outcome of an interpolation. Several
weighted FRI methods [4], [5] have been proposed in the

literature, in order to remedy the loss of accuracy induced by
the varying degrees of antecedent significance.

The irrelevancy and redundancy of data has been studied
extensively in the area of feature selection (FS), and techniques
have been developed to rank the importance of features
[6], [7], [8], or to discover a minimal feature subset from a
problem domain while retaining a suitably high accuracy
in representing the original data [9], [10], [11], [12]. A
variety of feature subset search algorithms has also emerged,
several of which are inspired by nature phenomena [13] or
social behaviour [14], allowing quality feature subsets to be
discovered without resorting to exhaustive search.

This paper presents a new approach that uses FS techniques
to evaluate the importance of antecedent variables in a fuzzy
rule base. Such importance degrees are referred to as the
set of “antecedent significance values” hereafter. This allows
subsets of informative antecedent variables to be identified
via the use of feature subset search methods (e.g., harmony
search-based feature selection, HSFS [14]). It helps to reduce
the dimensionality of a rule base by removing irrelevant
antecedent variables. An antecedent significance-based FRI
technique based on scale and move transformation-based FRI
(T-FRI) [15] is also proposed, which exploits the information
analysed by FS, in an effort to facilitate more effective
interpolation using weighted aggregation [16]. The benefits of
this work are demonstrated through the process of backward
FRI (B-FRI) [17], [18], [19], which is a newly identified
research focus regarding FRI.

The remainder of this paper is structured as follows. Section
II introduces the general ideas behind FRI, and explains
the key notions and interpolation steps of T-FRI, which is
the main method used to carry out the present investigation.
This section also gives an outline of the B-FRI method for
completeness. Section III details the developed approach
which applies the existing ideas in FS to FRI, explains the
antecedent significance-based aggregation procedure that is
implemented using T-FRI, and discusses its potential benefits
to B-FRI. In Section IV, an example scenario concerning
the prediction of terrorist bombing attack is employed to
showcase the procedures of the proposed work. Further, a
series of simulation-based experiments have been carried
out in order to verify the general performance of the present
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approach. Finally, Section V summaries the paper and outlines
several directions for future research.

I I . B A C K G R O U N D O F F U Z Z Y R U L E
I N T E R P O L AT I O N

This section first introduces the general principles of FRI,
and provides a brief introduction of the procedures involved in
T-FRI, including the definitions of its underlying key notions,
and an outline of its interpolation steps. Note that the basic
form of T-FRI is herein employed for the ease of presentation,
which utilises two neighbouring rules of a given observation
to perform interpolation. Triangular membership functions
are also adopted for simplicity, which are the most commonly
used fuzzy set representation in fuzzy systems. More detailed
descriptions and discussions on the theoretical underpinnings
behind T-FRI can be found in the original work [20].

A FRI system being investigated in this paper may be
defined as a tuple 〈R, Y 〉, where R = {r1, · · · , r|R|} is a
non-empty set of finite fuzzy rules (the rule base), and Y is
a non-empty finite set of variables. Y = A∪ {z} where A =
{aj | j = 1, · · · , |A|} is the set of antecedent variables, and
z is the consequent variable appearing in the rules. Without
losing generality, a given rule ri ∈ R and an observation o∗

are expressed in the following format:

ri : if a1 is âi1 ∧ · · · ∧ aj is âij ∧ · · · ∧ a|A| is âi|A|,

then z is ẑi

o∗ : a1 is â∗1 ∧ · · · ∧ aj is â∗j ∧ · · · ∧ a|A| is â∗|A|

where âij represents the value (the fuzzy set) of the antecedent
variable aj in rule ri, and ẑi denotes the value of the
consequent variable z for ri. The asterisk sign (∗) denotes
that a value has been directly observed.

A. Transformation-Based FRI

A key concept used in T-FRI is the representative value
rep(âj) of a fuzzy set âj , it captures important information
such as the overall location of a fuzzy set. For triangular
membership functions in the form of âj = (âj1, âj2, âj3),
where âj1, âj3 represent the left and right extremities of
the support (with membership values 0), and âj2 denotes
the normal point (with a membership value of 1), rep(âj) is
defined as the centre of gravity of these three points:

rep(âj) =
âj1 + âj2 + âj3

3
(1)

More generalised forms of representative values for more
complex membership functions have also been defined in
[20].

The following is an outline of the T-FRI algorithm:
1) Identification of the Closest Rules: The distance between

any two rules rp, rq ∈ R, is determined by computing the
aggregated distance between all the antecedent variable values:

d(rp, rq) =

√√√√ |A|∑
j=1

d(âpj , â
q
j)

2 (2)

where

d(âpj , â
q
j) =

|rep(âpj )− rep(âqj)|
maxaj −minaj

is the normalised result of the otherwise absolute distance
measure, so that distances are compatible with each other
over different variable domains. The distance between a given
rule rp and the observation o∗: d(rp, o∗) may be calculated
in the same manner, and the two closest rules, say ru and
rv, are identified and used for the subsequent interpolation
process.

2) Construction of the Intermediate Fuzzy Rule: The inter-
mediate fuzzy rule r′ is the starting point of the transformation
process in T-FRI. It consists of a series of intermediate
antecedent fuzzy sets â′j , and an intermediate consequent
fuzzy set ẑ′:

r′ : if a1 is â′1∧· · ·∧aj is â′j∧· · ·∧a|A| is â′|A|, then z is ẑ′

which is a weighted aggregation of the two selected rules
ru and rv. For each of the antecedent dimensions ai, a
ratio λâj

, 0 ≤ λâj
≤ 1 is introduced, which represents the

contribution of âvj towards the formation of â′j with respect
to âuj :

λâj
=
d(âuj , â

∗
j )

d(âuj , â
v
j )

The intermediate antecedent fuzzy set â′j is then computed
using:

â′j = (1− λâj
)âuj + λâj

âvj (3)

The position and shape of the intermediate consequent fuzzy
set ẑ′, are then calculated in the same manner to the above
using the consequent fuzzy sets of the two rules ẑu and ẑv,
where the ratio λẑ is obtained by averaging the ratios of the
antecedent variables:

λẑ =
1

|A|

|A|∑
j=1

λâj

3) Computation of the Scale and Move Parameters: The
goal of a transformation process T is to scale, move (or skew)
an intermediate fuzzy set â′j , so that the transformed shape
coincides with that of the observed value â∗j . In T-FRI, such
a process is performed in two stages:

a) the scale operation from â′j to â′′j (denoting the
scaled intermediate fuzzy set), in an effort to deter-
mine the scale ratio sâj

; and
b) the move operation from â′′j to â∗j to obtain a

move ratio mâj
. Once performed for each of the

antecedent variables, the necessary parameters sẑ
and sẑ for the consequent variable can be approx-
imated as follows, in order to compute the final
interpolation result ẑ∗.

For a triangular fuzzy set â′j = (â′j1, â
′
j2, â

′
j3), the scale

ratio sâj
is calculated using:

sâj =
â∗j3 − â∗j1
â′j3 − â′j1

(4)
2207



which essentially expands or contracts the support length of â′j :
â′j3−â′j1 so that it becomes the same as that of â∗j . The scaled
intermediate fuzzy set â′′j , which has the same representative
value as â′j , is then acquired using the following:

â′′j1 =
(1+2sâj

)aj1
′+(1−sâj

)aj2
′+(1−sâj

)aj3
′

3

â′′j2 =
(1−sâj

)aj1
′+(1+2sâj

)aj2
′+(1−sâj

)aj3
′

3

â′′j3 =
(1−sâj

)aj1
′+(1−sâj

)aj2
′+(1+2sâj

)aj3
′

3

The move operation shifts the position of â′′j to becoming
the same as that of â∗j , while maintaining its representative
value rep(â′′j ). This is made possible by using a tailored move
ratio mâj : mâj

=
3(â∗j1−â

′′
j1)

â′′j2−â′′j1
, if â∗j1 ≥ â′′j1

mâj
=

3(â∗j1−â
′′
j1)

â′′j3−â′′j2
, otherwise

The final positions of the triangle’s three points are calculated
as follows:


â∗j1 = â′′j1 +mâj

â′′j2−â
′′
j1

3

â∗j2 = â′′j2 − 2mâj

â′′j2−â
′′
j1

3

â∗j3 = â′′j3 +mâj

â′′j2−â
′′
j1

3

, if mâj ≥ 0


â∗j1 = â′′j1 +mâj

â′′j3−â
′′
j2

3

â∗j2 = â′′j2 − 2mâj

â′′j3−â
′′
j2

3

â∗j3 = â′′j3 +mâj

â′′j3−â
′′
j2

3

, otherwise

Note that this operation also guarantees that the resultant
shape is convex and normal.

4) Scale and Move Transformation on Intermediate Conse-
quent Fuzzy Set: After computing the necessary parameters
based on all of the observed antecedent variable values, the
required parameters for ẑ′ are then determined by averaging
the corresponding parameter values:

sẑ =
1

|A|

|A|∑
j=1

sâj mẑ =
1

|A|

|A|∑
j=1

mâj (6)

A complete scale and move transformation from the initial in-
termediate consequent fuzzy set ẑ′ to the final interpolative out-
put ẑ∗, may be represented concisely by: ẑ∗ = T (ẑ′, sẑ,mẑ),
highlighting the importance of the two key transformations
required.

B. Backward Fuzzy Rule Interpolation

Backward Fuzzy Rule Interpolation (B-FRI) [19] is a re-
cently proposed extension to standard (forward) FRI. It allows
crucial missing values that directly relate to the conclusion
to be inferred, or interpolated from the known antecedent
values and the conclusion. This technique supplements a
conventional FRI process, and is particularly beneficial in the
presence of hierarchically arranged rule bases, since a normal
inference or interpolation system will be unable to proceed if
certain key antecedent values (that connect the sub-rule bases)
are missing. An implementation of the B-FRI concept has
been developed, based on the mechanisms of T-FRI. It works

by reversely approximating the scale and move transformation
parameters for the variables with missing values.

Despite that both forward and backward T-FRI share the
same underlying analogy-based idea, backward T-FRI has
several subtle differences, such as the procedures to select
the closest rules, and those to compute the transformation
parameters. For instance, assume that the value of the
antecedent variable al is missing from the observation, whilst
the conclusion ẑ∗ can be directly observed. The distance
measurement d←−(rp, rq) between any two rules is handled
with a bias towards the consequent variable:

d←−(rp, rq) =

√√√√|A| · d(ẑp, ẑq)
2

+

|A|∑
j=1, j 6=l

d(âpj , â
q
j)

2 (7)

This is because the observed value for the consequent variable
embeds more information, and the weight intuitively assigned
is equal to the sum of all individual antecedents |A|.

Having identified the closest rules, the remaining steps
are the same as forward T-FRI, except that the parameters
for the missing antecedent: λâl

, sâl
, and mâl

are calculated
using a set of revised but fundamentally similar formulae. For
instance, the formula to calculate λâl

is:

λâl
= |A|λẑ −

1

|A|

|A|∑
j=1,j 6=l

λâj
(8)

Here, the required parameters are obtained by subtracting
the sum of the values of the given antecedents from that
of the consequent (also multiplied by a weight of |A|).
The final backward interpolation result â∗l can then be
obtained. For notional simplicity: T←−(â′l, sâl

,mâl
) is used

as the abbreviation that summaries the entire B-FRI process
hereafter.

I I I . A N T E C E D E N T S I G N I F I C A N C E - B A S E D F R I

This section discusses the similarities and differences
between the problem domain of FS and that of FRI, and
describes the approach developed that evaluates the impor-
tance of rule antecedents using FS techniques. A weighted
aggregation-based approach is also introduced, which makes
use of the antecedent significance values to better approximate
the interpolation results. The potential benefits of the proposed
technique in B-FRI are also explained.

A. From Feature Selection to Antecedent Selection

In the context of FS, following the notions employed earlier
in Section II, an information system is also a tuple 〈U, A〉,
where U = {x1, · · · , x|U|} is a non-empty set of finite objects
(commonly referred to as the universe of discourse); and
A = {a1, · · · , a|A|} is a non-empty, finite set of features such
that a : U→ Va for every a ∈ A. Here Va is the set of values
that feature a may take. For decision systems in particular,
there exists a set of decision features Z as the injunction to
the input features A.

The above definition shows that, the key distinction between
a standard FS problem and FRI is the presence of the
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continuously-valued consequent variable z, and that there
is generally no well-defined class labels (hence the need for
interpolation). Therefore, only a selected few of non-class-
label-dependent feature evaluators [21] can be readily adapted
for FRI, including correlation-based FS (CFS) [22] and fuzzy-
rough set-based FS (FRFS) [11] which support regression
tasks by default. FRFS in particular, relies on the use of
fuzzy similarity to differentiate between two training objects.
It employs a strict equivalence relation for class labels or
categorical data, but the underlying concepts (i.e., the upper
and lower approximations) may also be constructed using the
real-valued “decision” variable.

It is essential to clarify that, a “sparse” rule base considered
in the paper is in the sense of coverage, or the distance between
any given rules within the system, rather than quantity. Simi-
larly, a rule base may consist of a very small number of rules
yet still be described as dense, if the underlying knowledge is
simple (typically with limited antecedent values). Furthermore,
the proposed method is in principle, also applicable to standard
inference scenarios, with largely overlapping rules.

Fig. 1 illustrates the proposed antecedent selection approach
for FRI. To achieve antecedent selection, a given feature
evaluator such as CFS or FRFS may be employed as is, once
the rule base to be processed is converted into a standard,
crisp-valued data set. For this, any defuzzification mechanism
may be adopted, and in this paper, the representative value of a
fuzzy set (Eqn. 1) is used for this purpose. The newly created,
crisp-valued data set (antecedent values) are then employed to
train a feature (antecedent) evaluator. This is in order to obtain
a set of “feature evaluation scores”, or antecedent importance
measurements ω′aj

, j = 1, · · · , |A|, which are subsequently
normalised to yield the required significance values:

{ωa1
, · · · , ωa|A|} = {

ω′a1

Σ
|A|
j=1ω

′
aj

, · · · ,
ω′a|A|

Σ
|A|
j=1ω

′
aj

}

These values indicate the relevance of the underlying an-
tecedent variables A, with respect to the values of the
consequent variable z, based on the information embedded
in the rule base.

A feature subset search algorithm such as HSFS may be
employed to identify a quality antecedent subset B ⊆ A,
which captures the information within the original rule base
R to a reasonable (if not the maximum) extent. R may then
be pruned to just maintaining the highest quality antecedent
variables, thereby producing a reduced rule base (much like a
reduced data set with irrelevant features removed). Subsequent
tasks such as rule selection, fuzzy inference, or FRI may
benefit greatly in terms of accuracy and efficiency, once
such redundant and noisy antecedent variables have been
eliminated.

B. Weighted Aggregation of Antecedent Significance Measures

For a given rule base R, a set of antecedent significance
values: {ωa1

, · · · , ωa|A|} may be computed, or supplied by
subject experts. A weighted rule ranking strategy can be
derived for the purpose of identifying the most suitable rules

Fig. 1. Antecedent selection procedures

to perform interpolation. Recall that the standard (un-biased)
formula (Eqn. 2) adopted by T-FRI for calculating the distance
between any given two rules rp, rq ∈ R, is effectively to
assume equal significance of all involved antecedent variables.
A general form of weighted distance d̃ may be defined by:

d̃(rp, rq) =

√√√√ |A|∑
j=1

ωajd(âpj , â
q
j)

2 (9)

which takes into consideration the significance values ωaj
of

the antecedent variables aj , j = 1, · · · , |A|.
The use of d̃ allows for a more flexible selection of rules.

For instance, consider the case illustrated in Fig. 2, with the
assumption that a1 and a3 are antecedents of high significance
and a2 is irrelevant (or noisy). For a given new observation
o∗, suppose that the two closest rules determined by the
standard T-FRI (using un-biased distance measure) are r1 and
r2. Also, there may exist another rule r3 (involving dashed
fuzzy sets) with values much closer to a1 and a3, but it
has not yet been selected because its overall distance to the
observation is greater than that of r2 (or r1), due to the value
â32 being further away. Since in fact a2 is of little importance,
a weighted distance measurement may select r1, r3 to perform
interpolation, and the end result ẑ∗(1,3) may provide a better
estimation for this scenario, than the result obtained using r1

and r2.
As alternative rules may be selected via the use of weighted

distance calculation, any existing FRI mechanism should
therefore be modified in order to ensure consistency amongst
the results interpolated using different rules. In this paper, the
investigation is focused on the T-FRI method introduced in
Section II-A. However, the notion of the antecedent variable
significance appears to be equally applicable to other types
of FRI technique, such as α-cut-based methods [1], [2], [23].

Recall the first step of T-FRI, the construction of the
2209



Fig. 2. Alternative rule selection using weighted distance calculation

intermediate fuzzy rule r′ requires the set of intermediate
antecedent fuzzy sets â′j , and the intermediate consequent
fuzzy set ẑ′. A set of shift parameters {λâ1

, · · · , λâ|A| , λẑ}
are required, in order to maintain the position (representative
value) of r′ on each of its antecedent dimensions. The value of
λẑ plays an important role in determining the initial position
of the intermediate consequent fuzzy set, which will affect
the final interpolative output. For the present problem, the
calculation of λẑ is modified to reflect the variations in
antecedent variable significance, thereby producing a weighted
shift parameter λ̃ẑ:

λ̃ẑ =
1

|A|

|A|∑
j=1

ωaj
λaj

which is then used to obtain the weighted intermediate
consequent fuzzy set ẑ′. Thus, it is then necessary to apply
the transformations to the intermediate consequent fuzzy set
ẑ′, with weighted scale ratio s̃ẑ and move ratio m̃ẑ computed
by

s̃ẑ =
1

|A|

|A|∑
j=1

ωajsâj m̃ẑ =
1

|A|

|A|∑
j=1

ωajmâj

These are a modified version of Eqn. 6, following the same
principle as that applied to the calculation of λ̃ẑ .

Finally, a complete, weighted T-FRI procedure from ẑ′ to
ẑ∗ can be readily created, by following the transformation
ẑ∗ = T̃ (ẑ′, s̃ẑ, m̃ẑ). This weighted aggregation procedure
makes minimal alterations to the original T-FRI algorithm.
Symbolically, it appears identical to the conventional T-FRI
method, and is therefore omitted here. As such, the procedure
maintains its structural simplicity and intuitive appeal, while
extending the capability of T-FRI.

C. Use of Antecedent Significance in B-FRI

One of the common problems faced by a B-FRI system is
the event where more than one antecedent value is missing
from an observation. It is difficult to fully reconstruct, or even
closely approximate multiple missing values, since there may
exist a number of possible combinations of values that may
each lead to the same conclusion. It is also computationally
complex to perform reverse reasoning with a large number
of unknowns. Antecedent selection, being a dimensionality
reducing technique, may be potentially beneficial in such
situations. By identifying more important antecedent variables,
or by removing irrelevant antecedents altogether, a priority-
based backward reasoning system may be established and
greatly simplifies the problem. However, much of relevant
research concerning this issue is beyond the scope of this
paper.

I V. E X P E R I M E N TAT I O N A N D D I S C U S S I O N

This section provides a real-world scenario concerning the
prediction of terrorist activities, it is used to demonstrate
the procedures of the proposed antecedent significance-based
approach, for both conventional T-FRI and B-FRI problems.
The accuracy and efficiency of the work is further validated
via a systematic evaluation using synthetic random data.

A. Terrorist Activity Prediction

Consider a practical scenario that requires the prediction
of terrorist bombing risk. The likelihood of an explosion may
be directly affected by the number of people in the area, and
crowded places (high popularity and high travel convenience)
are usually more likely to attract terrorist attentions. Safety
precaution such as police patrol may also be a very important
factor, the more alert and prepared a place is, the less
opportunities there are for the terrorists to attack. Other aspects
such as temperature and humidity may be of relevance, but
their impact on the potential outcome is limited. Table I lists
a few example linguistic rules that may be derived for coping
with such a scenario.

TABLE I
E X A M P L E L I N G U I S T I C R U L E S F O R T E R R O R I S T B O M B I N G

P R E D I C T I O N ( M . F O R M O D E R AT E , V. F O R V E RY )

popularity convenience patrol temperature humidity risk
a1 a2 a3 a4 a5 z

r1 V. Low V. Low V. High M. High V. Low
r2 V. Low V. High V. Low High Low V. Low
r3 M. High M. Low M. High M.
r4 M. M. M. Low Low M. Low
r5 M. High Low M. Low M. High High
r6 High V. Low High V. Low Low V. Low
r7 High High M. M. High M. Low
r8 High High V. Low Low Low V. High

The antecedent significance values obtained using CFS
and FRFS are presented in Table II. Both feature evaluators
agree on that temperature and humidity are relatively less
important than the other 3 antecedent variables. CFS in
particular, assigns a weight of ωa5 = 0.0299 to humidity,
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signifying its relatively lack of relevancy in this rule base.
The ranking of importance for the major antecedent variables
is a3 > a1 > a2, when CFS is used. The resultant ranking
determined by FRFS is similar, thought it gives convenience
(a2) a higher significance score.

TABLE II
A N T E C E D E N T S I G N I F I C A N C E VA L U E S D E T E R M I N E D U S I N G

F E AT U R E E VA L U AT O R S C F S A N D F R F S

wa1 wa2 wa3 wa4 wa5

CFS 0.2765 0.2461 0.3312 0.1163 0.0299
FRFS 0.2220 0.3228 0.2904 0.0833 0.0814

1) FRI Example: Suppose that a new observation o∗ is
present that requires interpolation, its linguistic values and
the underlying semantics in terms of triangular fuzzy sets,
are given in Table III. In order to illustrate and compare
the outcomes of the rule selection procedure, the rules
selected using the standard T-FRI process and the antecedent
significance-based weighted distance metric are all provided.
The results show that the two closest rules selected following
the standard T-FRI process are close to the observed values on
all antecedent dimensions. However, if antecedent significance
values are taken into consideration, alternative rules will be
selected. For the two rules selected according to CFS, large
differences in values can be observed for the variable humidity
(a5), which is likely caused by its very low significance value,
as shown previously in Table II.

The detailed calculations of the T-FRI transformations
are omitted here to save space as they are easily con-
ceived. The final interpolated result using the standard T-
FRI is ẑ∗ = (3.1, 3.6, 4.4), following a transformation of
T (ẑ′ = (3.4, 3.7, 4), sẑ = 2.163,mẑ = 0.003). Using
weights determined by CFS, the result is ẑ∗ = (2.2, 2.8, 3.2),
the weighted transformation is:

T̃ (ẑ′ = (2.4, 2.8, 3), s̃ = 1.479, m̃ = −0.101)

The results obtained based on FRFS is ẑ∗ = (2.2, 3.2, 4) with
a corresponding weighted transformation as shown below:

T̃ (ẑ′ = (2.7, 3, 3.6), s̃ẑ = 2.084, m̃ẑ = −0.337)

Intuitively speaking, although the area in question may be
crowded (due to the place being popular and convenient
to reach), the risk of an attack can still be quite low.
This is because the area is in a moderate high level of
alert, and the two weather-related factors (despite being
less significant): low temperature and high humidity may
also discourage any potential terrorist activities. One of
the example rules listed in Table I, r7 describes a fairly
similar event, where the consequent value is given as M. Low.
From the analysis above, the results obtained via weighted
aggregation: (2.2, 2.8, 3.2) (Low) using significance values
determined by CFS, and (2.2, 3.2, 4) (Low) by FRFS, are
both more intuitively agreeable than that produced by the
standard T-FRI: (3.1, 3.6, 4.4) (M. Low).

2) B-FRI Example: For the B-FRI scenario, suppose that
an observation o∗ with a missing value for the antecedent
variable patrol (a3) is given with the consequent variable risk
(z) directly observed. Table IV lists the observation o∗, and
the different rules selected by the respective approaches. Note
that both CFS- and FRFS-based weighted distance metrics
select the same two closest rules, both of which differ from
those selected by the standard B-FRI. For the latter, the values
of the required parameters for the missing antecedent variable
are computed through those of the known antecedents and
the consequent. For example, following Eqn. 8, λâ3

can be
calculated such that:

λâ3
= 5λẑ −

1

5

5∑
j=1,j 6=2

λâj

= 5× 0.792− 2.171 = 1.789

which then constructs an intermediate fuzzy term â′3 =
(0.2, 1.2, 2.2). Both sâ3 and mâ3 are computed similar to
λâ3 , and finally, the backward transformation T←− given below
is derived, which provides the final B-FRI output as V. Low:

â∗3 = T←−((0.2, 1.2, 2.2), 0.400,−0.172) = (0.7, 1.2, 1.5)

To avoid unnecessary repetition, the detailed procedures
to compute the weighted B-FRI outputs are omitted. The
CFS-based antecedent significance values yield the following
weighted B-FRI transformation:

â∗3 = T̃←−((1.5, 2.5, 3.5), 0.1389, 0.0185) = (2.4, 2.5, 2.7) (Low)

while the FRFS-based method calculates slightly differently,
resulting in the following backward interpolative outcome:

â∗3 = T̃←−((1.7, 2.7, 3.7), 0.0807, 0.0714) = (2.6, 2.7, 2.8)

which may also be interpreted as of a linguistic meaning of
Low.

Note that all of the values, except those for patrol and risk,
are the same as the previous observation used to demonstrate
forward T-FRI. This narrows down the reason why risk has
jumped from Low to M. High, which is the level of patrol in
the area. Intuitively, for a highly crowded area, if very little
patrol is present (as suggested by the result of the standard
B-FRI: V. Low), the resultant value of risk should become
V. High. Therefore, having a Low level of patrol may be a
more appealing approximation,

B. Systematic Evaluation

In this set of simulation-based experiments, a simple
numerical test function with 15 variables (|A| = 15) is
employed, as shown below:

y =− 1 +
√

10x1 +
x2

10000
+

x3
10000

+
x4

10000
− 5x5

+
x6

10000
− x7 +

100

x8 + 1
− x9

10000
+

x10
10000

+
x11

10000

− x12
10000

+
x13

10000
− x214 +

x15
10000

Such a systematic test is important to validate the consis-
tency, accuracy, and robustness of the developed approach.
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TABLE III
E X A M P L E O B S E RVAT I O N ( L I N G U I S T I C T E R M S A N D F U Z Z Y S E T R E P R E S E N TAT I O N S ) , A N D T H E C L O S E S T R U L E S S E L E C T E D B Y

S TA N D A R D T- F R I , A N D W E I G H T E D T- F R I W I T H VA L U E S D E T E R M I N E D U S I N G C F S A N D F R F S

popularity convenience patrol temperature humidity risk
a1 a2 a3 a4 a5 z

o∗ High High M. High Low M. High ?
o∗ (8.0, 8.5, 9) (5.8, 7.5, 8) (5.0, 5.5, 6.0) (1.5, 2.0, 3) (5.5, 6.0, 6.5) ?

Standard r1 (8, 8.3, 8.4) (8.4, 8.6, 9.1) (5.4, 5.9, 6.2) (3.5, 3.7, 4) (6.3, 6.9, 7.2) (2.9, 3, 3.3)
Standard r2 (9.7, 9.8, 10.4) (4.9, 5.4, 5.5) (1.7, 2.1, 2.2) (1.2, 1.2, 1.8) (3.7, 4.3, 4.4) (4.3, 5, 5.4)

CFS r1 (8.5, 9.1, 9.8) (8.1, 8.6, 9) (5, 5.4, 6.1) (1.8, 2.3, 2.4) (2.4, 3, 3.1) (2.7, 3, 3.2)
CFS r2 (6, 6.6, 6.8) (5.3, 5.9, 6.1) (7.4, 7.6, 7.8) (1.7, 2.1, 2.8) (9.2, 9.6, 10.2) (1.4, 2, 2.5)

FRFS r1 (8.9, 9.3, 9.8) (7.2, 7.6, 8.3) (6.3, 6.3, 6.4) (0.6, 0.7, 1.3) (4.1, 4.5, 4.7) (2.6, 3, 3.7)
FRFS r2 (6.9, 6.9, 7) (3.9, 4.2, 4.7) (3.6, 3.9, 4.6) (2.8, 3.5, 4.3) (7.9, 7.9, 8.1) (2.8, 3, 3.4)

TABLE IV
E X A M P L E O B S E RVAT I O N ( B O T H L I N G U I S T I C T E R M S A N D F U Z Z Y S E T R E P R E S E N TAT I O N S ) , A N D T H E C L O S E S T R U L E S S E L E C T E D B Y

S TA N D A R D B - F R I , A N D W E I G H T E D B - F R I W I T H VA L U E S D E T E R M I N E D U S I N G C F S A N D F R F S

popularity convenience patrol temperature humidity risk
a1 a2 a3 a4 a5 z

o∗ High High ? Low M. High M. High
o∗ (8.0, 8.5, 9) (5.8, 7.5, 8) ? (1.5, 2.0, 3) (5.5, 6.0, 6.5) (5.1, 5.8, 6.4)

Standard r1 (8.7, 9.7, 10.7) (5.4, 6.4, 7.4) (0.9, 1.9, 2.9) (0.2, 1.2, 2.2) (6.7, 7.7, 8.7) (4.6, 5.6, 6.6)
Standard r2 (7.5, 8.5, 9.5) (6.9, 7.9, 8.9) (0.5, 1.5, 2.5) (7.2, 8.2, 9.2) (3.9, 4.9, 5.9) (4.8, 5.8, 6.8)

CFS r1 (7.7, 8.7, 9.7) (5.9, 6.9, 7.9) (4.1, 5.1, 6.1) (1.0, 2.0, 3.0) (3.8, 4.8, 5.8) (2.3, 3.3, 4.3)
CFS r2 (6.7, 7.7, 8.7) (7.5, 8.5, 9.5) (0.0, 0.8, 1.8) (3.0, 4.0, 5.0) (5.2, 6.2, 7.2) (5.7, 6.7, 7.7)

FRFS r1 (7.7, 8.7, 9.7) (5.9, 6.9, 7.9) (4.1, 5.1, 6.1) (1.0, 2.0, 3.0) (3.8, 4.8, 5.8) (2.3, 3.3, 4.3)
FRFS r2 (6.7, 7.7, 8.7) (7.5, 8.5, 9.5) (0.0, 0.8, 1.8) (3.0, 4.0, 5.0) (5.2, 6.2, 7.2) (5.7, 6.7, 7.7)

This is because random samples may be generated from a
controlled environment, where the ground truths are also
available to verify the correctness of the interpolation results.
These tests share a similar underlying principle behind that
of cross-validation and statistical evaluation [24], [25].

1) FRI Results: The results shown in Table V are averaged
outcomes of 200 randomised runs. By employing the weighted
aggregation scheme based on the antecedent significance
values, both the mean error and standard deviation are
considerably improved. The results obtained according to
FRFS appears to have a slightly higher mean error and a wider
spread, however, t-test (p = 0.01) shows that the difference is
not statistically significant. The improvement is more evident
when the original rule base is simplified by removing the
redundant antecedent variables.

TABLE V
E VA L U AT I O N O F P R O P O S E D A P P R O A C H E S F O R S TA N D A R D F R I

Mean Error % S.D. %

Standard T-FRI 7.32 6.15
Weighted by CFS 5.33 4.69
Weighted by FRFS 5.68 5.16
Reduced by CFS 3.38 3.01
Reduced by FRFS 3.33 2.63

The antecedent subset selected by CFS is {a0, a4, a7, a13},
a reduction of 73% in the number of variables, which achieves
a mean error of 3.38%; the subset selected by FRFS is

{a1, a4, a7, a9, a13}, with a reduction of 67%, witch helps
obtain an mean error of 3.33%. Both evaluators yield reason-
able reduction results, and the interpolation error (compared
to numerical function’s true output) is also much lower than
the standard and weighted T-FRI.

2) B-FRI Results: Given the numerical test function,a
randomly selected antecedent variable is set to be missing per
test subject to the constraint that this “missing” variable is
drawn from the set {a0, a4, a7, a13}∩{a1, a4, a7, a9, a13} =
{a1, a7, a13}, which is the intersection of the two antecedent
subsets identified by CFS and FRFS, respectively. This set up
allows direct comparison between the different techniques.

The proposed weighted aggregation scheme, and the re-
duced rule base containing only the most significant an-
tecedents (determined via antecedent selection) are then used
to reconstruct the original values. In this set of experiments,
the error is calculated with respect to the actual antecedent
variable value, which has been intentionally removed to
simulate the B-FRI environment. The mean error and standard
deviation of the 200 simulated tests are given in Table VI.

The number of antecedent variables involved is quite large
and presents a considerable challenge for precise backward
reasoning. The original B-FRI approach achieves a 18.20%
mean error, while the accuracy is slightly improved when
weighted aggregation is used. Based on the simplified rule
bases that are reduced through the use of either CFS or FRFS,
the interpolation accuracy is notably improved, with a mean
error of 8.45% and 6.95%, respectively. Furthermore, the
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TABLE VI
E VA L U AT I O N O F P R O P O S E D A P P R O A C H E S F O R B - F R I

Mean Error % S.D. %

Standard B-FRI 18.20 19.40
Weighted by CFS 16.94 19.15
Weighted by FRFS 17.59 18.76
Reduced by CFS 8.45 13.70
Reduced by FRFS 6.93 13.70

quality of the output is also more stable with the standard
derivation, dropping from the original 19.40% to 13.70% for
both cases, demonstrating the benefits of the reduced rule
base for B-FRI.

V. C O N C L U S I O N

This paper has presented a new FRI approach that exploits
FS techniques in order to evaluate the importance of an-
tecedent variables. A weighted aggregation-based interpolation
method is proposed that makes use of the identified antecedent
significance values. The original rule base may also be
simplified by removing the irrelevant or noisy antecedents
using a feature subset search algorithm such as HSFS, and
retains an antecedent subset of a much lower dimensionality.
Example scenarios and systematic tests are employed to
demonstrate the potential of this work, for both conventional
and B-FRI problems. The resultant antecedent significance-
based FRI technique is both technically sound and conceptu-
ally appealing, as humans often (automatically) screen out
seemingly irrelevant antecedents, and focus on more important
factors in order to perform reasoning.

The present antecedent selection approach for FRI may
be further improved by considering unsupervised or semi-
supervised FS methods [26], [27], [28], which have emerged
recently for analysing the inter-dependencies between features
without the aid of class information. Although generic in
concept, the current implementation of antecedent significance-
based aggregation is strongly coupled with the T-FRI method.
It is worth further extending the principles behind to alternative
FRI methods, thereby providing a potentially more flexible
framework for efficient interpolation. Fuzzy aggregation
functions [29], [30] are of particular assistance in realising
such a task.
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