
 
 

 

  

Abstract— Fuzzy rule based systems have been successfully 
applied to the pattern classification problem. In this research, 
we proposed an iterative mixed-integer programming algorithm 
to generate fuzzy rules for fuzzy rule-based classification 
systems. The proposed model is capable of assigning the 
attributes to the antecedents of rules so that their inclusion 
enhances the accuracy and coverage of that rule. To generate 
several diverse rules per class, the integer programming model 
is run iteratively and all samples predicted correctly are 
temporarily removed from the training dataset in each iteration. 
This process ensures that subsequent rule covers new samples in 
the associated class. The proposed model was evaluated on the 
benchmark datasets from the UCI repository and this 
comparative study verifies that this approach extracts accurate 
rules and has advantage over conventional approaches for high 
dimensional datasets. 

I. INTRODUCTION 
he capability of Fuzzy Systems in establishing a 

precise model has been confirmed, especially when 
the system deals with ambiguous and imprecise data. 
Recently, Fuzzy Rule-based Systems (FRBSs) have 

been successfully applied to the pattern classification 
problem [1], [2]. Their potential power to encompass 
nonlinear and complex relations in a system by using 
linguistic and easily understood terms makes them 
appropriate tools to extract embedded data in classification 
problems. The main advantage of FRBSs is that their 
interpretable linguistic models are easily understood by the 
users and can be obtained either from an expert, analyzing 
data by mathematical approaches, or both. 

Different approaches have been proposed for designing 
optimal fuzzy classifiers such as artificial neural networks 
[3]-[5], heuristic approaches [2], clustering methods [6], [7] 
and genetic algorithms (GA) [8]-[14]. Among all employed 
methods, GA has been broadly used for Fuzzy Rule Based 
Classification Systems (FRBCSs), recently. It has been 
applied in FRBCSs in two different approaches. 

In the first approach, GA is employed to generate fuzzy 
rules that have common fuzzy sets in share. In this method, 
number of fuzzy sets per attribute and their membership 
functions are determined in advance and GA is applied to find 
the best set of the rules based on the predefined fuzzy sets [8], 
[12], [15]-[17]. The main disadvantage of this approach is 
that it may not obtain good solutions because fuzzy sets and 
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rules have mutual relationships and optimizing one without 
considering the other one may lead to poor outcomes. To 
overcome this issue, we will solve the model for different 
fuzzy sets and then select the design that has the most 
accurate outcome.   

In the second approach, GA is applied to generate fuzzy 
rules that have their own definition of membership functions. 
In this approach both fuzzy rules and membership functions 
are optimized simultaneously. The major disadvantage of this 
approach is that it has a larger decision space and finding an 
optimal solution is more difficult [13], [18], [19]. 

Aydogan et al, proposed a hybrid GA for FRBCSs that 
follows the first mentioned approach. They applied a GA to 
obtain optimal fuzzy rules over predefined fuzzy sets and then 
among the rule pool, the set of most accurate rules that covers 
almost whole training dataset is selected by an integer 
programming model. 

Li and Wang, proposed a hybrid GA that pursues the 
second mentioned approach [13]. Their proposed model 
optimizes fuzzy rules and membership functions 
simultaneously. They developed a local search algorithm that 
improves the quality of the rules obtained by a GA. 
Comparative study of their proposed hybrid method shows 
that their algorithm performs well on the well known 
benchmark datasets. 

In this study we propose an iterative Mixed-Integer 
Programming Model (MIPM) to obtain optimal fuzzy rules 
for FRBCSs. The model obtains optimal fuzzy rules for a 
predefined set of fuzzy sets and membership functions. The 
main advantage of MIPM is that the antecedents of the 
optimal rule consist of only the attributes that their 
involvement in the optimal rule contributes in enhancing the 
accuracy and coverage of it. It means the antecedent part of 
the optimal fuzzy rule is a main decision variable in our 
model and the goal is to determine which attributes and fuzzy 
sets should be included in the antecedent part of the optimal 
rule. To incorporate the degree of accuracy and coverage of a 
rule in the MIPM, we develop a new linear approximation for 
these terms that can be used in integer programming model.  

 The remainder of this paper is organized as follows. Some 
basic concepts of FRBCSs are introduced in section II. The 
MIPM notation and formulation are described in section III. 
Computational results and comparative results are reported in 
section IV and finally a summary of this research and the 
direction of the future works follow in section V. 

II. FUZZY RULE-BASED CLASSIFIERS 

Suppose that the training dataset contains m training 
patterns or samples with n attributes. It means every sample 
of this dataset can be presented as an n-tuple Si=(si1, …, sin) , i 
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= 1,2,. . .,m, where sij is the value of the jth attribute (j = 1,2,. 
. .,n) of the ith training sample. A fuzzy rule considered in this 
research is in the form of the following rule: 

CclassthenAissandandAissifRRule nnknkq …111:  

where S=(s1, …, sn) is the input vector of an example, ܣ௝௞ೕ  is 
the kth fuzzy linguistic variable of jth fuzzy antecedent of rule 
Rq. Figure 1 represents a fuzzy set consisting of five fuzzy 
linguistic variables which have normal symmetric triangular 
membership functions. In this research we use similar fuzzy 
sets with two to six fuzzy linguistic variables. To evaluate the 
degree of association of a pattern to a rule, the compatibility 
degree of that pattern to all antecedents of the rule should be 
computed. Suppose that ߤ஺ೕೖೕ  is the membership value (௜௝ݏ)
of the jth attribute of the input sample i in the kth linguistic 
variable of this attribute, then the degree of compatibility of 
sample Si with the fuzzy rule Rq is obtained as: 
 misssS inAiAiAiA nnkkkq

…… 1,)()().()( 21 2211
== μμμμ  (1) 

For a normal fuzzy set, the degree of compatibility of a 
sample to a rule is between zero and one in which zero shows 
the sample does not belong to the rule and one shows the rule 
covers the pattern perfectly, i.e. the sample has membership 
values of one in all antecedents of the rule. Different factors 
have been proposed to evaluate effectiveness of a rule in 
FRBCSs. Among these factors, the two that have most 
frequently been used by researchers to evaluate accuracy and 
coverage of a rule are denoted by confidence and 
completeness [13]. 

Confidence measures accuracy of a rule and is defined as: 
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where η+(Rq) and η-(Rq) are the sums of the degree of 
compatibility of the samples that are predicted correctly and 
incorrectly with the rule Rq, respectively, and are computed 
as: 
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Here Cq represents the class that rule Rq belongs to. 
Completeness computes the proportion of the samples that 
are correctly covered by the rule Rq, and is defined as: 
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where ஼ܰ೜ is number of samples of training dataset that 
belong to class Cq. These two factors are used to control the 
accuracy and coverage of the optimal rules in MIPM. Using 
the compatibility degree of a rule as demonstrated in 
expression (5) makes our model nonlinear because although 
the membership values of samples to all fuzzy sets of the 
attributes are known, the compatibility degree of a pattern 
with the optimal rule depends on the set of all active 
antecedents of that rule, which is calculated by the following 
nonlinear term: 
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where xjk is a binary decision variable and equals 1 if 
antecedent k of attribute j is selected in the optimal rule and 0 
otherwise. To prevent using this nonlinear term in our model, 
we approximate the compatibility degree of a pattern i with a 
rule Rq by the following equation: 
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where η(Rq) is the number of antecedents of rule Rq. Like ߤ஺೜( ௜ܵ) , ́ߤ஺೜( ௜ܵ) would have a value between 0 and 1 in 
which 0 shows the rule does not cover the sample and values 
close to 1 show the sample is more compatible with the rule. 
Using this approximation, the compatibility degree in MIPM 
would look like the following equation: 
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This equation is still not linear because the denominator is 
still a decision variable in our model. This is due to the fact 
that the model is capable of choosing the best set of 
antecedents for the optimal rule and hence  η(Rq) is a decision 
variable that depends on the number of antecedents of a rule; 
however, this term is used as a constraint in our model to 
force the optimal rule to satisfy minimum levels of 
confidence and completeness.  Therefore, it is simply 
converted to a linear constraint as its right hand side is a 
parameter. 

III. MODEL 
In this section we describe the settings of the model and 
provide the mathematical formulations of the MIPM.  

A. Notation 
The parameters and sets that used in the MIPM are listed in 

the Table I. The following are the decision variables used in 
the model: 

 
Fig. 1.  Fuzzy membership functions of attribute j with five fuzzy 
linguistic labels. 
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γi : degree of compatibility of sample i with the optimal rule 
without considering classes, i.e., compatibility degree of 
corrected and uncorrected predictions with the optimal rule.  
ηic : degree of compatibility of sample i with the optimal rule 
that belongs to class c, i.e., compatibility degree of corrected 
predictions with the optimal rule. 

B. Formulation: 
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In this model, objective (9) is to find a rule with the 
maximum number of corrected predictions. Constraint (10) 
ensures that at most one fuzzy linguistic variable is selected 
per attribute. Constraint (11) guarantees that the optimal rule 
belongs to only one class. Constraints (12), (13), (14), (15) 
and (16) determine the compatibility of the patterns with the 
optimal rule for both corrected and uncorrected predictions. 
As demonstrated in (8), even if one attribute of a sample does 
not belong to the fuzzy linguistic variable of the associated 
antecedent in the optimal rule then the compatibility degree 
of that pattern with the rule would be zero. Also, these sets of 
constraints ensure that just those attributes included as 
antecedents in the optimal rule improves the accuracy and 
coverage of the rule. In the other words, this set of constraints 
decide which fuzzy linguistic variable of which attribute 
should be included as an antecedent in the optimal rule to 
maximize the coverage and accuracy of the rule.  

 Constraints (17) and (18) determine the compatibility 
degree of the samples that are predicted. Constraint (19) and 
the objective function together maximize the number of 
samples that covered by the rule. Constraints (20) and (21) 
restrict the optimal rule to meet the minimum acceptable 
levels of completeness and confidence. 

This mixed integer programming model obtains a rule 
which covers the largest proportion of the samples belonging 
to its class and meets the minimum level of accuracy and 
completeness defined by (2), (5) and (8). Usually one rule 
cannot cover all samples belonging to a particular class 
especially when high dimensional classification problems are 
considered. To accurately classify all samples belonging to a 
particular class, we need to extract all of the embedded 
knowledge in the training dataset by finding as many as rules 
as needed to cover almost all samples belonging to that class. 
To generate multiple rules for each class we use MIPM as the 
main part of an iterative algorithm that generates a new 
optimal rule per iteration and removes all correctly covered 
samples from the dataset to prepare it for extracting the next 
rule in the next iteration. This procedure is as follow: 

After initializing parameters of the MIPM, it is run for the 
first class. To force the model to obtain a rule belonging to the 
first class, the following constraint is added to MIPM: 

1=cCL                    (22) 
where c=1 at this point. If a nonzero solution exists then that 
rule is added to the rule pool and all samples that have been 
covered correctly by this rule are temporarily removed from 
the training dataset. Then MIPM is run again to obtain the 
next rule belonging to this class. If in any iteration a nonzero 
solution does not exist then the accuracy level (α) is 
diminished by 5 percent and the algorithm continues. This 
process continues until 95 percent of the samples belonging to 
the first class being removed from the dataset. It means this 
process repeats to cover at least 95 percent of the samples 
belonging to a particular class. Then all the parameters 
including the accuracy level are reinitialized and the 
algorithm is restarted by selecting the next class. This process 
is repeated for all classes in the training dataset. Table II 
represents the overall pseudo-code of the proposed algorithm. 

TABLE I 
NOTATION OF PARAMETERS 

I Set of samples 
J Set of attributes 
K Set of fuzzy sets for each attribute 
C Set of classes 
μijk Membership value of sample i for kth fuzzy antecedent of 

attribute j 
Nc Number of Samples in class c Βic Equal to 1 if sample i belongs to class c and 0 otherwise α Minimum level of confidence σ Minimum level of completeness  
ε Arbitrary small enough number 
M1,…, M5  Arbitrary large enough number 
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C. Rule reduction strategy 
Constraint (21) ensures that the optimal rule meets the 

minimum level of completeness (σ). Determining an 
appropriate value for σ generally depends on the training dataset and can be done by trial and error. Higher values of σ (close to one) restrict the model to obtain a rule that covers most samples belonging to its associated class. Our experiments show that this may become an issue when MIPM attempts to obtain the second or subsequent rules in the same class as they may cover much fewer samples and have smaller completeness in compared with the first generated rule. Therefore a large σ may lead to infeasible solutions for second or subsequent rules. On the other hand, assigning small values (close to zero) to σ may make the constraint (21) so loose that the last generated rules in the same class only cover a few samples or even in some extreme cases just one sample. One approach to overcome this challenge is to find the most appropriate value of σ for each dataset by trial and error. The disadvantages of this approach are that extensive computational effort is required and for every dataset a different value of σ would be used. The other approach is to assign a relatively small value to σ in order to avoid infeasibility and then at the final step, prune inaccurate rules that cover a small portion of the dataset by removing them from the rule pool. We applied this latter approach in this study and developed a simple algorithm that removes the rules that cover just one sample in the training dataset or have an accuracy of less than 20 percent.  

D. Fuzzy Reasoning Method The fuzzy reasoning system determines which rule most 
accurately classifies a particular sample. In this study the 
maximum matching method was used as a fuzzy inference 
method. This method classifies a sample by using a rule that 
has highest compatibility degree with that sample and ignores 
the information that is given by the other rules. Equation (7) is 

used to calculate the compatibility degree of a sample with 
the rules. 

There are usually a few samples in the training or test 
datasets that cannot be classified by any rule. It means the 
compatibility degrees of these samples with all of the rules 
are zero and they are termed unclassified samples. We use the 
following strategy to prevent having unclassified samples in 
this research. If the compatibility degree of a sample with all 
rules computing by (7) yields zero, then (7) is relaxed to the 
following equation to compute the compatibility degree for 
such samples. 
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IV. EXPERIMENTAL RESULTS 

A. Datasets 
To validate and evaluate the effectiveness of the proposed 

model, we examined it on the well-known datasets obtained 
from UCI (University of California at Irvine) Machine 
Learning Repository [20]. We examined our model on eight 
datasets. Among these datasets five of them include 30 to 100 
attributes. We selected these high dimensional datasets to 
examine the performance of the proposed model on complex 
problems that have numerous attributes. The important 
characteristics of these datasets are presented in Table III. 

B. Experimental setup 
A 10 fold cross validation procedure was used for all 

experiments. Since the proposed model is a deterministic 
model, this procedure was performed three times by using 
three different seeds to obtain 30 independent datasets. 
Therefore the proposed model was run 30 times on each 
dataset and the averages of the results are reported.  

The parameters involved in the MIPM are presented in 
Table IV. MIPM was coded in OPL language using IBM 
ILOG CPLEX Optimization Studio 12.5 and ran in an Intel 
Core i7 CPU (3.4GHz) desktop computer. 

TABLE II 
THE OVERALL PSEUDO-CODE OF THE PROPOSED ALGORITHM 

Initialize parameters 
Design fuzzy sets 
Calculate membership values for all samples 
For all c belonging to classes in the training dataset do 

Set α to its maximum desired value 
Add the following constraint to MIPM: CLc=1 
While (remaining number of samples belonging to c is bigger than 
5% of initial number of samples belonging to c) do 

Run MIPM  
If an optimal solution exists Then 

Add the new solution to the rules pool 
Remove all samples correctly covered by the rule from the 
training set.  

Else 
Reduce α  

Continue 
Reset the training dataset by restoring all removed samples 
Remove the added constraint 

Continue 
Prune the rule pool 

TABLE III 
DATASET DESCRIPTIONS 

Dataset Number of 
attributes classes Patterns 

Glass 9 6 214 
HillValey1 100 2 1212 
HillValey2 100 2 1212 
Iris 4 3 150 
Libras Mov. 90 15 360 
Sonar 60 2 208 
Wdbc 30 2 569 
Wine 13 3 178 

 
TABLE IV 

PARAMETER SETTINGS 
Parameter Value α 20%-100% σ 20%-80% 
K 2-6 
M1,…,M5 1000 
ε 0.0001 
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C. Analysis of designing fuzzy sets 
The initial part of performing experiments is to design 

fuzzy sets and compute the membership values for all 
samples of the training dataset. Designing fuzzy sets is not a 
part of the optimization in MIPM and fuzzy membership 
functions are instead given to the model as input parameters. 
Therefore any type of membership functions is allowed to be 
defined. In this study, we assumed all fuzzy sets have normal 
symmetric triangular membership functions like Figure 1. In 
order to find the proper number of fuzzy sets that maximizes 
predictive accuracy, we carried out all experiments for two to 
six fuzzy sets per attribute. Percentages of the predictive 
accuracy for the training datasets (%Tra), test datasets 
(%Test), number of generated rules (#Rules) and 
computational times (Comp) in minutes are presented in 
Table V. The experimental results show that the predictive 
accuracy and number of generated rules enhance as the 
number of fuzzy sets increases. This behavior was expected 
because the fuzzy sets cover smaller intervals of their 
associated attributes when the number of fuzzy sets increases. 
That is, each fuzzy set covers a smaller portion of the solution 
space and, as a consequence, more rules are required to cover 
the dataset.  On the other hand, the common interval between 
two adjacent fuzzy sets shrinks as the number of fuzzy sets 
increases. This means the fuzzy sets become less ambiguous 
because outlier data is removed as a result of this shrinkage of 
the membership functions. This accuracy in the fuzzy sets 
leads to an increase in predictive accuracy of the fuzzy rules. 
Table V presents that the highest average predictive accuracy 
was achieved by increasing the number of fuzzy sets to five. 

The average predictive accuracy reduces as number of fuzzy 
sets increases to six. This reduction occurs because by 
dividing an attribute into too many fuzzy sets, each fuzzy set 
covers a small interval of its associated attributes. As these 
intervals become smaller, the fuzzy sets converge to crisp 
sets. In such a case, FRBCS loses its capability to accurately 
classify the problem. Our experiment on the aforementioned 
datasets shows that MIPM obtains the highest predictive 
accuracy with five fuzzy sets.  

In terms of computational effort, Table V shows that the 
average computational time of MIMP increases as the 
number of attributes increases in the datasets. We expected 
this behavior because high dimensional problems demand 
more computational resources.    

D. Comparative analysis with other FRBCS methods 
 In order to demonstrate the competitive performance of 

the proposed algorithm, we compare the predictive accuracy 
of the proposed algorithm on the training and test datasets as 
well as the number of generated rules with the ones obtained 
by three different genetic algorithms: 2SLAVE [21], 
FRBCS-GP [22] and GP-COACH [22]. Table VI compares 
the predictive accuracy and number of rules obtained by 
MIPM and the above mentioned classifiers on the training 
and test datasets. The results of the comparative algorithms 
were obtained from [22]. As it can be seen from the table, 
MIPM achieved the highest predictive accuracy in the Glass, 
Libras Mov. and Sonar datasets. In the other datasets, the 
results of MIPM are very close to the highest predictive 
accuracy obtained by the other methods. Table VI shows that 
MIPM achieved higher average predictive accuracy than the 

TABLE VI 
PREDICTIVE ACCURACY OF MIPM AND OTHER FRBCS METHODS 

Dataset 
 2SLAVE  FRBCS-GP  GP-COACH  MIPM 
 %Tra %Test #Rules  %Tra %Test #Rules  %Tra %Test #Rules  %Tra %Test #Rules 

Glass  49.29 44.39 8.80  61.28 56.61 23.47  71.26 65.33 17.43  81.01 66.98 25.30 
HillValey1  52.52 51.76 6.63  50.48 49.78 26.93  53.96 52.89 7.27  52.13 51.84 4.03 
HillValey2  52.53 51.21 6.40  51.28 50.69 34.33  55.68 53.99 6.90  52.38 51.82 3.30 
Iris  94.67 94.67 3.93  97.65 97.11 3.00  97.78 97.56 3.23  97.04 96.44 8.87 
Libras Mov.  33.15 25.83 25.53  56.24 47.69 49.77  74.22 45.56 113.93  97.42 70.19 36.60 
Sonar  78.45 70.72 9.33  83.30 71.15 20.97  80.25 67.48 14.03  97.72 79.83 9.67 
Wdbc  92.42 91.80 5.47  95.60 95.02 16.30  95.09 93.90 4.90  96.04 94.73 6.03 
Wine  92.22 91.53 5.73   95.84 91.13 9.60   98.96 95.10 7.57   98.15 94.76 6.80 

Average  68.16 65.24 8.98  73.96 69.90 23.05  78.40 71.48 21.91  83.99 75.82 12.58 

TABLE V 
PREDICTIVE ACCURACY FOR DIFFERENT DESIGNS OF FUZZY SETS 

Dataset 
 2 Fuzzy Sets  3 Fuzzy Sets  4 Fuzzy Sets  5 Fuzzy Sets  6 Fuzzy Sets  

Comp (min)
 %Tra %Test #Rules  %Tra %Test #Rules  %Tra %Test #Rules  %Tra %Test #Rules  %Tra %Test #Rules  

Glass  49.42 49.52 4.10  62.10 57.14 11.23  75.47 62.70 20.63  81.01 66.98 25.30  73.97 57.86 24.05  4 
HillValey1  50.38 49.59 2.00  47.77 50.00 1.87  51.21 51.32 2.50  52.64 51.35 4.00  52.13 51.84 4.03  63 
HillValey2  50.77 49.86 2.00  50.93 50.83 2.00  52.38 51.82 3.30  51.93 51.10 4.00  51.63 50.99 4.00  64 
Iris  84.94 84.89 3.00  86.99 85.56 5.47  97.23 95.56 6.03  97.04 96.44 8.87  95.41 93.33 7.07  3 
Libras Mov.  85.30 23.33 15.00  94.38 58.61 47.20  97.33 69.91 37.33  97.45 68.70 38.87  97.42 70.19 36.60  52 
Sonar  67.78 52.75 2.05  96.30 76.50 10.77  97.76 76.17 9.93  97.72 79.83 9.67  97.89 73.17 10.63  27 
Wdbc  68.46 68.01 2.00  94.71 94.14 4.80  96.04 94.73 6.03  96.03 94.26 6.40  96.38 93.85 7.63  8 
Wine  86.33 86.52 3.00  95.13 88.20 11.97  96.53 94.19 5.93  98.15 94.76 6.80  98.02 92.32 7.63  3 

Average  67.92 58.06 4.14  78.54 70.12 11.91  82.99 74.55 11.46  84.00 75.43 12.99  82.86 72.94 12.71  28.00 
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other methods. In terms of the number of rules, MIPM 
generates fewer rules, on average, than FRBCS-GP and 
GP-COACH but produces more rules than 2SLAVE. 
Comparing the predictive accuracy of MIPM and 2SLAVE 
shows that in all datasets MIPM achieved more accurate 
results than 2SLAVE. It shows that the higher number of 
rules produced by MIPM did not lead to over fitting. In fact, 
the iterative structure of MIPM enables it to produce more 
accurate rules since it uses an exact optimization technique 
that makes it capable of recognizing patterns in the datasets. 
The fact that our model achieved the highest predictive 
accuracy on the Libras Mov. and Sonar datasets and obtained 
very close results to the most accurate model on the 
HillValey1 and HillValey2 datasets (which are among the 
most high dimensional datasets in the literature) provides 
evidence that our model is very capable of extracting accurate 
rules from complicated and high dimensional datasets. 

V. CONCLUSIONS 

In this paper we developed an iterative mixed-integer 
programming model to generate fuzzy rules for fuzzy 
rule-based classification problems. The proposed model is 
capable of assigning attributes to the antecedents of rules in 
an optimal manner so that their inclusion maximally 
improves the accuracy and coverage of that rule. To linearize 
the commonly used nonlinear expression to compute 
accuracy and coverage of rules, we developed a linear 
approximation to estimate accuracy and coverage of a rule. 
The iterative algorithm generates an optimal rule per iteration 
and removes correctly predicted samples from the training 
dataset in that iteration. This process guarantees that 
repetitive solution is not generated and new useful knowledge 
is discovered during each iteration.  

Comparative study of the proposed algorithm on 
benchmark datasets from UCI repository verifies that it 
extracts accurate rules from training datasets and results in 
high predictive accuracy. Although, the proposed algorithm 
performed well on the training datasets, there are still 
possibilities to improve its effectiveness in future studies. 
Developing a multi objective model and a branch and cut 
technique to solve large problems are two directions to 
improve this approach. 
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