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Abstract—In this paper, we explore one of the possible ways
to make decisions under uncertainty: namely, we explain how
to define a fair price for a participation in such a decision, and
then select an alternative for which the corresponding fair price
is the largest. This idea is explained on the examples of interval
uncertainty, set-valued, fuzzy, and Z-number uncertainty.

I. FORMULATION OF THE PROBLEM

Need for decision making. In many practical situations, we
have several alternatives, and we need to select one of these
alternatives. For example:

• a person saving for retirement needs to find the best
way to invest money,

• a company needs to select a location for its new plant,

• a designer must select one of several possible designs
for a new airplane,

• a medical doctor needs to select a treatment for a
patient, etc.

Need for decision making under uncertainty. Decision
making is easier if we know the exact consequences of each
alternative selection.

Often, however, we only have an incomplete information
about consequences of different alternatives, and we need to
select an alternative under this uncertainty.

How decisions under uncertainty are made now. Traditional
decision making theory mostly concentrates on the case of
probabilistic uncertainty, when for each alternative a, we know
the probability pi(a) of different outcomes i; see, e.g., [2], [6],
[11]. In this case, it can be proven that preferences of a rational
decision maker can be described by assigning, to each possible
outcome, a value ui called its utility. Then, the attractiveness
of each alternative to this particular decision maker can be
characterized by the corresponding expected value of its utility
u(a)

def
=
∑
i

pi(a) ·ui: the larger the expected utility, the better

the alternative.

Often, however, we do not know these probabilities. For
example, sometimes, we only know the range [u, u] of possible
utility values, but we do not know the probability of different
values within this range. It has been shown that in this case, it
makes sense to select an alternative for which the expression
αH · u+ (1− αH) · u is the largest possible, where a number
αH ∈ [0, 1] described the optimism level of a decision maker.

• When αH = 1, the decision maker completely ignores
the worst-case possibility u and bases his/her decision
exclusively on the best-case scenario, with outcome u.
This case corresponds to the maximum optimism.

• When αH = 0, the decision maker completely ig-
nores the best-case possibility u and bases his/her
decision exclusively on the worst-case scenario, with
outcome u. This case corresponds to the maximum
pessimism.

Most actual decision makers take both worst-case and best-
case outcomes into account, so their decisions correspond to
the values αH ∈ (0, 1). This idea was first proposed by the
Nobelist L. Hurwicz; it is known as the Hurwicz optimism-
pessimism criterion [4], [6].

What if we have fuzzy uncertainty? There are many semi-
heuristic methods of decision making under fuzzy uncertainty,
methods which have led to many practical applications; see,
e.g., [5], [10]. In [1], a consistent approach to decision making
under fuzzy (and more general) uncertainty is described –
which is based on the extension of the notion of utility to
interval, fuzzy, and Z-number uncertainty.

Decision making under uncertainty: remaining problems.
In spite of all these successes, there are still many practical
problems in which it is not completely clear how to make an
appropriate decision, so there is still a need for a consistent
general methodology for decision making under uncertainty.

What we do in this paper. In this paper, we provide foun-
dations for the new methodology of decision making under
uncertainty, a methodology which is based on a natural idea
of a fair price.
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Fair price approach: an idea. When we have a full informa-
tion about an object, we can express our desirability of each
possible situation, e.g., by declaring a price that we are willing
to pay to get involved in this situation. Once these prices are
set, selecting the most preferable alternative is easy: we just
select the alternative for which the participation price is the
highest – since this is clearly the most desirable alternative.

In decision making under uncertainty, the situation is not
so clear, since it is not easy to come up with a fair price.
A natural idea is to develop techniques for producing such
fair prices – these prices can then be used in decision making,
to select an appropriate alternative.

What we do. In this paper, we show how to describe the
fair price under interval, set-valued, fuzzy, and Z-number
uncertainty.

II. CASE OF INTERVAL UNCERTAINTY

Interval uncertainty: description. Let us start with a simple
case of uncertainty, in which, instead of knowing the exact
gain u of selecting an alternative, we only know the lower
bound u and the upper bound u on this gain – and we have no
information on which values from the corresponding interval
[u, u] are more probable or less probable. This situation, in
which the only information that we have about the gain u is
that this gain belongs to the interval [u, u], is called interval
uncertainty.

Assigning fair price under interval uncertainty: description
of the problem. We want to assign, to each interval [u, u],
a number P ([u, u]) describing the fair price of this interval.
In other words, we need a function P ([u, u]) that takes an
interval as an input and returns a real number. There are several
reasonable requirements that this function must satisfy.

First, since in all cases, the gain is larger than or equal to
u and is smaller than or equal to u, it is reasonable to require
that the price should also be larger than or equal to u and
smaller than or equal to u: u ≤ P ([u, u]) ≤ u.

Second, if we keep the lower endpoint u intact but increase
the upper bound, this means that we are keeping all the
previous possibilities, but we are allowing new possibilities
with a higher gain. In this case, it is reasonable to require
that the corresponding price increases (or at least that it does
not decrease). In other words, if u = v and u < v, then
P ([u, u]) ≤ P ([v, v]).

Similar, if we dismiss some low-gain alternatives, this
should increase (or at least not decrease) the fair price. So,
in general, if u ≤ v and u ≤ v, then we should have
P ([u, u]) ≤ P ([v, v]).

To describe the third requirement, let us consider the
situation when we have two consequent decisions. Let us
assume that these decisions are independent from each other,
in the sense that the second decision does not depend on the
first one. We can view this situation in two different ways:

• we can consider two decision processes separately, or

• we can consider a single decision process in which
we select a pair of alternatives:

◦ the first alternative corresponding to the first
decision process, and

◦ the second alternative corresponding to the
second decision process.

If we know the exact gains u and v in each of the decision
processes, this means that we are willing to pay:

• the amount u to participate in the first process,

• the amount v to participate in the second decision
process, and

• the total of u + v to participate in both decision
processes.

In general, it is reasonable to require that even under uncer-
tainty, the fair price u + v of selecting two alternatives in
the two decision processes is equal to the sum of the fair
prices u and v of selecting each of these alternatives in the
corresponding decision process.

Let us describe this requirement for the case when the
consequences of each alternative are only known with interval
uncertainty. About the gain u from the first alternative, we
only know that this (unknown) gain value belongs to the
interval [u, u]. About the gain v from the second alternative,
we only know that this gain belongs to the interval [v, v]. The
overall gain u + v can thus take any value from the interval
[u, u] + [v, v] = [u + v, u + v]. Thus, the above requirement
about the fair prices takes the form

P ([u+ v, u+ v]) = P ([u, u]) + P ([v, v]). (1)

Thus, we arrive at the following definition.

Definition 1. By a fair price under interval uncertainty, we
mean a function P ([u, u]) that assigns, to every interval, a
real number, and which satisfies the following properties:

• u ≤ P ([u, u]) ≤ u for all u (conservativeness);

• if u = v and u < v, then P ([u, u]) ≤ P ([v, v])
(monotonicity);

• for all u, u, v, and v, we have

P ([u+ v, u+ v]) = P ([u, u]) + P ([v, v]) (2)

(additivity).

Proposition 1 [7] . Each fair price under interval uncertainty
has the form

P ([u, u]) = αH · u+ (1− αH) · u (3)

for some real number αH ∈ [0, 1].

Comments.

• We thus get a new justification of the Hurwicz
optimism-pessimism criterion that we described in
Section I.

• We reproduce the proof from [7] since other proofs
from this paper use its ideas and techniques.
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Proof.

1◦. Let us first consider the value αH
def
= P ([0, 1]) cor-

responding to the simplest possible interval [0, 1]. Due to
conservativeness, we have 0 ≤ αH ≤ 1.

2◦. Let us now compute the value P ([0,m]) for positive integer
values m.

The interval [0,m] can be represented as the sum of m
intervals equal to [0, 1]:

[0,m] = [0, 1] + . . .+ [0, 1] (m times).

Thus, due to additivity, we have

P ([0,m]) = P ([0, 1]) + . . .+ P ([0, 1]) (m times) =

αH + . . .+ αH (m times) = αH ·m.

3◦. Now, let us compute the value z
def
= P

([
0,

1

n

])
for a

positive integer n.

In this case, the interval [0, 1] can be represented as the

sum of n intervals equal to
[
0,

1

n

]
:

[0, 1] =

[
0,

1

n

]
+ . . .+

[
0,

1

n

]
(n times).

Thus, due to additivity, we have

αH = z + . . .+ z (n times),

i.e., αH = z · n and hence, z = αH ·
1

n
.

4◦. For every two positive integers m > 0 and n > 0, the
interval

[
0,
m

n

]
can be represented as the sum of m intervals

equal to
[
0,

1

n

]
. Thus,

P
([

0,
m

n

])
= m ·P

([
0,

1

n

])
= m ·

(
αH ·

1

n

)
= αH ·

m

n
.

5◦. We have proved that for rational values r =
m

n
, we

have P ([0, r]) = αH · r. Let us prove that the same property
P ([0, x]) = αH · x holds for every positive real value x.

To prove this property, we use monotonicity. Each real
number x can be approximated, with arbitrary accuracy, by
two rational numbers r < x < r′. Due to monotonicity, we
have P ([0, r]) ≤ P ([0, x]) ≤ P ([0, r′]). Due to Part 4 of this
proof, we thus conclude that αH · r ≤ P ([0, x]) ≤ αH · r′.
When r → x and r′ → x, we get αH · r → αH · x and
αH · r′ → αH · x and thus, P ([0, x]) = αH · x.

6◦. Now, we are ready to prove the proposition. For each u and
u, we have [u, u] = [u, u] + [0, u−u]. Thus, due to additivity,

P ([u, u]) = P ([u, u]) + P ([0, u− u]). (4)

For the first term, due to conservativeness, we have u ≤
P ([u, u]) ≤ u and thus, P ([u, u]) = u. For the second term,
due to Part 5 of this proof, we get P ([0, u−u]) = αH ·(u−u).
Thus, the above additivity formula leads to

P ([u, u]) = u+ αH · (u− u), (5)

which is exactly αH · u + (1 − αH) · u. The proposition is
proven.

III. CASE OF SET-VALUED UNCERTAINTY

Description of the case. In some cases, in addition to knowing
that the actual gain belongs to the interval [u, u], we also know
that some values from this interval cannot be possible values
of this gain. For example, if we buy an obscure lottery ticket
for a simple prize-or-no-prize lottery from a remote country,
we either get the prize or lose the money. In this case, the set
of possible values of the gain consists of two values.

In a closer-to-home lottery, we usually have an additional
information about the outcomes that we can take into account
when making a decision: e.g., we usually know the probability
of a prize (or prizes, if there are different prizes). However,
for an obscure lottery, it is reasonable to imagine that we have
no additional information. In this case, the only information
that we have is the (2-element) set of possible outcomes.

In general, instead of a (bounded) interval of possible
values, we can consider a more general bounded set of possible
values. It makes sense to consider bounded sets S that contain
all their limits points. Indeed, if xn ∈ S for all n and xn → x,
then, for any given accuracy, x is undistinguishable from some
possible value xn – thus, in effect, the value x itself is possible.
Such sets are known as closed sets. So, in this section, we will
consider bounded closed sets.

Assigning fair price under set-valued uncertainty: descrip-
tion of the problem. We want to assign, to each bounded
closed set S, a number P (S) describing the fair price of this
set. In other words, we need a function P (S) that takes a
set as an input and returns a real number. There are several
reasonable requirements that this function must satisfy.

First, for the case when the set S is an interval, we must
get the fair price as described by Proposition 1.

Second, if we have two independent alternatives described
by sets S and S′, then we should have P (S + S′) = P (S) +
P (S′), where

S + S′ def
= {x+ x′ : x ∈ S and x′ ∈ S′} (6)

is the set of all possible sums x+ x′.

Thus, we arrive at the following definition.

Definition 2. By a fair price under set-valued uncertainty, we
mean a function P (S) that assigns, to every bounded closed set
S, a real number, and which satisfies the following properties:

• a restriction of this function to intervals S = [u, u] is
a fair price under interval uncertainty – in the sense
of Definition 1 (conservativeness);

• for every two sets S and S′, we have P (S + S′) =
P (S) + P (S′) (additivity).
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Proposition 2. Each fair price under interval uncertainty has
the form P ([u, u]) = αH · supS + (1− αH) · inf S for some
real number αH ∈ [0, 1].

Proof. Due to conservativeness, for intervals S = [u, u]), the
function P (S) is a fair price under interval uncertainty and
thus, due to Proposition 1, has the form P ([u, u]) = αH · u+
(1− αH) · u.

For each bounded set S, its infimum s
def
= inf S and its

supremum s
def
= supS are finite. By definition, inf S is a lower

bound (it is the greatest lower bound) and supS is an upper
bound (it is the least upper bound); thus, we have S ⊆ [s, s].
Both inf S and supS are limits of points from the set S; since
the set S is closed, it contains these limits: {s, s} ⊆ S ⊆ [s, s].

Let us prove that [s, s] + S = [2s, 2s]. Indeed, from the
definition (6) of set addition, one can easily conclude that if
S′ ⊆ S′′, then S + S′ ⊆ S + S′′. In particular, {s, s} ⊆ S ⊆
[s, s] implies that

[s, s] + {s, s} ⊆ [s, s] + S ⊆ [s, s] + [s, s]. (7)

Here, [s, s] + {s, s} = [2s, 2s] and similarly [s, s] + [s, s] =
[2s, 2s]. Thus,

[2s, 2s] ⊆ [s, s] + S ⊆ [2s, 2s] (8)

and so, indeed, [s, s] + S = [2s, 2s].

Now, additivity implies that P (S) = P ([2s, 2s]) −
P ([s, s]). Substituting the expression P ([u, u]) = αH · u +
(1 − αH) · u for the fair price of intervals into this formula,
we get the desired expression for P (S). The proposition is
proven.

IV. (CRISP) Z-NUMBERS, Z-INTERVALS, AND Z-SETS:
CASES WHEN THE PROBABILITIES ARE CRISP

Description of the case. In the previous sections, we assumed
that we are 100% certain that the actual gain is contained in
the given interval (or set). In reality, mistakes are possible, so
usually, we are only certain that u belongs to the corresponding
interval or set with some probability 0 < p < 1. In such
situations, to fully describe our knowledge, we need to describe
both the interval (or set) and this probability p.

In the general context, after supplementing the information
about a quantity with the information of how certain we are
about this piece of information, we get what L. Zadeh calls a
Z-number [13]. Because of this:

• we will call a pair consisting of a (crisp) number and
a (crisp) probability a crisp Z-number;

• we will call a pair consisting of an interval and a
probability a Z-interval; and

• we will call a pair consisting of a set and a probability
a Z-set.

In this section, we will describe fair prices for crisp Z-numbers,
Z-intervals, and Z-sets for situations when the probability p is
known exactly.

Operations on the corresponding pairs. When we have two
independent sequential decisions, and we are 100% sure that

the first decision leads to gain u and the second decision leads
to gain v, then, as we have mentioned earlier, the user’s total
gain is equal to the sum u + v. In this section, we consider
the situation in which:

• for the first decision, our degree of confidence in the
gain estimate u is described by some probability p;

• for the second decision, our degree of confidence in
the gain estimate v is described by some probability q.

The estimate u + v is valid only if both gain estimates are
correct. Since these estimates are independent, the probability
that they are both correct is equal to the product p · q of the
corresponding probabilities. Thus:

• for crisp Z-numbers (u, p) and (v, q), the sum is equal
to (u+ v, p · q);

• for Z-intervals ([u, u], p) and [v, v], q), the sum is
equal to ([u+ v, u+ v], p · q);

• finally, for Z-sets (S, p) and (S′, q), the sum is equal
to (S + S′, p · q).

Let us analyze these cases one by one.

Case of crisp Z-numbers. Since the probability p is usually
known with some uncertainty, it makes sense to require that
the fair price of a crisp Z-number (u, p) continuously depend
on p, so that small changes in p lead to small changes in the
fair price – and the closer our estimate to the actual value of
the probability, the closer the estimated fair price should be to
the actual fair price.

Thus, we arrive at the following definitions.

Definition 3. By a crisp Z-number, we mean a pair (u, p) of
two real numbers such that 0 < p ≤ 1.

Definition 4. By a fair price under crisp Z-number uncertainty,
we mean a function P (u, p) that assigns, to every crisp Z-
number, a real number, and which satisfies the following
properties:

• P (u, 1) = u for all u (conservativeness);

• for all u, v, p, and q, we have P (u + v, p · q) =
P (u, p) + P (v, q) (additivity);

• the function P (u, p) is continuous in p (continuity).

Proposition 3. Each fair price under crisp Z-number uncer-
tainty has the form P (u, p) = u − k · ln(p) for some real
number k.

Proof.

1◦. By additivity, we have P (u, p) = P (u, 1) + P (0, p). By
conservativeness, we have P (u, 1) = u; thus, P (u, p) = u +
P (0, p). So, it is clear that to find the general expression for
the fair price function P (u, p), it is sufficient to find the values
P (0, p) corresponding to u = 0.

2◦. Additivity implies that P (0, p · q) = P (0, p) + P (0, q).
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3◦. Let us first consider the value p = e−1 which corresponds
to ln(p) = −1. The corresponding value of P (0, p) will be
denoted by k

def
= P (0, e−1). Then, for p = e−1, we have the

desired expression P (0, p) = −k · ln(p).

4◦. Let us now consider the values P (0, e−m) for positive
integer values m. The probability e−m can be represented as
a product of m values e−1:

e−m = e−1 · . . . · e−1 (m times). (9)

Thus, due to additivity, we have

P (0, e−m) = P (0, e−1) + . . .+ P (0, e−1) (m times) =

m · k. (10)

Since for p = e−m, we have ln(p) = −m, we thus have
P (0, p) = −k · ln(p) for these values p.

5◦. Now, let us estimate the value P (0, p) for p = e−1/n, for
a positive integer n.

In this case, the value e−1 can be represented as a product
of n probabilities equal to e−1/n:

e−1 = e−1/n · . . . · e−1/n (n times).

Thus, due to additivity, we have

k = P (0, e−1) = P (0, e−1/n)+ . . .+P (0, e−1/n) (n times),

i.e.,
k = n · P (0, e−1/n) (11)

and hence, P (0, e−1/n) =
k

n
. Therefore, for p = e−1/n, we

also have P (0, p) = −k · ln(p).

6◦. For every two positive numbers m > 0 and n > 0, the
probability e−m/n can be represented as the product of m
probabilities equal to e−1/n. Thus, due to additivity, we have
P (0, e−m/n) = m·P (0, e−1/n) = k ·m

n
. Hence, for the values

p = e−m/n for which the logarithm ln(p) is a rational number,
we have P (0, p) = −k · ln(p).

7◦. Every real number ℓ def
= ln(p) can be approximated, with

arbitrary accuracy, by rational numbers ℓn → ℓ for which
pn

def
= e−ℓn → e−ℓ = p. For these rational numbers, we have

P (0, pn) = −k · ln(pn). Thus, when n→∞ and pn → p, by
continuity, we have P (0, p) = −k · ln(p).

From Part 1, we know that P (u, p) = u + P (0, p); thus,
indeed, P (u, p) = u− k · ln(p). The proposition is proven.

Cases of Z-intervals and Z-sets. Similar results hold for Z-
intervals and Z-sets; in both results, we will use the fact that we
already know how to set a fair price for the case when p = 1.

Definition 5. By a Z-interval, we mean a pair ([u, u], p)
consisting of an interval [u, u] and a real numbers p such
that 0 < p ≤ 1.

Definition 6. By a fair price under Z-interval uncertainty, we
mean a function P ([u, u], p) that assigns, to every Z-interval,
a real number, and which satisfies the following properties:

• for some αH ∈ [0, 1] and for all u ≤ u, we have
P ([u, u], 1) = αH ·u+(1−αH)·u (conservativeness);

• for all u, u, v, v, p, and q, we have

P ([u+ v, u+ v], p · q) =

P ([u, u], p) + P ([v, v], q) (12)

(additivity).

Proposition 4. Each fair price under Z-interval uncertainty
has the form P ([u, u], p) = αH · u+ (1− αH) · u− k · ln(p)
for some real numbers αH ∈ [0, 1] and k.

Proof. By additivity, we have P ([u, u], p) = P ([u, u], 1) +
P (0, p). By conservativeness, we have

P ([u, u], 1) = αH · u+ (1− αH) · u. (13)

For P (0, p), similarly to the proof of Proposition 3, we
conclude that P (0, p) = −k · ln(p) for some real number k.
The proposition is proven.

Definition 7. By a Z-set, we mean a pair (S, p) consisting
of a closed bounded set S and a real numbers p such that
0 < p ≤ 1.

Definition 8. By a fair price under Z-set-valued uncertainty,
we mean a function P (S, p) that assigns, to every Z-interval,
a real number, and which satisfies the following properties:

• for some αH ∈ [0, 1] and for all sets S, we have

P (S, 1) = αH · supS + (1− αH) · inf S (14)

(conservativeness);

• for all S, S′, p, and q, we have P (S + S′, p · q) =
P (S, p) + P (S′, q) (additivity).

Proposition 5. Each fair price under Z-set-valued uncertainty
has the form

P (S, p) = αH · supS + (1− αH) · inf S − k · ln(p) (15)

for some real numbers αH ∈ [0, 1] and k.

Proof. By additivity, we have P (S, p) = P (S, 1)+P ({0}, p).
By conservativeness, we have

P (S, 1) = αH · supS + (1− αH) · inf S.

For P ({0}, p), similarly to the proof of Proposition 3, we
conclude that P ({0}, p) = −k · ln(p) for some real number k.
The proposition is proven.
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V. (CRISP) Z-NUMBERS, Z-INTERVALS, AND Z-SETS:
CASES WHEN PROBABILITIES ARE KNOWN WITH

INTERVAL OR SET-VALUED UNCERTAINTY

Motivations. When we know the exact probabilities p and q
that the corresponding estimates are correct, then the probabil-
ity that both estimates are correct is equal to the product p · q.

Similarly to the fact that we often do not know the exact
gain, we often do not know the exact probability p. Instead, we
may only know the interval

[
p, p

]
of possible values of p, or,

more generally, a set P of possible values of p. If we know p
and q with such uncertainty, what can we then conclude about
the product p · q?

For positive values p and q, the function p·q is increasing as
a function of both variables: if we increase p and/or increase
q, the product increases. Thus, if the only information that
we have the probability p is that this probability belongs to
the interval [p, p], and the only information that we have the
probability q is that this probability belongs to the interval
[q, q], then:

• the smallest possible value of p · q is equal to the
product p · q of the smallest values;

• the largest possible value of p·q is equal to the product
p · q of the largest values; and

• the set of all possible values p · q is the interval[
p · q, p · q

]
.

For sets P and Q, the set of possible values p · q is the set

P · Q def
= {p · q : p ∈ P and q ∈ Q}. (16)

Let us find the fair price under such uncertainty.

Case of crisp Z-numbers. Let us start with the case of crisp
Z-numbers under such uncertainty.

Definition 9. By a crisp Z-number under interval p-uncertainty,
we mean a pair (u, [p, p]) consisting of a real number u and
an interval

[
p, p

]
⊆ (0, 1].

Definition 10. By a fair price under crisp Z-number p-interval
uncertainty, we mean a function P

(
u,
[
p, p

])
that assigns,

to every crisp Z-number under interval p-uncertainty, a real
number, and which satisfies the following properties:

• for some real number k, we have

P (u, [p, p]) = u− k · ln(p) (17)

for all u and p (conservativeness);

• for all u, v, p, p, q, and q, we have

P
(
u+ v,

[
p · q, p, q

])
=

P
(
u,
[
p, p

])
+ P

(
v,
[
q, q
])

(18)

(additivity);

• the function P
(
u,
[
p, p

])
is continuous in p and p

(continuity).

Proposition 6. Each fair price under crisp Z-number p-interval
uncertainty has the form

P
(
u,
[
p, p

])
= u− (k − β) · ln( p )− β · ln

(
p
)

(19)

for some real numbers k and β ∈ [0, 1].

Proof.

1◦. By additivity, we have P
(
u,
[
p, p

])
= P (u, p) +

P (0, [p, 1]), where p def
= p/p. By conservativeness, we know

that P (u, p) = u− k · ln( p ). Thus, P (u, p) = u− k · ln( p )+
P (0, [p, 1]). So, to find the general expression for the fair
price function P

(
u,
[
p, p

])
, it is sufficient to find the values

P (0, [p, 1]) corresponding to u = 0 and p = 1.

2◦. For the values P (0, [p, 1]), additivity implies that

P (0, [p · q, 1]) = P (0, [p, 1]) + P (0, [q, 1]). (20)

In Parts 2 of the proof of Proposition 3, we had a similar
property for a continuous function P (0, p), and we proved,
in Parts 2–6 of that proof, that this property implies that this
continuous function is equal to −c·ln(p) for some real number
c. Thus, we can similarly conclude that

P (0, [p, 1]) = −β · ln(p) (21)

for some real number β.

3◦. From Part 1 of this proof, we know that

P
(
u,
[
p, p

])
= u− k · ln( p ) + P (0, [p, 1]); (22)

thus,
P
(
u,
[
p, p

])
= u− k · ln( p )− β · ln(p). (23)

Substituting p = p/p into this formula and taking into account
that ln(p) = ln

(
p
)
− ln( p ), we get the desired formula.

Definition 11. By a crisp Z-number under set-valued p-
uncertainty, we mean a pair (u,P) consisting of a real number
u and a bounded closed set P ⊆ (0, 1].

Comment. One can easily show that for each closed set P ⊆
(0, 1], we have inf P > 0.

Definition 12. By a fair price under crisp Z-number p-set-
valued uncertainty, we mean a function P (u,P) that assigns,
to every crisp Z-number under set-valued p-uncertainty, a real
number, and which satisfies the following properties:

• for some real numbers k and β, we have

P
(
u,
[
p, p

])
= u−(k−β) · ln( p )−β · ln

(
p
)
(24)

for all u, p, and p (conservativeness);

• for all u, v, P , and Q, we have

P (u+ v,P · Q) = P (u,P) + P (v,Q) (25)

(additivity).
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Proposition 7. Each fair price under crisp Z-number p-set-
valued uncertainty has the form

P (u,P) = u− (k − β) · ln(supP)− β · ln(inf P) (26)

for some real number β ∈ [0, 1].

Proof. By additivity, we have P (u,P) = P (u, {1})+P (0,P),
i.e., due to conservativeness, P (u,P) = u + P (0,P). So, to
find the expression for P (u,P), it is sufficient to find the
values P (0,P). Similarly to prove of Proposition 2, we can
prove that

P · [inf P, supP] =
[
(inf P)2, (supP)2

]
. (27)

Due to additivity, this implies that

P
(
0,
[
(inf P)2, (supP)2

])
=

P (0,P) + P (0, [inf P, supP]), (28)

hence
P (0,P) =

P
(
0,
[
(inf P)2, (supP)2

])
− P (0, [inf P, supP]). (29)

Due to conservativeness, we know the values in the right-
hand side of this equality. Substituting these values, we get
the desired formula.

Case of Z-intervals and Z-sets. Let us extend the above
results to Z-sets (and to their particular case: Z-intervals).

Definition 13. By a Z-set under set-valued p-uncertainty, we
mean a pair (S,P) consisting of a bounded closed set S and
a bounded closed set P ⊆ (0, 1].

Definition 14. By a fair price under Z-set p-set-valued un-
certainty, we mean a function P (S,P) that assigns, to every
Z-set under set-valued p-uncertainty, a real number, and which
satisfies the following properties:

• for some real number αH ∈ [0, 1], we have

P (S, 1) = αH · supS + (1− αH) · inf S (30)

for all S (conservativeness);

• for some real numbers k and β, we have

P (u,P) = u−(k−β)·ln(supP)−β ·ln(inf P) (31)

for all u and P (conservativeness);

• for all S, S′, P , and Q, we have

P (S + S′,P · Q) = P (S,P) + P (Q,Q) (32)

(additivity).

Proposition 8. Each fair price under Z-set p-set-valued un-
certainty has the form

P (S,P) = αH · supS + (1− αH) · inf S−

(k − β) · ln( p )− β · ln
(
p
)
. (33)

VI. CASE OF FUZZY AND Z-NUMBER UNCERTAINTY

Fuzzy numbers: reminder. In the above text, we first consid-
ered situations when about each value of gain u, the expert is
either absolutely sure that this value is possible or absolutely
sure that this value is not possible. Then, we took into account
the possibility that the expert is not 100% certain about that
– but we assumed that the expert either knows the exact
probability p describing his/her degree of certainty, or that
the expert is absolutely sure which probabilities can describe
his/her uncertainty and which cannot.

In reality, an expert is often uncertain about the possible
values, and uncertain about possible degrees of uncertainty.
To take this uncertainty into account, L. Zadeh introduced the
notion of a fuzzy set [5], [10], [12], where, to each possible
value of u, we assign a degree µ(u) ∈ [0, 1] to which this
value u is possible. Similarly, a fuzzy set µp : [0, 1] → [0, 1]
can describe the degrees to which different probability values
are possible.

In this paper, we restrict ourselves to fuzzy numbers s,
i.e., fuzzy sets for which the membership function is different
from 0 only on a bounded set, where it first monotonically
increases until it reaches a point s at which µ(s) = 1, and
then monotonically decreases from 1 to 0.

Operations on fuzzy numbers. Operations on fuzzy num-
bers are usually described in terms of Zadeh’s extension
principle: if two quantities u and v are described by
membership functions µ1(u) and µ2(v), then their sum
w = u + v is described by the membership function
µ(w) = max

u,v:u+v=w
min(µ1(u), µ2(v)), and their product w =

u · v is described by the membership function µ(w) =
max

u,v:u·v=w
min(µ1(u), µ2(v)).

It is known that these operations can be equivalently
described in terms of the α-cuts. An α-cut of a fuzzy number
µ(u) is defined as an interval u(α) = [u−(α), u+(α)], where

u−(α)
def
= inf{u : µ(u) ≥ α} and

u+(α)
def
= sup{u : µ(u) ≥ α}. (34)

The α-cuts corresponding to the sum w = u + v can be
described, for every α, as

[w−(α), w+(α)] = [u−(α), u+(α)] + [v−(α), v+(α)], (35)

or, equivalently, as

[w−(α), w+(α)] = [u−(α) + v−(α), u+(α) + v+(α)]. (36)

Similarly, the α-cuts corresponding to the product w = u · v
can be described as

[w−(α), w+(α)] = [u−(α), u+(α)] · [v−(α), v+(α)]. (37)

If both fuzzy numbers u and v are non-negative (e.g., if they
are limited to the interval [0, 1]), then the α-cuts corresponding
to the product can be described as

[w−(α), w+(α)] = [u−(α) · v−(α), u+(α) · v+(α)]. (38)

Fair price of fuzzy numbers. Let us start with describing
the fair price of fuzzy numbers. Similarly to the interval case,
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a natural requirement is monotonicity: if for all α, we have
s−(α) ≤ t−(α) and s+(α) ≤ t+(α), then the fair price of t
should be larger than or equal to the fair price of s. It is also
reasonable to require continuity: that small changes in µ(u)
should lead to small changes in the fair price.

Definition 15. By a fair price under fuzzy uncertainty, we mean
a function P (s) that assigns, to every fuzzy number s, a real
number, and which satisfies the following properties:

• if a fuzzy number s is located between u and u, then
u ≤ P (s) ≤ u (conservativeness);

• if a fuzzy number w is the sum of fuzzy numbers u and
v, then we have P (w) = P (u) + P (v) (additivity);

• if for all α, we have

s−(α) ≤ t−(α) and s+(α) ≤ t+(α), (39)

then we have P (s) ≤ P (t) (monotonicity);

• if a sequence of membership functions µn uniformly
converges to µ, then we should have P (µn)→ P (µ)
(continuity).

Riemann-Stieltjes integral: reminder. We will see, the fair
price of a fuzzy number is described in terms of a Riemann-
Stieltjes integral. For readers who need a reminder of what
this integral is, a brief reminder is presented as an appendix.

Proposition 9. For a fuzzy number s with a continuous
membership function µ(x), α-cuts [s−(α), s+(α)] and a point
s0 at which µ(s0) = 1, the fair price is equal to

P (s) = s0 +

∫ 1

0

k−(α) ds−(α)−
∫ 1

0

k+(α) ds+(α), (40)

for appropriate functions k−(α) and k+(α).

Discussion. When the function g(x) is differentiable, the
Riemann-Stieltjes integral

∫ b

a
f(x) dg(x) is equal to the usual

integral ∫ b

a

f(x) · g′(x) dx,

where g′(x) denotes the derivative. When the function f(x) is
also differentiable, we can use integration by part and get yet
another equivalent form

f(b) · g(b)− f(a) · g(a) +
∫ b

a

F (x) · g(x) dx, (41)

with F (x) = −f ′(x). In general, a Stieltjes integral can be
represented in a similar form for some generalized function
F (x) (see, e.g., [3]; generalized function are also known as
distributions; we do not use this term to avoid confusion with
probability distributions). Thus, the above general formula can
be described as

P (s) =

∫ 1

0

K−(α) ·s−(α) dα+
∫ 1

0

K+(α) ·s+(α) dα (42)

for appropriate generalized functions K−(α) and K+(α).

Conservativeness means that for a crisp number located at
s0, we should have P (s) = s0. For the above formula, this
means that ∫ 1

0

K−(α) dα+

∫ 1

0

K+(α) dα = 1. (43)

For a fuzzy number which is equal to the interval [u, u], the
above formula leads to

P (s) =

(∫ 1

0

K−(α) dα

)
· u+

(∫ 1

0

K+(α) dα

)
· u. (44)

Thus, Hurwicz optimism-pessimism coefficient αH is equal to∫ 1

0
K+(α) dα. In this sense, the above formula is a general-

ization of Hurwicz’s formula to the fuzzy case.

Proof.

1◦. For every two real numbers u ≥ 0 and γ ∈ [0, 1], let us
define a fuzzy number sγ,u(x) with the following membership
function: µγ,u(0) = 1, µγ,u(x) = γ for x ∈ (0, u], and
µγ,u(x) = 0 for all other x. For this fuzzy numbers, α-cuts
have the following form: sγ,u(α) = [0, 0] for α > γ, and
sγ,u(α) = [0, u] for α ≤ γ.

Based on the α-cuts, one can easily check that sγ,u+v =
sγ,u + sγ,v . Thus, due to additivity, P (sγ,u+v) = P (sγ,u) +
P (sγ,v). Due to monotonicity, the value P (sγ,u) monotoni-
cally depends on u. Thus, similarly to the proof of Proposi-
tion 1, we can conclude that P (sγ,u) = k+(γ) · u for some
value k+(γ).

By definition, the fuzzy number sγ,u is located between 0
and u, so, due to conservativeness, we have 0 ≤ P (sγ,u) ≤ u
for all u. This implies that 0 ≤ k+(γ) ≤ 1.

2◦. Let us now consider a fuzzy number s whose membership
function is equal to 0 for x < 0, jumps to 1 for x = 0, and
then continuously decrease to 0. For this fuzzy number, all α-
cuts have the form [0, s+(α)] for some s+(α). By definition
of an α-cut, the value s+(α) decreases with α.

For each sequence of values

α0 = 1 < α1 < α2 < . . . < αn−1 < αn = 1,

we can define a fuzzy number sn with the following α-cuts:

• s−n (α) = 0 for all α; and

• when α ∈ [αi, αi+1), then s+n (α) = s+(αi).

Since the membership function of s is continuous, when
max(αi+1 − αi) → 0, we have sn → s, and thus, P (sn) →
P (s).

One can check that the fuzzy number sn can be represented
as a sum of n fuzzy numbers

sn = sαn−1,s+(αn−1) + sαn−2,s+(αn−2)−s+(αn−1) + . . .+

sα1,α1−α2 . (45)

Thus, due to additivity, we have

P (sn) = P (sαn−1,s+(αn−1
)+

P (sαn−2,s+(αn−2)−s+(αn−1)) + . . .+ P (sα1,α1−α2). (46)
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Substituting the expression for P (sγ,u) from Part 1 of this
proof, we conclude that

P (sn) = k+(αn−1) · s+(αn−1)+

k+(αn−2) · (s+(αn−2)− s+(αn−1)) + . . .+

k+(α1) · (α1 − α2). (47)

The right-hand side is minus the integral sum for the Riemann-
Stieltjes integral

∫ 1

0
k+(γ) ds+(γ). Since we have P (sn) →

P (s), this means that the integral sums always converges, the
Riemann-Stieltjes integral is defined, and the limit P (s) is
equal to this integral.

3◦. Similarly, for fuzzy numbers s whose membership function
µ(x) continuously increases from 0 to 1 as x increases to 0 and
is equal to 0 for x > 0, the α-cuts are equal to [s−(α), 0], and
P (s) =

∫ 1

0
k−(γ) ds−(γ) for an appropriate function k−(γ).

4◦. A general fuzzy number g, with α-cuts [g−(α), g+(α)] and
a point g0 at which µ(g0) = 1, can be represented as the sum
of three fuzzy numbers:

• a crisp number g0;

• a fuzzy number whose α-cuts are equal to

[0, g+(α)− g0]; and

• a fuzzy number whose α-cuts are equal to

[g0 − g−(α), 0].

By conservativeness, the fair price of the crisp number is equal
to g0. The fair prices of the second and the their fuzzy numbers
can be obtained by using the formulas from Parts 2 and 3 of
this proof. By additivity, the fair price of the sum is equal to
the sum of the prices. By taking into account that for every
constant g0, d(g(x)− g0) = dg(x) and thus,∫

f(x) d(g(x)− g0) =
∫
f(x) dg(x),

we get the desired expression.

Case of Z-number uncertainty. In this case, we have two
fuzzy numbers: the fuzzy number s which describes the
values and the fuzzy number p which describes our degree
of confidence in the piece of information described by s.

Definition 16. By a fair price under Z-number uncertainty,
we mean a function P (s, p) that assigns, to every pair of two
fuzzy numbers s and p such that p is located on an interval
[p0, 1] for some p0 > 0, a real number, and which satisfies the
following properties:

• if a fuzzy number s is located between u and u, then
u ≤ P (s, 1) ≤ u (conservativeness);

• if w = u+ v and r = p · q, then

P (w, r) = P (u, p) + P (v, q) (48)

(additivity);

• if for all α, we have

s−(α) ≤ t−(α) and s+(α) ≤ t+(α), (49)

then we have P (s, 1) ≤ P (t, 1) (monotonicity);

• if sn → s and pn → p, then P (sn, pn) → P (p, s)
(continuity).

Proposition 10. For a fuzzy number s with α-cuts
[s−(α), s+(α)] and a fuzzy number p with α-cuts
[p−(α), p+(α)], we have

P (s, p) =

∫ 1

0

K−(α) · s−(α) dα+

∫ 1

0

K+(α) · s+(α) dα+∫ 1

0

L−(α) · ln(p−(α)) dα+

∫ 1

0

L+(α) · ln(p+(α)) dα (50)

for appropriate generalized functions K±(α) and L±(α).

Proof. Due to additivity, we have

P (s, p) = P (s, 1) + P (0, p).

We already know the expression for P (s, 1); we thus need
to find the expression for P (0, p). For logarithms, we have
ln(p · q) = ln(p) + ln(q), so in terms of logarithms, additivity
takes the usual form

P (0, ln(p) + ln(q)) = P (0, ln(p)) + P (0, ln(q)). (51)

Thus, similarly to the proof of Proposition 9, we conclude that

P (0, p) =

∫ 1

0

L−(α) · ln(p−(α)) dα+∫ 1

0

L+(α) · ln(p+(α)) dα. (52)

By applying additivity to this expression and to the known
expression for P (s, 1), we get the desired formula.

VII. CONCLUSIONS AND REMAINING PROBLEMS

Fair price approach to decision making under uncertainty.
In many practical situations, we need to select an alternative
when do not know the exact consequences of each possible
selection.

For example, instead of knowing the exact resulting gain u,
we may only know the bounds u and u for which u ≤ u ≤ u
(case of interval uncertainty).

We may also know, e.g., that the gain will be somewhat
larger than a certain value u0; such an uncertainty can be
naturally described by a fuzzy set.

To gauge the attractiveness of each alternative under such
an alternative, we propose to estimate the fair price corre-
sponding to each uncertainty. We show that for many types
of uncertainty, natural common-sense requirements lead to
explicit formulas for the fair price.

For interval uncertainty, the resulting formula coincides
with the known Hurwicz optimism-pessimism criterion. We
also provide explicit formulas for the cases of fuzzy and Z-
number uncertainty.

Need for practical applications and practical testing of the
fair price idea. So far, our work has been mainly theoretical.
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We would like to see it applied to practical decision making
problems – and to gauge how well the decision makers will
be satisfied with the resulting recommendations.

Need for further generalizations. In this paper, we described
how to define fair price when we have one piece of informa-
tion: a fuzzy set S of gains with a fuzzy set P describing
how confident we are in S. In practice, we may have several
such pieces of information. It is desirable to come up with
formulas which describe fair price under such multiple pieces
of information – formulas which are uniquely determined by
additivity and similar reasonable conditions.

Another open question is how to extend the above formulas
for fair price to the case of interval-valued and, more general,
type-2 fuzzy sets; see, e.g., [8], [9].
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APPENDIX: RIEMANN-STIELTJES INTEGRAL – REMINDER

Riemann-Stieltjes integral is a natural generalization of the
usual (Riemann) integral.

In general, an intuitive meaning of a Riemann integral∫ b

a
f(x) dx is that it is an area under the curve y = f(x).

To compute this integral, we select points

a = x1 < x2 < . . . < xn−1 < xn = b,

and approximate the curve by a piece-wise constant function
f̃(x) = f(xi) for x ∈ [xi, xi+1). The subgraph of this piece-
wise constant function is a union of several rectangles, so
its area is equal to the sum of the areas of these rectangles∑
f(xi) · (xi+1 − xi). This sum is known as the integral

sum for the integral
∫ b

a
f(x) dx. Riemann’s integral can be

formally defined as a limit of such integral sums when
max(xi+1 − xi)→ 0.

A Riemann-Stieltjes integral
∫ b

a
f(x) dg(x) is similarly

defined as the limit of the sums
∑
f(xi) · (g(xi+1) − g(xi))

when max(xi+1 − xi)→ 0.
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