
 
 

 

  

Abstract— While smart grid disturbances are inevitable, their 
effects can be minimized through intelligent power management 
and control. SmartParks (large numbers of electric vehicles 
capable of performing bidirectional power transactions) or 
energy storage systems can be used to improve the transient 
stability of a smart grid with wind farms when faults are 
experienced. In this paper, the speed oscillations in conventional 
generators are minimized by optimizing a fuzzy logic controller 
performing coordinated control between SmartParks and a 
wind farm. A novel heuristic search based algorithm, mean 
variance optimization, is applied for the optimization tasks. The 
results demonstrate the improvement in the overall transient 
stability of the system operating under disturbances at different 
locations in the system. 

I. INTRODUCTION 

 
HE analysis of disturbances such as grid faults and 

power fluctuations in power systems has gained 
importance with recent increases in the use of power 
electronic devices connected to the grid [1]. Such devices 
include doubly fed induction generator (DFIG) based wind 
farms and plug-in electric vehicle parking lots (SmartParks). 
The sensitivity of these devices causes problems when faults 
and power deviations occur. In DFIGs, the induction 
generator is connected to the grid at the stator terminals, but 
the rotor terminals are connected via a partial-load, variable 
frequency, AC/DC/AC converter and a transformer [2]. This 
increases the efficiency of a DFIG because the variable 
frequency converter (VFC) requires only a fraction of the 
total power to achieve full control of the generator.  

Power fluctuations can be reduced and dynamic 
performance improved during transient disturbances in 
DFIGs through decoupled control of the generator’s active 
and reactive power [3]. However, the VFC of a DFIG and its 
power electronics (IGBT-switches) are highly sensitive to 
transient disturbances in power networks. When subjected to 
faults or voltage sags, the rotor-side converter of the VFC 
might become blocked due to protection from overcurrent in 
the rotor circuit, and the wind turbine can be tripped from the 
system [2]. The VFC is controlled by a set of proportional 
integral (PI) controllers. With optimally designed controllers, 
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the wind generator can withstand transient grid disturbances 
under a range of different wind speed conditions.  

However, wind energy is variable in nature. If the wind 
speed is low, the maximum possible power is extracted from 
the wind turbine corresponding to that wind speed. If the wind 
speed is high, the pitch control actively limits the power 
generated from the wind turbine. This kind of power 
generation fluctuation in a wind farm connected to the grid 
may cause stability problems in the system. To solve this 
problem, the use of plug-in vehicle parking lots (SmartParks) 
for energy storage was proposed in [4]. The number of 
plug-in electric vehicles (PEVs) entering the market is 
increasing, and many of these vehicles are expected to 
participate in vehicle-to-grid (V2G) power transactions in the 
proposed smart grid infrastructure, where bidirectional power 
flow between the vehicle and the grid will become essential 
[5-6]. The use of SmartParks connected to the grid as energy 
storage mechanisms is proposed in [7] as a way to minimize 
the shock on the system due to wind gusts, reduce congestion 
in the transmission lines, and improve the stability of the 
system during rapid fluctuations in wind speed [7].  

A smart electric power grid consisting of a wind farm and 
multiple distributed SmartParks was presented in [4]. 
Investigations showed that it was necessary to retune the PI 
controllers as the wind speed changed and different grid 
disturbances occurred, despite the presence of energy storage. 
A practical power system should be capable of withstanding 
grid faults over a range of varying wind speeds. In order to 
achieve this goal, it is critical to tune the PI controllers of the 
rotor side converter (RSC) of the VFC. This study proposes a 
new stochastic optimization technique called the mean 
variance optimization (MVO) algorithm [8] to perform online 
tuning of controllers based on wind farm operating under 
variable wind speed conditions and grid disturbances. 

SmartParks can only be coordinated with wind farms 
using a proper control strategy. A fuzzy logic [9] based 
controller was proposed in [10] that uses the difference 
between the demand and availability of wind power and the 
overall state-of-charge of the SmartParks as inputs, and, 
according to certain rules, generates the charging or 
discharging power commands for the SmartParks and the 
pitch control reference of the wind farm. In this paper, a novel 
optimization method, mean-variance optimization (MVO), is 
applied to evolve an optimal fuzzy logic controller. The 
membership functions of the fuzzy logic controller are 
optimized in order to improve the transient stability of the 
smart grid by minimizing the oscillations in the wind farm 
output and the speed deviations of conventional generators in 
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the grid under the influence of grid faults at different 
locations. 

II.    MODELING OF THE TEST SYSTEM 
The smart grid test system includes a DFIG based wind 

farm and SmartParks (Fig. 1). The system has two other 
synchronous generators, an infinite bus, and three 
interconnected areas. The parameters of this system are given 
in [11]. A typical city will have several SmartParks 
distributed throughout at distances of one to a few miles. In 
order to represent this design, six three-phase PEV parking 
lots (PL1 to PL6 – 120 MW) are added to Area 2 of this 
system at bus 13, which is an additional bus added to the 
original 12-bus system [11] in order to connect the PEV 
SmartParks. Bus 13 is connected to bus 6 through 22 kV/230 
kV step-up transformers. The smart grid test system (Fig. 1) is 
implemented on a real-time digital simulator (RTDS) [12]. 

In this study, a 400 MW wind farm is modeled using a 
single DFIG. It uses back-to-back PWM converters for 
variable-speed wind power generation. The control objective 
of the grid-side converter is to keep the dc link voltage 
constant regardless of the magnitude and direction of the rotor 
power [3]. A stator-oriented vector control approach is used 
in which the direct axis current controls the dc link voltage 
and the quadrature axis current controls the reactive power 
and, in turn, the voltage at the point of common coupling. The 
objective of the RSC is to control the active and reactive 
power from the stator, which it achieves by positioning the 
d-axis of the rotor reference frame along the stator flux vector. 
The q-axis current reference is generated directly from the 
commanded electrical power, and the d-axis current reference 
is generated from the stator reactive power command. The 
electrical power command is generated from the optimum 
operating point tracking strategy, when the wind speed is 
below a certain value. The pitch control does not work at that 
time, and the wind turbine captures the maximum possible 
power at the available wind speed. However, if the wind 
speed exceeds a certain value, the pitch control limits the 
power generated by the wind turbine. Fig. 2 shows the 
rotor-side and grid-side converter control strategy. 

The SmartPark model in this paper is represented by a 
battery followed by a bidirectional, three-phase inverter (Fig. 
3) [13]. The inverter generates a 2.08 kV, three-phase, 
line-to-line rms voltage, which passes through a 
2.08kV/22kV step-up transformer and is connected to the 
SmartPark bus (bus-13 in Fig. 1). Between the inverter and 
the transformer is a small (0.5mH) inductance. The control of 
the inverters is designed in such a way that each inverter can 
draw ±20 MW of active power. Considering that each vehicle 
can draw ±25 kW, each SmartPark in this paper represents 
800 aggregated vehicles. Here, the ‘+’ sign indicates that the 
vehicles are selling power to the grid, i.e., they are in 
discharging mode, and the ‘-’ sign indicates that they are 
buying power from the grid, i.e., they are in charging mode. 
Fig. 4 depicts the control strategy for the PEV. In the d-q 

reference frame, the active and reactive powers coming out of 
the inverter are [14]: 

 
)()2/3( dsdsqsqs ivivP +⋅=

                           (1)         

)()2/3( qsdsdsqs ivivQ +⋅=                            (2)        
 
In the synchronous reference frame, the peak 

line-to-neutral voltage is in the q-axis, and 0=dsv . 
Therefore, the basis of the control is to command the currents 
in response to the demanded power: 

)()/()/()23/2( *** PPsKvPi ipeakqs −⋅+⋅=             (3) 

)()/()/()23/2( *** QQsKvQi ipeakds −⋅+⋅=             (4) 

The first component of (3) and (4) is based on the power 
equations given in (1) and (2), where vpeak is a filtered version 
of the line-to-neutral rms voltage. This component creates a 
fast response to sudden changes in the commanded power. 
The integral term trims out the steady-state error.  As shown 
in Fig. 3, a limit is placed on the commanded current to 
prevent integrator windup. The commanded q- and d-axis 
currents then are transformed to a-b-c variables, where delta 
current regulation is used to control the converter transistor 
switches. 

III. MEAN-VARIANCE OPTIMIZATION ALGORITHM  
 The MVO algorithm depicted in Fig. 5 is a new 
population-based stochastic optimization technique 
introduced in [7]. The mapping function transforms the 
uniformly distributed random variation into a population 
attained so far. The MVO algorithm, which finds the 
near-optimal solution, is simple to implement, requiring only 
one fitness evaluation per iteration regardless of the number 
of individuals in the population. 

In many other heuristic algorithms, this is not the case. The 
number of fitness evaluations is proportional to the number 
of individuals/particles/chromosomes in the population. 
Fitness evaluation is the most time-consuming task in tuning 
using heuristic approaches. Fewer fitness evaluations are 
preferred for fast, online tuning of PI controllers. The MVO 
algorithm is therefore a very attractive and computationally 
efficient algorithm for online controller tuning. 
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Fig. 1.Smart grid model consisting of a transmission network with a wind farm (400 MW) and large distributed SmartParks (120 MW). The rest of the 

parameters of the system are given in [11]. 
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Fig. 2.Rotor- and stator-side controls of the DFIG based wind farm. 
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Fig. 3. Dc voltage source (battery) followed by the inverter. 
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Fig. 4. Current control strategy for the SmartParks. 
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MVO requires a small population compared to other search 
based algorithms, such as Particle Swarm Optimization 
(PSO). The dimension of optimization is the number of 
parameters to be tuned. The fitness of the MVO is a 
performance index used to evaluate the system’s 
performance. The goal of the MVO is to maximize or 
minimize the fitness by changing the system parameters, 
which are limited by system constraints. The MVO also 
involves termination criteria, which means that it has a 
maximum number of allowed iterations. In [8], three 
selection criteria were proposed for selecting the dimensions 
to be mutated. The study described in the current paper 
employs random selection of one of six dimensions. Only 
one dimension at a time is selected for mutation because 
optimization is carried out online, and extreme changes in 
controller behavior could initiate system instability. The 
selected dimension is mutated using the process illustrated in 
Fig. 5. Finally, the best dimensions or system parameters are 
copied into the remaining dimensions so as to create a new 
offspring. 
 

 
Fig. 5. Mean variance optimization flowchart for PI controller tuning. 

IV. DEVELOPMENT OF OPTIMAL FUZZY LOGIC CONTROLLER  
Fuzzy logic is the logic underlying approximate, rather than 

exact, modes of reasoning [9]. Fuzzy logic controllers are 
based on a set of if-then rules that are developed based on 
experiential data. For example, if the difference between the 
available wind power and the demand is negative big and the 
overall state of charge is medium, then the SmartPark power 
command is positive (discharging) big and the pitch control 
reference is very high. 

Therefore, the inputs to the fuzzy logic controller form 
membership functions based on the if-then rules. A Sugeno 
fuzzy logic controller was proposed in [7]. This controller has 
triangular membership functions between which the entire 
range of inputs/outputs is distributed. The goal of the fuzzy 
logic controller (FLC) is to use the SmartParks for energy 
storage to reduce the shock on the system when there is a 
fault. Moreover, with an energy storage device, the wind 
power generation limit imposed by the pitch control during a 
wind gust can be increased, thus yielding a more optimal 
utilization of the wind energy. 

The maximum possible amount of charging and 
discharging by the parking lots will depend on the state of 
charge of the batteries of the plug-in vehicles present at those 
parking lots at that particular moment. Therefore, the 
aggregated state of charge of the parking lots and the wind 
power demand must be monitored continuously when using 
this control strategy. The wind power demand is compared 
with the actual wind power generated by the wind farm at that 
instant, and the difference is used as one of the inputs to the 
fuzzy controller. Based on these two inputs, the controller 
outputs the charging and discharging commands for the 
SmartParks, as well as the pitch angle reference for the wind 
farm. Fig. 6 shows the schematic diagram of the coordinated 
controller. Due to the nonlinearity in the relationships among 
these variables, it is very difficult to design a classical 
controller for this kind of coordinated control. A fuzzy logic 
controller is suitable for this purpose because it allows a set of 
rules to be derived that relate the variables using experiential 
knowledge. 
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Fig. 6. Optimized fuzzy logic based coordination controller. 

 
There are two inputs to the fuzzy logic controller: 

•  Difference between Wind Power Available (PW) and 
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Instantaneous Power Demand (PD): This input parameter 
varies from -250 MW to 250 MW. This range is 
distributed between five membership functions: NB 
(Negative Big), NS (Negative Small), Z (Zero), PS 
(Positive Small), and PB (Positive Big). The initial 
spacing is equal for each function (Fig. 7). However, 
MVO will be implemented to optimize the spacing of the 
membership function. 

-250 MW 0 83.33-83.33 250166.67-250 -166.67

 
Fig. 7. Membership function of first input (PW-PD) 

 
•  State of Charge of SmartParks (SOC): The SOC of the 

SmartParks varies between 20% and 80%. This range is 
distributed between seven membership functions: Very 
Low (VL), Low (L), Medium Low (ML), Medium (M), 
Medium High (MH), High (H), and Very High (VH). 
The initial spacing is equal for each function (Fig. 8).  

0.2 0.275 0.35 0.425 0.5 0.575 0.65 0.725 0.8

 
Fig. 8. Membership function of second input (SOC) 

 
There are two outputs from the fuzzy logic controller: 

•  Pitch Controller Reference: This output parameter varies 
within the narrow range of 1.15 to 1.25. This range is 
distributed between seven membership functions: Very 
Low (VL), Low (L), Medium Low (ML), Medium (M), 
Medium High (MH), High (H), and Very High (VH). 
The initial spacing is equal for each function. However, 
MVO will be implemented to optimize the spacing of the 
membership function depicted in Fig. 9. 

1.15 1.1625 1.175 1.1875 1.2 1.2125 1.225 1.2375 1.25

 
Fig. 9. Membership function of first output (pitch controller reference). 
 

•  Power Command of SmartParks: The power command of 
the SmartParks varies between +/- 120 MW. This range 
is distributed between seven membership functions: NB 
(Negative Big), NM (Negative Medium), NS (Negative 
Small), Z (Zero), PS (Positive Small), PM (Positive 
Medium), and PB (Positive Big). The initial spacing for 
the Sugeno membership function is equal (Fig. 10).  

-120 120-90 -60 -30 0 60 9030

 
Fig. 10. Membership function of second output (power command of 
SmartParks). 

 
Tables I and II contain the rule bases for the two outputs. The 
rules generate the weights for each output’s firing strength, 
and the final outputs are calculated using the center-of-area 
method. 
 

TABLE I 
RULE BASE FOR PITCH CONTROLLER REFERENCE 

 
SOC PW - PD 

NB NS Z PS PB 
VL VH VH VH VH VH 
L VH VH VH VH H 

ML VH VH VH H MH 
M VH VH VH H M

MH VH VH H MH ML
H VH VH MH M L 

VH VH H M L VL 
 

 
TABLE II 

RULE BASE FOR POWER COMMANDS TO THE SMARTPARKS 
SOC PW - PD 

NB NS Z PS PB 
VL PB PS Z NB NB 
L PB PS Z NB NB 

ML PB PM Z NB NB 
M PB PB Z NB NB

MH PB PB Z NM NB
H PB PB Z NS NB 

VH PB PB Z NS NB 
 

 
Fuzzy logic controllers can be improved further by 

optimizing the membership functions. MVO is used for this 
purpose. The following steps are followed to implement the 
MVO algorithm for developing optimal fuzzy logic 
parameters: 
i.  Population: A population of two is used, similar to [8].  

ii.  Dimension: The FLC consists of two inputs, one with 
seven parameters and one with nine parameters. The 
FLC also has two outputs with nine parameters each. 
Therefore, 34 parameters require optimization, which 
becomes the dimension of optimization.  

iii.  Fitness function: The goal of the MVO is to find the 
optimal parameters for the FLC by minimizing a fitness 
function. Optimization is carried out in order to 
minimize fluctuations in the generation speed of 
generator 2 (ω2) and the generator speed of generator 3 
(ω3) (Fig. 1). The following fitness function is used to 

350



 
 

 

evaluate the system’s transient response, where f1and f2 
are the wind power fluctuations, speed of generator 2, 
and speed of generator 3, respectively: 

 

f1= β2*Δ ω2,max+ (1-β2)*(ts2-t02) + α2*|Ess2|          (5) 

f2= β3*Δ ω3,max+ (1-β3)*(ts3-t03) + α3*|Ess3|           (6) 

 
 where ΔPwind,max, Δ ω1,max, and Δ ω3,max are the overshoot 

   wind power, overshoot generator 2 speed, and 
overshoot   generator 3 speed; (ts2-t02) and (ts3-t03) 
represent the settling time, and Ess2 and Ess3 stand for the 
steady state error. β2, β3, α2 and α3 are the weighting factors 
used  to satisfy different design requirements. A cumulative 
 fitness (Utotal) was computed as in (7), where k1 and k2 are 
the weighting constants for the terms f1, f2 and f3, respectively. 

Utotal =  k1. f1+k2. f2                                            (7) 
iv.  Limitations: The parameters of the FLC are allowed to 

vary between the specified limitations of the system. 
The difference between wind power available (PW) and 
instantaneous power demand varies by ±250 MW. The 
SOC of the SmartParks varies between 20% and 80%. 
The range of the pitch reference parameter varies 
within a narrow range of 1.15 to 1.25. Finally, the 
power command parameter of the SmartParks varies 
between ±120 MW. 

v.  Termination criterion: A maximum of 6000 MVO 
iterations is allowed. 

vi.  Selection criteria: One of 34 dimensions is randomly 
selected. Only one dimension is selected for mutation 
at a time because optimization is carried out online, and 
extreme changes in controller behavior could initiate 
system instability. 

vii.  Mutation and crossover are carried out using the 
formulas from the flowchart depicted in Fig. 10. 

V.   RESULTS 
The goal of the fuzzy logic controller optimization was to 

reduce oscillations in the generation speed of G2 (ω2) and the 
generator speed of G3 (ω3). The convergence of MVO was 
very rapid over the first 500 iterations and then gradually 
slowed until the best parameters were obtained at the 1895th 
iteration. The initial parameters of the FLC were equally 
distributed over the range of the parameters, as shown in Figs. 
7-10. These parameters then were optimized with the final 
membership functions of the inputs and outputs of the FLC, 
as shown in Fig. 11. For the optimization, k1 and k2 in (7) 
were set as 5 and 3, respectively. 

In order to demonstrate the effectiveness of the optimal 
fuzzy logic controllers, three case studies are presented to 
compare the transient stability of the system when faults are 
introduced at different locations in the smart grid. 

 

 

No 

Yes

START 

1. Denormalize the parameters of x between the parameter limitations. 
2. Evaluate the fitness function using (10). 

1. Store the population of the n-best fitness and their corresponding normalized values 
x1 and x2. 

2. Evaluate the mean �i  and variance vi for the population.  
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(7).

 
Fig.10. Mean variance optimization flowchart for FLC tuning 

 
Case I:  Three-phase short circuit at bus 5: A six-cycle (100 

ms) temporary three-phase short circuit fault is applied at bus 
5. Fig. 12 compares the power fluctuations in the generator 
speeds of the two conventional generators without a fuzzy 
logic controller, with a fuzzy logic controller, and with an 
optimal fuzzy logic controller. The fault is closer to generator 
G2, so higher oscillations occur in that generator’s speed (ω2) 
(Fig. 12.a). The fuzzy logic controller improves the transient 
responses of both generator G2 and generator G3. Table III 
shows the damping ratios obtained due to the fault at the two 
generators, and the improvement that optimization yielded is 
clear. 

Case II:  Three-phase short circuit at bus 4: A six-cycle (100 
ms) temporary three-phase short circuit fault is applied at bus 
5, which is closer to generator G3, with a wind farm operating 
at 11m/s. This signifies greater oscillations in the generator 3 
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machine speed (ω3). Results similar to those in Case I are 
obtained, as illustrated in Fig. 13. The oscillation of both 
generators improves due to the optimized fuzzy logic 
controllers. The Prony analysis in Table IV shows that the 
damping increases with an optimized fuzzy logic controller; 
hence, the system achieves better transient stability as a result 
of the optimization. 

-250 -167 -83 -34 183110 250
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a) 

0.20 0.29 0.35 0.42 0.50
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b) 
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VL    L       ML     M   MH        H    VH  

 
c)

-120 -86 12-69 -18 23 1209970

NB  NM              NS     Z    PS          PM       PB        

 
d) 

 
Fig. 11 a) Optimized membership function of first input (PW-PD); b) 

Optimized membership function of second input (SOC); c) Optimized 
membership function of first output (pitch controller reference); d) 

Optimized membership function of second output (power command of 
SmartParks). 
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b) 
Fig. 12. a) Comparison of machine speed (rad/sec) of generator 2 in the smart 
grid without FLC, with FLC, and with optimal FLC for a 6-cycle (100 ms), 
three-phase, line-ground fault applied at bus 5; b) Comparison of machine 

speed (rad/sec) of generator 3 in the smart grid without FLC, with FLC, and 
with optimal FLC for a 6-cycle (100 ms), three-phase, line-ground fault 

applied at bus 5. 
 

TABLE III 
NATURAL FREQUENCIES (ΩN) AND DAMPING RATIOS (Ζ) 

OBTAINED FROM PRONY ANALYSIS OF THE GENERATOR SPEEDS 
WITH A GRID FAULT AT BUS 5 

 Without FLC With FLC With Optimal 
FLC 

 ωN ζ ωN ζ ωN Ζ 

G2 

0.758 0.042 0.759 0.042 0.715 0.067 

1.515 0.037 1.439 0.039 1.487 0.051 

G3 

0.729 0.030 0.740 0.054 0.736 0.095 

1.487 0.021 1.511 0.033 1.479 0.058 
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Fig. 13.a) Comparison of machine speed (rad/sec) of generator 2 in the smart 
grid without FLC, with FLC, and with Optimal FLC for a 6-cycle (100 ms), 
three-phase, line-ground fault applied at bus 4; b) Comparison of machine 
speed (rad/sec) of generator 3 in the smart grid without FLC, with FLC, and 
with optimal FLC for a 6-cycle (100 ms), three-phase, line-ground fault 
applied at bus 4. 
 

TABLE IV 
NATURAL FREQUENCIES (ωN) AND DAMPING RATIOS (ζ) 

OBTAINED FROM PRONY ANALYSIS OF THE GENERATOR SPEEDS 
WITH A GRID FAULT AT BUS 4 

 Without FLC With FLC With Optimal 
FLC 

 ωN ζ ωN ζ ωN ζ 

G2 
0.754 0.043 0.791 0.054 0.781 0.079 

1.501 0.028 1.517 0.044 1.521 0.059 

G3 
0.739 0.103 0.728 0.134 0.711 0.180 

1.437 0.031 1.461 0.064 1.471 0.083 

VI. CONCLUSION 
An intelligent and efficient technique for learning the 

optimal fuzzy logic controller for a smart grid control 
application has been presented. A novel heuristic 
mean-variance optimization algorithm was applied to 

enhance the performance of the fuzzy controller. The 
proposed coordination controller can reduce the shock in the 
system and also improve the stability of the system. The 
performance of both the optimized and un-optimized fuzzy 
controllers was demonstrated with different case studies, and 
their effectiveness as a shock absorber was compared with a 
system having no such coordinated control. The results 
demonstrate that the optimization improved the overall 
transient stability of the system operating under faults at 
different buses. 
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