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Abstract—Rough set theory has proven to be a useful mathe-
matical basis for developing automated computational approaches
which are able to deal with and utilise imperfect knowledge.
Fuzzy-rough set theory is an extension to rough set theory and
enhances the ability to model uncertainty and vagueness more
effectively. There have been many developments in this area
which offer robust methods for feature selection or instance
selection. However, these are often carried out in isolation rather
than considering both types of selection simultaneously. For this
purpose, the notion of a bireduct has been proposed recently
but the task of finding bireducts of high quality remains a
significant challenge. This paper presents a heuristic strategy for
the identification of fuzzy-rough bireducts, which is based on
a music-inspired global optimisation algorithm called harmony
search. The concept of ε-bireducts is employed in this approach
for the evaluation and improvisation of the candidate solutions.
The stochastically-selected bireducts are also utilised to construct
classifier ensembles. The presented technique is experimentally
evaluated using a number of real-valued benchmark data sets.

I. INTRODUCTION

Feature selection (FS) is becoming an increasingly necessary
step for today’s ever-growing data sets. Its primary aim is to
discover a minimal feature subset for a problem domain, whilst
retaining a suitably high accuracy in representing the original
data [1]. When analysing data with very large numbers of
features [2], it is difficult to identify and extract patterns or
rules due to the high inter-dependency amongst individual
features, or the combined behaviour of groups of features.
Techniques that perform tasks such as object recognition [3],
data classification [4], and systems monitoring [5] can benefit
significantly, when the noisy, irrelevant, redundant or misleading
features are removed [6].

Data is currently being collected and archived at a staggering
pace in almost every field imaginable. In addition, data sets
themselves grow larger in terms of both the number of
measurements (features), and the number of data instances.
This continued growth places high demand on resources for
both the storage and maintenance of data. In addition to FS,
approaches developed for the purpose of instance selection [7]
(IS) are also desirable, as they may help to considerably reduce
the volume of the data, whilst simultaneously removing those
misleading or noisy training instances. Therefore, both FS and
IS are techniques which reduce the dimensionality of data and
help to improve any models that are subsequently learned from
that data.

Rough set theory (RST) [8] has attracted great interest
amongst researchers in recent years. Its popularity stems from

a multitude of appealing theoretical aspects. Indeed, the focus
of RST on grouping information entities into “granules” in
terms of a certain form of relatedness offers a certain universal
intuitive appeal. In addition, it has other desirable attributes; for
example, no tunable parameters are required, thus eliminating
the need for (possibly erroneous) subjective human intervention.
It also finds a minimal knowledge representation. One of the
problems for RST however, is that it is constrained to crisp or
discrete-valued data, and its inability to deal with real-valued
data has led to the development of fuzzy-rough sets [9].

Much work has been carried out in the area of FS using
both rough and fuzzy-rough sets [10]. The vast majority of
such work focuses on the use of decision reducts. These are
subsets of features which fully characterise the knowledge in
the data. Rough set bireducts [11] are a newly proposed concept
that further extends the idea of a decision reduct. Bireducts
place emphasis on both the subset of features, which describe
decisions, and the subset of data instances for which such
a description is valid. A bireduct therefore essentially offers
a representation for a sub-table of the data characterised by
subsets of both features and data instances. The properties of
rough set bireducts have also been exploited and extended to
fuzzy-rough sets [12], such that they can be applied to real-
valued data. A boolean representation in conjunctive normal
form (CNF) has also been adopted, in order to transform the task
of simultaneous instance and feature selection into a constraint
satisfaction problem [12]. Whist the work in [11] and [12]
offer much in terms of extending the underlying rough and
fuzzy-rough concepts respectively, defining the optimality of
any given bireduct is a difficult and challenging task.

In an attempt to address this challenge, this paper presents
a heuristic search strategy, which provides an alternative
means for the identification of potentially optimal fuzzy-rough
bireducts. A recently developed FS search algorithm based on
harmony search [13] is modified, and the notion of an ε-bireduct
[11] is exploited, in order to better identify the most suitable
bireducts (judged by metrics such as object coverage and feature
subset size). As a stochastic approach, the proposed algorithm
is capable of discovering multiple bireducts of similar quality,
which are further utilised to construct classifier ensembles.

The remainder of this paper is structured as follows. Section
II summarises the theoretical aspects of fuzzy-rough bireducts.
Section III explains the proposed heuristic algorithm aimed at
searching for potentially “optimal” candidate solutions. Section
IV points out the benefits of employing a bireduct-based
classifier ensemble, and outlines its structure and working

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China 

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 1504



procedures. Section V presents the experimental results that
demonstrate the efficacy of the proposed approach. Section VI
concludes the paper and identifies a number of areas for future
development.

II. THEORETICAL BACKGROUND

In the context of FS, an information system is a tuple
〈U,A〉, where U = {x1, · · · , x|U|} is a non-empty set of finite
objects (commonly referred to as the universe of discourse);
and A = {a1, · · · , a|A|} is a non-empty, finite set of features
such that a : U→ Va for every a ∈ A. Va is the set of values
that feature a may take, and |A| denotes the cardinality of
the set A. For decision systems, there exists a set of decision
features Z that jointly form an injunction to the input features
A, which may be either discrete- or real-valued. In this paper,
for simplicity, a single decision feature d is considered, i.e.,
Z = {d}.

A. Rough and Fuzzy-Rough Sets

Rough set theory (RST) has been successfully used for the
task of FS in order to discover data dependencies and to reduce
the number of features contained in a data set [9]. Given a
data set with discrete feature values, RST can find a subset
(termed a reduct) of the original features that are the most
informative; all other features can be removed from the data
set with minimal information loss. Traditional RST only works
on discrete, crisp-valued domains, however in practice, the
values of features are usually real-valued. It is not possible
in the theory to say whether two different feature values are
similar, and to what extent they may be equivalent. For example,
two close values may only differ as a result of noise, but in
the standard RST-based approach they are considered to be as
different as two values of a different order of magnitude. Data
set discretisation must therefore take place before reduction
methods based on crisp rough sets can be applied. This is often
still inadequate, however, as the degrees of membership of
values to discretised values are not considered and thus may
result in information loss. In order to combat this, extensions
of RST such as fuzzy-rough sets [10] have been developed.

A fuzzy-rough set is defined by two fuzzy sets, a fuzzy
lower and a fuzzy upper approximation, obtained by extending
the corresponding crisp rough set notions. In the crisp case,
elements either belong to the lower approximation with absolute
certainty or not at all. In the fuzzy-rough case, elements
may have a membership in the range [0,1], allowing greater
flexibility in handling uncertainty. Fuzzy-rough FS [6] (FRFS)
extends the ideas of fuzzy-rough sets to perform FS, with the
following definitions:

µRBX(xi) = inf
xj∈U

I(µRB
(xi, xj), µX(xj)) (1)

µRBX
(xi) = sup

xj∈U
T (µRB

(xi, xj), µX(xj)) (2)

where X is the fuzzy concept being approximated, I is a
fuzzy implicator, T is a t-norm, and RB is the fuzzy similarity
relation induced by the subset of features B, and xi, xj ∈ X
are two arbitrary objects in X . In particular,

µRB
(xi, xj) = Ta∈B{µRa

(xi, xj)} (3)

where µRa
(xi, xj) is the degree to which objects xi and xj

are similar for feature a ∈ A. Many similarity relations can be
constructed for this purpose, for example:

µRa(xi, xj) = 1− |a(xi)− a(xj)|
amax − amin

(4)

µRa
(xi, xj) = exp(− (a(xi)− a(xj))2

2σ2
a

) (5)

µRa
(xi, xj) =max(min(

a(xj)− (a(xi)− σa)
a(xi)− (a(xi)− σa)

,

(a(xi) + σa)− a(xj)
(a(xi) + σa)− a(xi)

), 0) (6)

where σ2
a is the variance of feature a, and a(xi) is the value

of feature a for object xi. The choices for I , T , and the fuzzy
similarity relation have great influence upon the resultant fuzzy
partitions.

B. Fuzzy Discernibility Matrices

A number of recent developments in fuzzy-rough set-based
FS focus on the use of fuzzy discernibility matrices and
functions [14]. A fuzzy discernibility matrix may be represented
by a set of fuzzy clauses C, where each of the fuzzy clauses
Cij ∈ is a fuzzy set, to which every feature a ∈ A belongs to a
certain degree µCij (a), determined by the fuzzy discernibility
measure:

µCij
(a) = N (µRa

(xi, xj)) (7)

where N denotes the fuzzy implementation of the negation
operator (¬).

A fuzzy discernibility function fC can then be defined on the
basis of fuzzy clauses, which is best represented in conjunctive
normal form (CNF):

fC(B) = fC(a
∗
1, · · · , a∗|A|) = ∧{∨C

∗
ij | Cij ∈ C} (8)

where 1 ≤ i < j ≤ |U|, and the truth assignment a∗i of a given
feature ai ∈ A is:

a∗i =

{
true , ai ∈ B
false , otherwise

(9)

This function returns values in [0, 1], and reflects the extent to
which the function is satisfied for a given assignment of truth
values to the variables {a1, · · · , a|A|}.

For decision systems, only those clauses with “different”
decision values are considered, and therefore, the fuzzy dis-
cernibility function is modified in order to reflect the following
logical operations:

fC(a
∗
1, · · · , a∗|A|) = ∧{∨{C

∗
ij} → ¬(d(xi) = d(xj))} (10)

so that the extent to which decision values differ may affect
the overall satisfiability of the clauses.

Note that the degree of satisfaction for a clause Cij
regarding a given feature subset B is defined as:

SATB(Cij) = Sa∈B{µCij(a)} (11)

for a t-conorm S, which is used to determine the clauses
satisfiable by the selected features. Unlike traditional (crisp)
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propositional satisfiability, a fuzzy clause may be satisfied to
a certain degree depending on what extent to which variables
have been assigned the value true. Obviously, the maximum
satisfiability degree of a given clause SATmax(Cij) can be
achieved by assigning all of its involved features to true. A
minimal fuzzy-rough reduct R can therefore be defined as a
(minimal) truth assignment to variables (features), such that
each clause Cij ∈ C is satisfied to its maximum extent:

R = argminB⊆A|B|, fC(B) = fC(A) (12)

C. Fuzzy-Rough Discernibility-Based Bireducts

The notion of a fuzzy-rough bireduct is inspired by the idea
of a rough set bireduct [11], which is originated from a similar,
yet non-equivalent approach termed approximate reducts [15].
The definition of such a concept focuses on a subset of features
that jointly describe the decision feature d, and a subset of
instances Y ⊆ U for which such a description is valid [12].

Definition 1: Let 〈U,A〉 be an information system. A tuple
(B, Y ), where B ⊆ A and Y ⊆ U is an information bireduct,
iff B discerns all pairs of objects in Y , ∀xi, xj ∈ Y, ∃a ∈
B|a(xi) 6= a(xj), and:

• There is no proper subset B′ ⊂ B such that B′ discerns
all pairs in Y .

• There is no proper superset Y ′ ⊃ Y such that B
discerns all pairs in Y ′.

Definition 2: Let 〈U,A∪{d}〉 be a decision system, a tuple
(B, Y ), where B ⊆ A and Y ⊆ U is a decision bireduct, iff B
discerns all pairs of objects in Y , where d(xi) 6= d(xj), and:

• There is no proper subset B′ ⊂ B such that B′ discerns
all pairs xi, xj ∈ Y , where d(xi) 6= d(xj).

• There is no proper superset Y ′ ⊃ Y such that B
discerns all pairs xi, xj ∈ Y ′, where d(xi) 6= d(xj).

The properties of a bireduct ensure that the feature subset
contained by the bireduct is minimal, and that the coverage
of the data instances is maximal. By employing the CNF
representation introduced earlier in Section II-B, a revised
fuzzy discernibility function [12] may be established in order
to facilitate the bireduct scenario:

fC(B, Y ) = fC(a
∗
1, · · · , a∗|A|, x

∗
1, · · · , x∗|U|) = ∧{x

∗
i∨x∗j∨C∗ij}

where

x∗i =

{
true , xi /∈ Y
false , otherwise

(13)

A clause Cij may now be satisfied if C∗ij is maximally satisfied,
or if either xi or xj is “selected” (which means that the
corresponding training instance will be excluded from the set
of covered objects Y ). Consequently, these “selected” objects
form the set of outliers O = U \ Y .

III. HARMONY SEARCH FOR FUZZY-ROUGH BIREDUCTS

Many heuristic (and stochastic) search strategies have
been exploited for the task of FS, in an effort to identify
compact and good quality feature subsets without resorting to
exhaustive search. Inspired by natural phenomena or patterns of
social behaviour, a good number of such methods have shown

promising results in dealing with complex problem scenarios.
Harmony search (HS) [13] for instance, is a music-inspired
technique that is particularly effective in consolidating the
size of the emerging feature subsets. This section explains
the modifications made to the original HS-based FS algorithm
(HSFS), in order to facilitate the recognition and optimisation
of fuzzy-rough bireducts.

A. Mapping of Key Notions

The key notions of HS are musicians, notes, harmony, and
harmony memory. For conventional optimisation problems, the
musicians P = {pi | i = 1, · · · , |P |} represent the variables of
the cost function being optimised, their values are referred to as
notes. A harmony H is a candidate solution vector containing
the values for each variable, where a collection of good quality
harmonies are stored in the harmony memory H = {Hj | j =
1, · · · , |H|}. Note that P , H , and H are ordered lists rather than
sets. In particular, Hj

i , i = 1, · · · , |P |, j = 1, · · · , |H|, denotes
the value selected by the ith musician for the jth harmony.
The harmony memory H can be concretely represented by a
two dimensional matrix of a rank |H| × |P |. Without loss of
generality, the number of rows (harmonies) |H| is a predefined
parameter, and each column is dedicated to one musician, which
provides a pool of playable notes (referred to hereafter as the
note domain ℵi of a musician pi, ℵi =

⋃|H|
j=1H

j
i ) for future

improvisations.

When applied to FS, as shown in Table I, a musician is best
described as an independent expert or a “single-feature selector”,
and the available features translate to notes. Each musician may
vote for one feature to be included in the emerging harmony,
which is the combination of votes from all such single-feature
selectors, indicating the features to be selected. The available
features {a1, · · · , a|A|} form the pool of playable notes, which
is shared by all of the musicians. Multiple musicians are allowed
to choose the same feature, or they may opt to choose none
at all. The fitness function fit(H) becomes a feature subset
evaluator that analyses and merits each of the new feature
subsets found during the search process.

TABLE I. CONCEPT MAPPING FROM HS TO FS

HS Optimisation FS

Musician Variable Single-Feature Selector
Musical Note Variable Value Feature
Harmony Solution Vector Feature Subset
Harmony Memory Solution Storage Feature Subset Storage
Harmony Evaluation Fitness Function Feature Subset Evaluation
Optimal Harmony Optimal Solution Optimal Feature Subset

The proposed HSFS algorithm for fuzzy-rough bireducts
(referred to as HSFSBR hereafter) uses 4 parameters: the size
of the harmony memory |H|, the number of “single-feature
selectors” (musicians) |P |, a harmony memory considering rate
δ, and the maximum number of iterations gmax. The parameter
δ, 0 ≤ δ ≤ 1 controls the rate at which a selector pi can
randomly choose a feature from all available features A (instead
of within its own note domain ℵi). For example, if δ has a
value of 0.85, the musicians have a 15% chance to explore
alternative features, which may potentially lead to better quality
feature subsets. For the remaining 85% of time, the musicians
focus on improving existing solutions from values within their
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TABLE II. HARMONY ENCODED FEATURE SUBSETS

p1 p2 p3 p4 p5 p6 Represented Subset B

H1 a2 a1 a3 a4 a7 a10 {a1, a2, a3, a4, a7, a10}
H2 a2 a2 a2 a3 a13 − {a2, a3, a13}
H3 a2 − a2 a3→a6 a13 a4 {a2, a4, a6, a13}

respective note domains. HSFS relies on stochastic mechanisms
such as this in order to escape from local minimal solutions.

Table II depicts the following three example harmonies.
H1 denotes a subset of 6 distinctive features: BH1 =
{a1, a2, a3, a4, a7, a10}. H2 shows a duplication of choices
from the first three musicians, and a discarded note (rep-
resented by −) by p6, representing a reduced subset
BH2 = {a2, a3, a13}. H3 signifies the feature subset BH3 =
{a2, a6, a4, a13}, where a3→a6 indicates that p4 originally
nominated a3, but it is forced to change its choice to a6 due
to δ activation. For simplicity, the explicit encoding/decoding
process between a given harmony Hj and its associate feature
subset BHj is omitted in the following descriptions.

B. Evaluation of Fitness and ε-Bireducts

Fitness functions play an important role in any search
algorithm, as they guide the search process towards better
candidate solutions. The optimality of a given bireduct (B, Y )
may be interpreted from a number of different perspectives, such
as the compactness of the feature subset: |B|, the coverage
of the selected features: |Y |, and the balance between the
number of features and objects involved. Furthermore, a given
feature subset B may form multiple bireducts, since the CNF
representation shown in Eqn. II-C may be satisfied using many
alternative combinations of objects. The associated family
of subsets (of covered objects) YB = {Y | fC(B, Y ) =
fC(A,U), B ⊆ A, Y ⊆ U} may also vary in size.

In order to better judge the quality of a given bireduct, the
notion of an ε-bireduct has been introduced [11]:

|Y | ≥ (1− ε)|U|, 0 ≤ ε < 1 (14)

which attempts to impose a constraint over the emerging
bireducts. Different settings of ε have a direct impact upon the
size of Y , which in turn influence the size of the emerging
feature subsets. Analogies of the ε-bireduct concept have been
studied for frequent itemsets and patterns [16]. Intuitively, the
fewer the objects to be covered (higher ε), the fewer the number
of features is generally required. A ε-bireduct collapses to a
standard reduct when ε = 0, since the definition will require
that all the training objects are fully covered by the selected
features.

In order to identify the “minimal” ε-bireducts for a given
value of ε, i.e., a bireduct (B, Y ) with a low cardinality of
B, in this paper, the fitness of a given harmony H (and its
associated feature subset BH ) is calculated as follows:

fit(H) =

{
cov(BH), cov(BH) ≤ 1− ε
2− 2ε− cov(BH), cov(BH) > 1− ε (15)

where the highest achievable fitness value is 1 − ε. Here
cov(BH) represents the maximum number of objects coverable

using feature subset BH :

cov(BH) = max
Y ∈YBH

(
|Y |
|A|

) (16)

The feature subsets are also compared on the basis of size, since
the ultimate goal is to identify a compact subset of features
that is able to fully describe a sufficient amount of objects, and
thus, the HSFSBR algorithm is bi-objective by nature as with
the underlying problem itself.

C. Iteration Steps of HSFSBR

The overall operation of the proposed HSFSBR algorithm is
illustrated in Fig. 1 and outlined in Algorithm 1. The following
explains it briefly.

Fig. 1. Work flow of HSFSBR

1) Initialise Harmony Memory: Set the initial values for
the parameters |H|, |P |, δ, and gmax as with the application
of conventional FS. A harmony memory containing |H|
randomly generated feature subsets is then initialised. The
fuzzy-rough bireducts associated with these feature subsets are
then identified, and fitness values calculated following Eqns. 15
and 16. This initialisation procedure also ensures that each of
the single-feature selectors has a note domain ℵ of |H| features,
which may include identical choices, or nulls/discards (−).

2) Improvise New Subset: Each pj in P nominates a feature
a ∈ ℵj and all such nominated features form a new harmony
Hnew. The evaluation score of the corresponding new feature
subset BHnew , decoded by following a scheme that generalise
what is illustrated in Table II, can then be computed according
to Eqns. 15 and 16.

3) Update Subset Storage: If the newly obtained subset
achieves a higher evaluation score than that of the worst subset
in the harmony memory, or if it has an equal evaluation but
is of a smaller size, then this new feature subset replaces the
existing worst feature subset. Otherwise, it is discarded.

4) Iterate: The improvisation-update process repeats un-
til the maximum number of iterations is reached. In the
end, the best harmony in the harmony memory Ḣ =
argmaxH∈H fit(BH) and its associated ε-bireduct (BḢ , Y ) are
returned as the final search output.

1507



Algorithm 1: HSFSBR Algorithm

1 pi ∈ P , i = 1 to |P |, group of musicians
2 Hj ∈ H, j = 1 to |H|, harmony memory
3 ℵi =

⋃|H|
j=1H

j
i , note domain of pi

4 δ, harmony memory considering rate
5 C, fuzzy clauses (fuzzy discernibility matrix)

6 for g = 1 to gmax do
7 Hnew = ∅
8 for i = 1 to |P | do
9 rδ = a random real number, 0 ≤ rδ ≤ 1

10 if rδ < δ then
11 ar = a random feature, ar ∈ A
12 Hnew = Hnew ∪ {ar}
13 else
14 r = a random integer, 1 ≤ r ≤ |H|
15 Hnew = Hnew ∪ {ℵir}

16 for ∀Cij ∈ C do
17 if SATBHnew (Cij) = SATmax(Cij) then
18 C = C \ Cij

19 Identify the outliers O that satisfies the remaining C
20 Form bireduct (BHnew ,U \O)
21 if fit(Hnew, ε) ≥ minH∈H fit(H, ε) then
22 H = H ∪ {Hnew}
23 H = H \ {arg minH∈H fit(H, ε)}

24 return best ε-bireduct in H

D. Worked Example

An example data set shown in Table III with one decision
feature Z = {d} is employed in order to illustrate the key
operations of HSFSBR. Due to space, the calculation of the
initial fuzzy similarity measures Ra(xi, xj), xi, xj ∈ U, a ∈ A
is omitted. Refer to [12] for more details. Another example
concerning crisp data and rough set-based bireducts can also be
found in [11], which should provide a good initial understanding
of the developed bireduct concepts.

TABLE III. EXAMPLE DATA SET

U a1 a2 a3 d

x1 -0.4 -0.3 -0.5 no
x2 -0.4 0.2 -0.1 yes
x3 -0.3 -0.4 -0.3 no
x4 0.3 -0.3 0 yes
x5 0.2 -0.3 0 yes
x6 0.2 0 0 no

In the present example, a given fuzzy clause, say C46, is
represented as C46 = {x∗4 ∨ x∗6 ∨ a0.3011 ∨ a1.02 ∨ a0.03 } ← d1.0,
where a0.3011 signifies that the degree of membership of feature
a1 in this particular clause is 0.301, µCij

(a1) = 0.301. This
implies that the instances x4 and x6 are partially discernible
using a1 with respect to the decision feature (d1.0). Due to the
inherent properties of the implicators [12], all clauses with d0.0
may be removed as they do not influence the returned bireduct.

The initial set of clauses C is therefore:

C12 : {1∗ ∨ 2∗ ∨ a0.01 ∨ a1.02 ∨ a1.03 } ← d1.0

C14 : {1∗ ∨ 4∗ ∨ a1.01 ∨ a0.02 ∨ a1.03 } ← d1.0

C15 : {1∗ ∨ 5∗ ∨ a1.01 ∨ a0.02 ∨ a1.03 } ← d1.0

C16 : {1∗ ∨ 6∗ ∨ a1.01 ∨ a1.02 ∨ a1.03 } ← d1.0

C23 : {2∗ ∨ 3∗ ∨ a0.3011 ∨ a1.02 ∨ a0.9643 } ← d1.0

C26 : {2∗ ∨ 6∗ ∨ a1.01 ∨ a0.8632 ∨ a0.4833 } ← d1.0

C34 : {3∗ ∨ 4∗ ∨ a1.01 ∨ a0.4312 ∨ a1.03 } ← d1.0

C35 : {3∗ ∨ 5∗ ∨ a1.01 ∨ a0.4312 ∨ a1.03 } ← d1.0

C46 : {4∗ ∨ 6∗ ∨ a0.3011 ∨ a0.3012 ∨ a0.03 } ← d1.0

C56 : {5∗ ∨ 6∗ ∨ a0.01 ∨ a1.02 ∨ a0.03 } ← d1.0

For HSFSBR, the number of musicians is |P | = |A| = 3, and
an initial harmony memory is randomly generated, filling the
note domains ℵi of musicians pi with randomly selected musical
notes (features). A newly improvised harmony Hnew may be
{a3, a3,−} which represents the feature subset BHnew = {a3}.
By removing the clauses satisfiable using a∗3 = true alone,
the following clauses may be obtained:

C23 : {2∗ ∨ 3∗ ∨ a0.3011 ∨ a1.02 ∨ a0.9643 } ← d1.0

C26 : {2∗ ∨ 6∗ ∨ a1.01 ∨ a0.8632 ∨ a0.4833 } ← d1.0

C46 : {4∗ ∨ 6∗ ∨ a0.3011 ∨ a0.3012 ∨ a0.03 } ← d1.0

C56 : {5∗ ∨ 6∗ ∨ a0.01 ∨ a1.02 ∨ a0.03 } ← d1.0

The maximum object coverage of this feature subset {a3}
is either {x1, x3, x4, x5} or {x1, x2, x4, x5}, if the objects
{a2, a6} or {a3, a6} are considered as outliers, respectively,
and cov(BHnew) = 4

6 . If ε = 0.4, then this new harmony will
have a fitness evaluation of 2 − 2 × 0.4 − 0.66 = 0.54. It
replaces the existing worst harmony, if it achieves a higher
fitness evaluation (or equal evaluation but more compact in
size). The process iterates for kmax numbers of iterations.

IV. CLASSIFIER ENSEMBLE WITH ε-BIREDUCTS

For a given data set of significant complexity, a family
B of quality (while not always equally optimal) feature
subsets may be discovered using a stochastic search algorithm.
Any such feature subset B ∈ B may be used to train a
subsequent classifier learner, and a diverse feature subset-based
classifier ensemble [17] may be constructed. Ensemble methods
commonly achieve better predictive performance than that of a
single classifier, as they exploit the uncorrelated errors within
the group as a result of their diverse internal models [18].

Following the existing investigations carried out for rough
set-based ensemble of bireducts [19], this paper explores the
potential of feature subset-based classifier ensembles built on
the basis of fuzzy-rough ε-bireducts. The simultaneous selection
of both features and training objects [12] are particularly
beneficial for the construction of diverse classifiers, since the
objects in Y have been selected specifically for the features in
B, and are best used to learn from the data using those features.
The amount of training objects may be individually configured
by specifying ε, which may help to control the space and time
complexities of the resultant learned models.
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Fig. 2. Generic framework for ε-bireduct-based classifier ensemble

A generic framework for ε-bireduct-based classifier ensem-
ble is presented in Fig. 2. In order to construct an ensemble
of classifier E = {El | l = 1, · · · , |E|}, a group of bireducts
{(Bl, Y l) | l = 1, · · · , |E|} needs to be identified first. In
this figure, each of the dashed blocks of components forms
an individual ε-bireduct-based classifier El, l ∈ {1, · · · , |E|},
where the objects in Y l are employed to train the classification
algorithm in conjunction with only the features in Bl.

Although the underlying theoretical notions are different,
the work procedure of an ε-bireduct-based classifier ensemble
is in principle, similar to that of an ordinary feature subset-
based classifier ensemble [17], [20], [21], and that of a rough
set-based bireduct ensemble [19]. Therefore, further detailed
explanations regarding its operations are omitted due to space.
Note that any ensemble aggregation method such as majority
vote [22] may be employed to combine the prediction outputs
of the base learners.

V. EXPERIMENTATION

A number of experiments have been carried out in order to
demonstrate the capability of the proposed HSFSBR algorithm
and the resultant ε-bireduct-based classifier ensemble. In total,
nine benchmark data sets taken from the UCI machine learning
repository [23] are employed. Information regarding the selected
data sets and the parameter settings of HSFSBR employed in
the experiments is summarised in Table IV. The classification
algorithms adopted in the experiments include two commonly
employed techniques: 1) the tree-based C4.5 algorithm [24]
which uses entropy to identify the most informative feature at
each level, in order to split the training samples according
to their respective classes; and 2) the nearest neighbour
classifier using vaguely quantified fuzzy-rough sets (VQNN)
[25]. Obtaining possibly contrasting views of two different
types of base classifier helps to provide a more comprehensive
understanding of the qualities of the discovered bireducts.

Stratified 10-fold cross-validation (10-FCV) is employed
for result validation. The stratification of the data prior to its
division into different folds ensures that each class label has
equal representation in all folds, thereby helping to alleviate

TABLE IV. PARAMETER SETTINGS AND DATA SET INFORMATION

|H| |P | δ gmax

10 |A| 0.9 2000

Data set Features Objects Classes

cleveland 14 297 5
ecoli 8 336 8
glass 9 214 6
heart 13 270 2

ionosphere 35 230 2
libras 91 360 15
sonar 61 208 2
water 39 390 3
wine 14 178 3

bias/variance problems [26]. The classifier ensembles are
trained using the bireducts identified for each of the cross-
validation folds, and then tested for its accuracy using the
corresponding test folds. The accuracies of the full (unreduced)
data sets are also given for comparison. In this preliminary
investigation, ensembles of size 10 (|E| = 10) are employed.

Tables V to VII show the classification accuracies for the
ensembles, which are constructed on the basis of the two
base classification algorithms, with respect to three different
values of ε = 0.1, 0.2, 0.3. For instance, for Table V, the
value of ε is set to 0.1. This means that the bireducts are
expected to cover at least 90% of the training objects. The
averaged object coverage AVG( |Y ||U| ) indicates that the proposed
HSFSBR algorithm can indeed identify bireducts according to
the specified ε constraints. Distinctive improvements can be
observed for C4.5-based ensembles for 7 of 9 cases, when
compared to the models built using the original, unreduced
data sets. VQNN-based ensembles have also been improved
for 3 data sets: cleveland, heart, and wine. As the
value of ε increases, the averaged sizes of the selected feature
subsets become much smaller, but the improvement in terms
of classification accuracy (over unreduced data) also becomes
less evident. However, with such levels of reduction in data,
this is expected.

It is important to point out that all the base classifiers
employed in the experiments are trained using only the objects
selected by the ε-bireducts, while the number of features is also
greatly reduced in each case. Therefore, the accuracies of the
learned models, when employed individually, may appear worse
than those obtainable using the original, unreduced data. The
experimental results demonstrate that, by combining the outputs
of such individually weak base classifiers in an ensemble setting,
the classification accuracy can be greatly improved.

The results also reveal a significant and pronounced effect
upon the data set libras, which has 91 features and 15
possible class labels. Although the base classifiers (each trained
on < 7% of features) can only achieve ≈ 40% accuracy
on average, their combined performance outperforms models
learned using the unreduced data (with C4.5). This is a very
positive indication that the proposed ensemble structure is
effective, and that there is a good level of diversity within the
discovered bireducts. The use of ensembles also helps avoid
situations where minority classes may suffer from reduced
representation in the final bireduct due to their high frequency
of appearance in the clause lists. Furthermore, the value of ε not
only has a direct impact on the number of covered objects |Y |,
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TABLE V. ENSEMBLE CLASSIFICATION RESULTS FOR ε = 0.1 (90% INTENDED OBJECT COVERAGE)

Data Set C4.5 Classification Accuracy (%) VQNN Classification Accuracy (%) Bireduct Coverage (%)

Ensemble AVG Base Unreduced Ensemble AVG Base Unreduced AVG( |B|
|A| ) AVG(

|Y |
|U| )

glass 68.25 68.16 67.79 64.90 63.19 64.87 94.33 90.29
cleveland 52.25 52.43 53.85 56.98 53.85 52.22 45.57 89.90
heart 81.48 76.33 74.81 78.89 75.41 75.93 47.08 90.12
ionosphere 89.13 83.17 81.30 80.87 76.43 82.61 14.29 89.86
libras 70.56 48.42 64.72 63.61 49.44 65.28 6.91 90.12
sonar 76.45 65.43 74.57 74.95 67.07 76.00 9.33 89.85
water 82.05 78.18 81.28 78.97 78.33 81.79 14.49 90.03
wine 94.31 84.62 93.73 93.86 87.53 93.20 30.36 90.01
ecoli 79.73 79.91 80.61 84.52 84.75 84.48 63.75 90.58

TABLE VI. ENSEMBLE CLASSIFICATION RESULTS FOR ε = 0.2 (80% INTENDED OBJECT COVERAGE)

Data Set C4.5 Classification Accuracy (%) VQNN Classification Accuracy (%) Bireduct Coverage (%)

Ensemble AVG Base Unreduced Ensemble AVG Base Unreduced AVG( |B|
|A| ) AVG(

|Y |
|U| )

glass 67.45 65.32 65.43 63.18 62.76 68.23 69.44 80.27
cleveland 55.57 52.54 53.85 56.23 52.06 52.21 44.36 80.17
heart 74.82 73.37 74.82 75.93 70.37 75.93 32.54 80.25
ionosphere 89.13 79.65 81.30 79.13 72.83 83.04 11.57 80.19
libras 71.67 43.69 64.72 61.94 43.36 64.72 6.62 79.94
sonar 73.14 62.80 74.57 73.07 64.13 75.60 6.56 80.23
water 77.69 76.15 81.28 74.87 76.10 81.54 11.31 80.06
wine 88.17 78.53 93.73 85.29 78.68 93.20 27.36 80.02
ecoli 77.65 77.97 80.62 81.53 81.41 84.48 64.38 80.09

TABLE VII. ENSEMBLE CLASSIFICATION RESULTS FOR ε = 0.3 (70% INTENDED OBJECT COVERAGE)

Data Set C4.5 Classification Accuracy (%) VQNN Classification Accuracy (%) Bireduct Coverage (%)

Ensemble AVG Base Unreduced Ensemble AVG Base Unreduced AVG( |B|
|A| ) AVG(

|Y |
|U| )

glass 57.49 56.95 65.82 55.63 56.42 65.48 57.78 70.09
cleveland 57.25 54.17 50.59 57.61 54.15 54.94 37.50 70.07
heart 67.41 68.15 77.78 66.67 65.07 75.56 26.92 70.03
ionosphere 76.52 72.48 85.65 73.04 67.04 83.04 9.37 70.05
libras 62.50 41.50 70.83 58.61 40.58 67.78 5.80 70.06
sonar 77.81 66.33 73.12 75.45 66.14 76.93 6.80 70.09
water 76.38 73.33 83.09 78.17 76.00 81.54 11.84 70.12
wine 80.35 75.42 93.73 74.15 73.70 93.20 25.50 70.06
ecoli 72.26 71.54 80.62 74.06 73.47 84.48 50.75 70.45

but also on the number of selected features. This is important
to note, as essentially any reduction achieved using a fuzzy-
rough bireduct results in a sub-table of the original data. It
is encouraging therefore to observe that an ensemble of such
sub-tables has the ability to offer increased performance when
compared to the use of unreduced data.

VI. CONCLUSION

This paper has presented a heuristic strategy for the purpose
of identifying quality fuzzy-rough bireducts. The challenging
task of simultaneous feature and instance selection or reduction
has been tackled by employing the music-inspired harmony
search algorithm. The notion of ε-bireduct is the key to
identifying the desirable candidate solutions, as it helps as
a guide to partially quantify the balance between the number
of features and data instances to be formed in a given bireduct.
The stochastic operations utilised by the proposed method help
to generate multiple, similar quality bireducts, from which
subsequent classifier ensembles can be constructed. The use
of ε-bireduct-based classifier ensemble alleviates the loss of
classification accuracy experienced by very compact bireducts,
making the resultant system more accurate and robust.

Although promising, the present work offers room for
improvement in a number of aspects. As it is a preliminary

investigation, no attempt has been made to optimise the
parameters and configurations for the employed methods
(including the choice of I , T , and the fuzzy similarity relation).
It can be expected that the performance of the proposed
approach with optimisation would be even better than that
presented here. Further, more in-depth, systematic comparative
studies and rigorous statistical evaluation of the developed
approaches (particularly with respect to the aspects regarding
the discovery of fuzzy-rough bireducts from high dimensional
data) remain active research.

It is worth noting that the complexity (in terms of both
space and time) of the fuzzy discernibility function [14] has
a high impact on the run-time efficiency of the bireduct
search process. Alternative representations or computational
procedures (i.e., the computation of the fuzzy-rough core
[6]) may offer a way in which to identify more important
fuzzy clauses. Also, it is interesting to investigate the relative
classification accuracies associated with the selected bireducts
as this would offer an insight into which sub-tables of features
and data instances are more important for the generation of
bireducts. Bireduct selection in a dynamic setting [11], [27]
is also a very interesting topic for further exploration. Last
but not least, it would be beneficial to investigate the diversity
and stability of the bireduct-based classifier ensembles, as the
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ensemble performance may be much improved if redundant
or misleading members are identified and removed. Indeed,
FS-inspired ensemble reduction methods [28] may provide a
means for achieving such goals.
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[19] D. Ślȩzak and A. Janusz, “Ensembles of bireducts: Towards robust
classification and simple representation,” in 3rd International Conference
on Future Generation Information Technology, 2011, pp. 64–77.

[20] J. S. Olsson, “Combining feature selectors for text classification,” in
Proceedings of the 15th ACM international conference on Information
and knowledge management, 2006, pp. 798–799.

[21] D. W. Opitz, “Feature selection for ensembles,” in Proceedings of 16th

National Conference on Artificial Intelligence, 1999, pp. 379–384.
[22] V. Torra and Y. Narukawa, Modeling Decisions: Information Fusion

and Aggregation Operators. Springer, 2007.
[23] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.

[24] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed., ser. Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, Jun. 2005.

[25] R. Jensen and C. Cornelis, “Fuzzy-rough nearest neighbour classification,”
in Transactions on Rough Sets XIII, ser. Lecture Notes in Computer
Science, J. Peters, A. Skowron, C.-C. Chan, J. Grzymala-Busse, and
W. Ziarko, Eds. Springer Berlin Heidelberg, 2011, vol. 6499, pp. 56–72.

[26] Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of
K-fold cross-validation,” Journal of Machine Learning Research, vol. 5,
pp. 1089–1105, Sep. 2004.
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