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Abstract—The objective of this paper is to present methodol-
ogy for similarity evaluation of structured spaces of sets inspired
by human cognitive processes. In contrast to classical similarity
relations, which can operate only within the same space, our
method can be applied to separate spaces. Proposed formulas are
designed to compare two families of sets belonging to separate
spaces. Unlike in set-theoretic approach to similarity present in
literature, fundamental knowledge, which we use is sets and
subsets cardinalities and division of spaces into subsets com-
bined with appropriate minimum and maximum as aggregation
operators. Theoretical discussion is supported with a case study,
where we apply designed formulas to calculate similarities of four
cities. Introduced method has been constructed after an analysis
how humans perform similarity evaluation for hard to compare
concepts and phenomena.

I. INTRODUCTION

Similarity is one of prime relations, which allows to
infer about complex knowledge and determine dependencies
in given environment. For an animate subject, like animals
or humans, ability to determine similarities is a basic and
extremely common cognitive process, which guarantees correct
functioning. Typically, when we investigate similarity of two
concepts, we subconsciously imply, that they must have some-
thing in common. Such commonalities determine the level of
coincidence between two phenomena of interest.

In this article authors present an approach to similarity eval-
uation of two families of sets from different universes. Since
there is no possibility to compare features describing elements
from both sets, conventional models fail to assess similarity
of two such families. Therefore, contribution discussed in
this paper is original and we believe important. In practice,
a reliable and scalable method for similarity evaluation of
families of sets from distinct spaces is desirable. The objective
of our research is to propose similarity relations for two
families of sets from disjoint spaces. Our attempts focus on
relations based on sets and subsets cardinalities.

The perspective on similarity evaluation discussed in this
paper is inspired by human cognitive processes. The researched
methodology to similarity evaluation is aimed to describe
economic phenomena. Economics is one of the most critical
fields, where it is often impossible to apply standard similarity
measures to assess the level of coincidence between two sets,
for example populations of two countries or cities.

The paper is structured as follows. In Section II we present
brief literature review on the topic of similarity. Section III
covers methodology for similarity evaluation of sets from
distinct spaces. We start with basic formulas, for two sets
from distinct spaces and move towards similarity evaluation of
structured spaces. Section IV is a case study, where we apply
developed methodology to compare cities and their citizens.
Section V concludes the paper and points out future research
directions.

II. PRELIMINARIES

A. Brief and selected literature review

Similarity in literature has been discussed in various con-
texts and applications, see for example [6], [7], [9], [10],
[11]. We observe huge amount of research on similarity in the
area of computer vision, [4], but also psychology and biology.
Similarity is also analyzed for imprecise knowledge models:
[5], [12].

The topic of similarity is well recognized and often dis-
cussed in the literature. Therefore, this review contains only
selected highlights. Due to space limitations, we were not able
to cover all noteworthy contributions to the area of similarity
research.

In the literature the concept of similarity is analyzed
conventionally in one of the three main streams:

• Measures of similarity based on distance: Euclidean
distance, discrete metrics, Hamming distance and
other.

• Other measures of similarity, for example
probabilistic-based approach to similarity, which
includes correlation coefficients, f-divergence (i.e.
Kullback-Leibler divergence), Renyi divergence and
others.

• Set-theoretic similarity measures. Some examples are:
Dice coefficient, Jaccard index and Tversky index.

We focus on the last approach. Set-theoretic similarity relations
discussed in the literature are defined for concepts belonging
to the same space. In this sense, this paper contribution is
original and new.

Similarity relations based on distance satisfy all metric
axioms. They are nonnegative, reflexive, symmetrical and
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transitive. Distance-based similarity relations are very intuitive
in interpretation. Unfortunately they have limited modeling
possibilities, as named axioms are very demanding. Especially,
when it comes to modeling as abstract terms as concepts
and features. Therefore it is necessary to develop versatile
similarity relations, applicable for complex objects, especially
ones with imprecise knowledge.

The domain of application is fuzzy - features are given
with membership degrees. Therefore, metric-based similarity
relation in the space of concepts and features may be defined
as follows: it is a similarity relation s : X × X → [0, 1]
on a set X , where s(x, y) expresses similarity between x
and y satisfying following axioms reflexivity, symmetry and
triangle condition s(x, y) ∗ s(y, z) ≤ s(x, z), where ∗ denotes
a similarity transitivity operator, which in the case of the [0, 1]
interval, is a t-norm. Let us recall that minimum operator is the
most popular t-norm. Depending on the choice of function ∗,
in the literature discussed are similarity relations under names
of indistinguishability relations, fuzzy equivalence relations,
proximity relations and others, [7] [p.5].

An alternative way of constructing similarity measure,
which is investigated in this article, is set theoretic approach.
Such relations often do not satisfy properties named above.
Most prominent set-theoretic methodology for similarity eval-
uation has been presented by A. Tversky in [13]. We briefly
discuss this topic below in Section II-B.

In the set-theoretic approach to similarity modeling of
interest are objects belonging to the same space. Similarity
between two objects: A and B is obtained by analysis of their
descriptions. Descriptions are sets of attributes determining
objects’ shapes. The more similar are sets A and B, the more
common features they share. Existence of features is binary
(feature either exists or not).

There are other nonmetric similarity measures and various
different approaches to determine dependencies between ob-
jects, which are not discussed here, due to space limitations.

B. Tversky’s similarity and derived indexes

Let us recall that original Tversky’s similarity measure
concerns similarity of objects a and b, which are characterized
by their sets of features A and B. Similarity of objects a and
b is stated in terms of smilarity of their qualitative features.
Therefore, having two sets A and B in a space X , A,B ⊂ X ,
c.f. Figure 1, the Tversky’s similarity measure of these sets is
expressed by the formula:

Sα,β(A,B) =
|A ∩B|

|A ∩B|+ α · |A \B|+ β · |B \A|
(1)

where | · | denotes cardinality, α, β > 0 are parameters of
Tversky’s index.

Circles, corresponding to A and B on Figure 1 are more
overlapping for more similar objects. If objects are indistin-
guishable, circles corresponding to them are on each other.
Objects, which do not share common features are disjoint. This
very basic concept can be generalized onto many domains and
can be transferred into plenty different similarity measures.

Fig. 1. Tversky’s similarity measure.

Tversky’s index is asymmetric in general. However, in the
case of equality of parameters α = β Tversky’s index becomes
symmetric. The formula can be rewritten as:

Sα,β(A,B) =

=
|A ∩B|

|A ∩B|+ δ · (γ · |A \B|+ (1− γ) · |B \A|)
(2)

which allows to control (a)symmetry as well as balance
between intersection of files and their symmetric difference
(A ∪ B) \ (A ∩ B). In this formula parameter α keeps
control over (a)symmetry while parameter β is responsible
for balance between intersection and symmetric difference.
Relations between parameters of formulas 1 and 2 are as
follows: γ = α/(α+ β) and δ = α+ β.

Setting α = 1 = β gives Tanimoto index, while for α =
0.5 = β we get Dice index. By analogy we discuss some issues
related to this topic.

III. SIMILARITIES

In this section discussion is based on set theoretic Tversky’s
similarity measure. Alike Tversky’s similarity, we consider
similarity of sets. Tversky’s similarity concerns sets in the
same space. Such sets can be subjected to set theoretic op-
erations: union, intersection and complement.

Unlike Tversky’s case, we consider files in different spaces.
Therefore, set theoretic operations are not applied to files
coming from different spaces. Of course, we can formally
define intersection of two files of different spaces as the empty
set and union of such sets as the set of all elements from both
such sets. But this is not the aim and we do not consider such
formal operations.

It is worth to highlight again that the presented attempt is
motivated and inspired by human cognitive processes.

The section starts with basic notions. First, methodology
for similarity evaluation of two sets from distinct spaces is
presented. Subsequently, in Subsection III-C, authors discuss
similarity of structured spaces of files. We extend the method-
ology introduced for separate files to account structured spaces.

A. Similarity of files

1) Similarity of separated files: First of all, we consider
similarity of two sets which are not comparable, i.e. they
are subsets of different spaces (universes). For instance, con-
sidering populations of two different cities X and Y , we
can compare sets A and B of citizens of both populations.
In this way we obtain two sets of individuals, which are
not comparable in the sense of Tversky’s measure. Indeed,
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Fig. 2. Similarity of files.

Fig. 3. Similarity of structures: files in spaces.

intersection of such files is empty. Anyway, we still can expect
some similarity level of such sets. Intuitively, such two sets
are identical, are similar at the level 1, if they are of the same
cardinality. On the other hand, empty and nonempty sets are
not similar at all.

Let us assume two sets: A = {a1, a2, . . . , ak} and B =
{b1, b2, . . . , bl}, c.f. Figure 2. As mentioned, elements of both
sets are incomparable. Adapting Tversky’s similarity measure,
we can invent a formula compatible with the above intuitive
observations:

S(A,B) =
min{|A|, |B|}
max{|A|, |B|}

=

=
min{|A|, |B|}

min{|A|, |B|}+
∣∣|A| − |B|∣∣ = min{k, l}

min{k, l}+
∣∣k − l∣∣ (3)

what can be rewritten in a form more suitable for further
manipulations on differences between files:

S(A,B) =

=
min{|A|, |B|}

min{|A|, |B|}+max{0, |A|−|B|}+max{0, |B|−|A|}

=
min{k, l}

min{k, l}+max{0, k − l}+max{0, l − k}
(4)

The last expressions in formulas 3 and 4 involves car-
dinalities of considered sets. As to this observation we can
draw a conclusion, that similarities under discussion may
be interpreted as similarities of natural numbers instead of
similarities of files. This remark outlines relations between sets
and numbers, which is well known in set theory. In this paper
we will refer to sets rather then to numbers in order to meet
illustrative examples.

B. Asymmetry of similarities

Similarity measures are usually assumed symmetric. This
assumption is not always valid. For instance, we say that
Bucharest is a little Paris, but we rather do not say that Paris is
a little Bucharest. This observation is interpreted that Bucharest
is similar to Paris (in some aspects), but we do not consider
Paris to be equally similar to Bucharest. Another example: let

us consider two consumers such that both have the same needs
besides that the second one has extra need to listen to classical
music. They are not identical and intuitively, the first one is
more similar to the second one than oppositely. In this study,
we assume similarity measures to be asymmetrical.

Returning to similarity of two sets A and B, order of
them would be important, i.e. the set A may be more similar
to the set B than the set B is similar to the set A. This
ascertainment is justified by the following another observation
(to supplement the above example with consumers): having
two sets, the one of lower cardinality is more similar to the one
of higher cardinality than oppositely. Introducing two positive
factors α and β we can control asymmetry as well as influence
of set differences on the similarity. If α > β then this intuition
is fulfilled, what is expressed in expansion of formula (4):

S(A,B) =

min{|A|, |B|}
min{|A|, |B|}+α·max{0, |A|−|B|}+β ·max{0, |B|−|A|}

=
min{k, l}

min{k, l}+α·max{0, k − l}+β ·max{0, l − k}
(5)

C. Similarity of structures

Discussion on similarity of files in section III-A does not
conceived spaces, in which those files were included. Now,
let us consider not only files alone, but also spaces of their
inclusion. Such considerations are motivated, for instance, by
an observation that similarities of groups of citizens of two
cities depend on relation between populations of these cities.
If we wish to compare numbers of owners of cars of a given
brand in different cities, populations of these cities should be
considered. Otherwise, such comparison would be defective.

1) Files in spaces: Assume that we distinguish subsets
A ⊂ X and B ⊂ Y of spaces X and Y having in this way,
in fact, two structures, c.f. Figure 3. As mentioned above, if
both sets A and B have the same cardinality, then they would
be considered perfectly similar. However, since these sets are
subsets of spaces X and Y , we should consider similarity of
structures A ⊂ X and B ⊂ Y rather than these files alone.
Reasonable is to assume perfect similarity if both sets A and
B have the same cardinality and both structures X and Y
have the same cardinality. Generalizing this observation we
can state that more close are proportions between |A| and |X|
and between |B| and |Y |, more similar both structures are. The
more similar spaces X and Y , the more similar both structures.

Summarizing, let us express these statements as qualified
similarity S(A|X,B|Y ) of subsets A and B:

S(A|X,B|Y ) =

min

{
|A|
|X|

,
|B|
|Y |

}
max

{
|A|
|X|

,
|B|
|Y |

} (6)

Finally, similarity of such structures cannot exceed simi-
larities of spaces X and Y and qualified similarity od sets A
and B. This reflection is summarized by the formula:
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Fig. 4. Qualified similarity of families with identity mapping between families of files (upper part) and with a bijection (permutation of indexes) σ between
families of files (bottom part).

Fig. 5. Similarity of families with optimal subfamilies compared and with admitted permutations of files (upper part) and with the spaces (universes) considered
(lower part).

S(A ⊂ X,B ⊂ Y ) = min
{
S(X,Y ), S(A|X,B|Y )

}
= min

{
min{|X|, |Y |}
max{|X|, |Y |}

,

min

{
|A|
|X|

,
|B|
|Y |

}
max

{
|A|
|X|

,
|B|
|Y |

}} (7)

and the following formula outlines asymmetrical version of
similarity of two structures A ⊂ X and B ⊂ Y :

Sα,β(A ⊂ X,B ⊂ Y )

= min
{
Sα,β(X,Y ), Sα,β(A|X,B|Y )

}
(8)

2) Families of files: In this section the simple structure (a
file in a space) is generalized to a family of files in a space.
For instance, let us consider populations of two cities. We
can distinguish groups of citizens born in a similar time, for
instance we can split populations to groups of people born
in the same year or groups of people in the same age with
10 years precision etc. In this way we get strict matching
of groups of both populations: match two groups (of two
populations) if they stand for the same year of birth or have
the same age.

Generalizing this observation let us consider two fami-
lies of sets A and B. Both families have the same num-
ber of sets enumerated by indexes I = {1, 2, . . . , n}, i.e.
A = {A1, . . . , An} and B = {B1, . . . , Bn}. Sets in every
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family are pairwise disjoint subsets of spaces X and Y ,
respectively, i.e. A1, . . . , An ⊂ X and B1, . . . , Bn ⊂ Y .
Denote also AI = ∪ni=1Ai and BI = ∪ni=1Bi. It may happen
that files cover spaces, i.e. AI = X and BI = Y .

At first assume that files match according to their indexes,
i.e. that given is identity mapping id between indexes of
both families, i.e. correspond files Ai and Bid(i) = Bi
for i = 1, 2, . . . , n, c.f. upper part of Figure 4. Similarity
(qualified, with regard to AI and BI ) of such families depends
on qualified similarity of pairs of corresponding files (qualified
similarity of files is described by formula (6)):

SI,id(A|AI ,B|BI) = min
i∈I

{
S(Ai|AI , Bi|BI)

}
(9)

In the above formula pairing of files is assumed to be
fixed. Usually, comparison might be done much more flexibly.
Changing pairing of compared files may give higher similarity
than given restrictive one. Assume that correspondence of files
is defined by a bijection σ of indexes I = {1, 2, . . . , n} into
the same set of indexes I , i.e. corresponding are files Ai and
Bσ(i) for i = 1, 2, . . . , n. As above, similarity of a pair Ai
and Bσ(i) is described by formula (6). Therefore, qualified
similarity of families A and B with regard to the mapping σ
is defined as:

SI,σ(A|AI ,B|BI) = min
i∈I

{
S(Ai|AI , Bσ(i)|BI)

}
(10)

Often, no correspondence between files of both families
is assumed. In such a case, it is reasonable to find a bijection
between sets of indexes, which maximizes similarities between
pairs of files, c.f. Figure 4. Then, qualified similarity of
families, independent on pairing, is defined as:

SI(A|AI ,B|BI) = max
σ∈P (I)

SI,σ(A|AI ,B|BI) =

= max
σ∈P (I)

{
min
i∈I

{
S(Ai|AI , Bσ(i)|BI)

}}
(11)

where P (I) are all bijections between sets of indexes of
families (recall that sets of indexes of both families are equal
and are equal to I).

In Table I we have I = {1, 2, 3, 4} and ∪4i=1Ai = AI = X
and ∪4i=1Bi = BI = Y . The top part of this tables shows
qualified similarities of corresponding files of both families
(third row) and qualified similarity of both families for identity
mapping (fourth row). The middle part of this Table shows
mapping (bijection) σ of files in the family B (first row),
qualified similarities of corresponding files of both families
(third row) and qualified similarity of both families for the
given mapping (fourth row). Finally, the bottom part (bottom
row) gives qualified similarity of both families (maximum of
qualified similarities for all bijections), which is equal to 1 in
this case.

3) Families of files with subfamilies compared: In this
discussion all files were considered in computed similarity
of families A and B. Usually, some files are not important
for comparing both families. This gives us an ability to take
into account pairs of files of relatively high similarity. But, of
course, due to the fact that only parts of families are compared,
dropped parts should also be accounted in computation of
similarity.

TABLE I. QUALIFIED SIMILARITY OF FAMILES OF FILES, THE
SAME CARDINALITY OF FAMILIES, ALL FILES ACCOUNTED.

i 1 2 3 4 I

|Ai| 10 20 30 40 100

|Bi| 40 30 20 10 100

S(Ai|AI , Bi|BI) 0.25 0.67 0.67 0.25

SI,id(A|AI ,B|BI) 0.25

σ(i) 4 3 2 1

|Bσ(i)| 10 20 30 40 100

S(Ai|AI , Bσ(i)|BI) 1 1 1 1

SI,σ(A|AI ,B|BI) 1

SI(A|AI ,B|BI) 1

Assume that given is sequence of (pairwise different)
indexes K = {i1, . . . , ik} and, of course, K ⊂ I =
{1, 2, . . . , n}. Assume also that given is 1 : 1 mapping
(injection) σ : K → I . Let us denote AK = ∪j∈KAj and
BK = ∪j∈KBσ(j). Now, we can define qualified similarity of
families A and B (with regard to I and σ) based on K as
follows:

SK,σ(A|AI ,B|BI) = (12)

min
{
min
j∈K

{
S(Aj |AI , Bσ(j)|BI)

}
, S(AK⊂AI , BK⊂BI)

}
If a mapping σ is not given and can be freely chosen as

an injection σ : K → I , we get:

SK(A|AI ,B|BI) = max
σ∈IK

{
SK,σ(A|AI ,B|BI)

}
= max
σ∈IK

{
min

{
S(Ai|AI , Bσ(i)|BI) : i ∈ K

}}
(13)

When no restriction is put on files to be compared, we set
the following formula to compute qualified similarity of these
two families:

S(A|AI ,B|BI) = max
K⊂I

{
SK(A|AI ,B|BI)

}
(14)

= max
K⊂I

{
max
σ∈IK

{
min

{
S(Ai|AI , Bσ(i)|BI) : i ∈ K

}}}
Considering similarity of unions AI and BI in sense of

formula (3), we get the following formula:

S(A,B) = min{S(A|AI ,B|BI), S(AI , BI)} (15)

In Table II we have I = {1, 2, 3, 4} and ∪4i=1Ai = AI = X
and ∪4i=1Bi = BI = Y . The top part of this tables shows
qualified similarities of corresponding files of both families
(third row) and qualified similarity of both families for identity
mapping (fourth row). It is easily seen that any permutation
of indexes does not change qualified similarity, what directly
gives qualified similarity of both families (fifth row).

The bottom part of this Table shows the subfamily K and
corresponding qualified similarities for identity mapping on
K (second row). Any injection on K does not change this
result. Finally, similarity for this given K is shown in third
row of this part. Notice, that for this choice of K, similarity
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TABLE II. QUALIFIED SIMILARITY OF FAMILES OF FILES, THE
SAME CARDINALITY OF FAMILIES, SUBFAMILIES CONSIDERED.

i 1 2 3 4 I

|Ai| 10 20 30 40 100

|Bi| 25 25 25 25 100

S(Ai|AI , Bi|BI) 0.4 0.8 0.833 0.625

SI,id(A|AI ,B|BI) 0.4

SI(A|AI ,B|BI) 0.4

K 2 3 4

S(AK ⊂ AI , BK ⊂ BI) 0.937

SK,id(A|AI ,B|BI) 0.625

SK(A|AI ,B|BI) 0.625

S(A|AI ,B|BI) 0.625

S(A,B) 0.625

S(AK ⊂ AI , BK ⊂ BI) = 0.937 does not diminish the result,
c.f. formula 12. It is easy to see that any other choice of K
does not increase final similarity, but rather diminishes.

4) Similarity of families of different cardinalities: Assum-
ing that families A and B have different numbers of files, say:

• A = {A1, A2, . . . , An} and I = {1, 2 . . . , n},
• B = {B1, B2, . . . , Bm} and J = {1, 2 . . . ,m},

we define K ⊂ {1, 2, . . . , n} such that cardinality of K does
not exceed cardinality of the smaller family: |K| 6 min(n,m),
c.f. Figure 5. Then we apply formula (15) for such restricted
subset of indexes K ⊂ I .

5) Similarity of families of files in spaces: Finally, if spaces
X and Y cannot be left aside, c.f. Figure 5, we replace
similarity of files in formula (15) by similarity of files in
spaces, coming to the following formula:

S(A ⊂ 2X ,B ⊂ 2Y )

= min
{
S(A,B), S(AI ⊂ X,BJ ⊂ Y )} (16)

Needless to say that computation of similarity of families
of sets is a hard optimization problem.

In Table III we have different cardinality of families of
files I = {1, 2, . . . , 6} and J = {1, 2, . . . , 10}. Alike in former
examples, ∪6i=1Ai = AI = X and ∪10j=1Bj = BJ = Y , c.f.
top two sections of this Table. Next two sections of the Table
show similarities for two different choices of subfamily K and
different injections on K. Bottom section (bottom row) shows
final similarity of these two families.

Summary of concepts of similarities is outlined in Table III.
In this Table we propose names for different kind of similarity
measures: direct, qualified and unconditional. Direct similarity
measures are applied to pairs of sets. Qualified and uncondi-
tional similarity measures are applied to both: pairs of sets and
pairs of families.

IV. CASE STUDY

Let us consider a case study example based on 4 Polish
cities: Bialystok, Bydgoszcz, Krakow and Warszawa. The aim

TABLE III. QUALIFIED SIMILARITY OF FAMILES, DIFFERENT
CARDINALITIES OF FAMILIES, SUBFAMILES CONSIDERED.

i 1 2 3 . . . 6 I

|Ai| 50 10 10 . . . 10 100

j 1 2 3 . . . 6 . . . 10 J

|Bj | 10 10 10 . . . 10 . . . 10 100

i 1 2 3 . . . 6 K

|Ai| 50 10 10 . . . 10 100

σ(i) 1 2 3 . . . 6 σ(K)

|Bj | 10 10 10 . . . 10 100

S(Ai|AI , Bi|BI) 0.2 1 1 . . . 1

S(AK ⊂ AI , BK ⊂ BI) 0.5

SK,σ(A|AI ,B|BI) 0.2

i 2 3 . . . 6 K

|Ai| 10 10 . . . 10 100

σ(i) 2 3 . . . 6 σ(K)

|Bj | 10 10 . . . 10 100

S(Ai|AI , Bi|BI) 1 1 . . . 1

S(AK ⊂ AI , BK ⊂ BI) 1

SK,σ(A|AI ,B|BI) 0.4

S(A|AI ,B|BI) 0.4

S(A,B) 0.4

S(A ⊂ 2AI ,B ⊂ 2BI ) 0.4

of this case study is to illustrate properties of the proposed
methodology for similarities evaluation of sets and families of
sets from distinct structured spaces on real data. We investigate
how proposed formulas perform of population data. Attention
is on qualified similarity and on similarity of sets’ families.

We compare selected cities, one against another. Population
of each city is a distinct space. Space structuring is an
additional knowledge, which we take benefit of. In this case
study spaces structuring is according to populations age. Each
space is divided into disjoint subsets consisting of people of
certain age. We have distinguished following age groups: 0-9,
10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70 years old and
over.

We apply formulas introduced in Section III to calculate
similarities between aforementioned cities. All details regard-
ing this case study: subsets’ sizes and results are gathered
in Table V. Numerical information (populations) are from
statistical yearbook.

Table’s V is organized as follows. In the top section
populations of all groups are given and population of cities
is given in the last column marked as I . In this case the set
of indexes I includes marks of groups: 0-9, 10-19 etc. Notice,
that in this case, due to nature of the problem, only identity
mapping is considered.

Next three sections are devoted to comparison of three pairs
of cities. These pairs are given in the first column. First two
rows of each section outlines direct and qualified similarities
of corresponding groups of people and, in the last column,
direct similarity of whole population of given pair of cities.
Then, consecutive four rows of numbers define subfamilies
K. Simply, a group of people in certain age is dropped in
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TABLE IV. SUMMARY OF SIMILARITIES

direct qualified unconditional
sets sets families sets and families

A ⊂ X
B ⊂ Y

X ∩ Y = ∅

S(A,B) =

=
min{|A|, |B|}
max{|A|, |B|}

S(A|X,B|Y ) =

=

min

{ |A|
|X|

,
|B|
|Y |

}
max

{ |A|
|X|

,
|B|
|Y |

} S(A ⊂ X,B ⊂ Y ) =

= min{S(A|X,B|Y ), S(X,Y )}

I = {1, . . . , i0}
J = {1, . . . , j0}
A = {Ai : i ∈ I}
B = {Bj : j ∈ J}
AI =

⋃
i∈I Ai

BJ =
⋃
j∈J Bj

K ⊂ I, |K| 6 |J|

S(A,B) =

=
min{|Ai|, |Bj |}
max{|Ai|, |Bj |}

S(Ai|X,Bj |Y ) =

=

min

{ |Ai|
|X|

,
|Bj |
|Y |

}
max

{ |Ai|
|X|

,
|Bj |
|Y |

}
SK(A,B) =

= max
σ∈JK

{
SK,σ(A,B)

}
S(A,B) =

= max
K

{
SK(A,B)

}
S(A ⊂ 2X ,B ⊂ 2Y ) =

= min
{
S(A,B), S(AI ⊂ X,BJ ⊂ Y )

}

TABLE V. REAL EXAMPLE

i 0− 9 10− 19 20− 29 30− 39 40− 49 50− 59 60− 69 70 6 I

Bialystok |Ai|/1000 28.1 28.5 50.5 47.8 38.3 43.8 28.3 29.0 294.3

Bydgoszcz |Bi|/1000 32.4 33.5 55.5 56.9 43.1 56.7 43.7 41.0 363.0

Krakow |Ci|/1000 69.0 62.4 131.0 126.9 88.4 108.5 85.5 87.3 759.1

Warszawa |Di|/1000 167.8 125.0 250.9 302.3 188.9 254.3 195.6 223.7 1 708.5

S
(
Ai, Bi

)
0.867 0.851 0.909 0.839 0.887 0.773 0.647 0.707 0.811

S
(
Ai|AI , Bi|BI

)
0.935 0.953 0.892 0.966 0.914 0.953 0.798 0.872

K ⊂ I

Bialystok SI,id
(
Ai|AI , Bi|BI

)
0− 9 10− 19 20− 29 30− 39 40− 49 50− 59 60− 69 70 6 0.798

vs SK,id
(
Ai|AI , Bi|BI

)
0− 9 10− 19 20− 29 30− 39 40− 49 50− 59 70 6 0.872

Bydgoszcz SK,id
(
Ai|AI , Bi|BI

)
0− 9 10− 19 20− 29 30− 39 40− 49 50− 59 0.766

SK,id
(
Ai|AI , Bi|BI

)
0− 9 10− 19 30− 39 40− 49 50− 59 0.613

Sid
(
A|AK ,B|BK

)
0.872

Sid
(
A ⊂ 2AI ,B ⊂ 2BI

)
0.811

S
(
Bi, Ci

)
0.470 0.537 0.424 0.449 0.488 0.523 0.511 0.471 0.478

S
(
Bi|BI , Ci|CI

)
0.983 0.890 0.886 0.938 0.981 0.915 0.935 0.984

K ⊂ I

Bydgoszcz SI,id
(
Bi|BI , Ci|CI

)
0− 9 10− 19 20− 29 30− 39 40− 49 50− 59 60− 69 70 6 0.886

vs SK,id
(
Bi|BI , Ci|CI

)
0− 9 10− 19 30− 39 40− 49 50− 59 60− 69 70 6 0.827

Krakow SK,id
(
Bi|BI , Ci|CI

)
0− 9 30− 39 40− 49 50− 59 60− 69 70 6 0.745

SK,id
(
Bi|BI , Ci|CI

)
0− 9 30− 39 40− 49 60− 69 70 6 0.600

Sid
(
B|BK , C|CK

)
0.886

Sid
(
B ⊂ 2BI , C ⊂ 2CI

)
0.478

S
(
Ci, Di

)
0.411 0.499 0.522 0.420 0.468 0.427 0.437 0.390 0.444

S
(
Ci|CI , Di|DI

)
0.925 0.891 0.851 0.945 0.949 0.961 0.984 0.879

K ⊂ I

Krakow SI,id
(
Ci|CI , Di|DI

)
0− 9 10− 19 20− 29 30− 39 40− 49 50− 59 60− 69 70 6 0.851

vs SK,id
(
Ci|CI , Di|DI

)
0− 9 10− 19 30− 39 40− 49 50− 59 60− 69 70 6 0.827

Warszawa SK,id
(
Ci|CI , Di|DI

)
0− 9 10− 19 30− 39 40− 49 50− 59 60− 69 0.712

SK,id
(
Ci|CI , Di|DI

)
0− 9 30− 39 40− 49 50− 59 60− 69 0.630

Sid
(
C|CI ,D|DI

)
0.851

Sid
(
C ⊂ 2CI ,D ⊂ 2DI

)
0.444

consecutive rows. A group is dropped, for which qualified
similarity is the lowest one.

The last but one row of each comparative section gives
qualitative similarity of families of files. The last row of

each comparative section provides unconditional similarity
of discussed people’s groups at the background of whole
population of given pairs of cities. Notice that there is no
variability with regard to mapping between members of both
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families. This is why the subscript id is used for each similarity
symbol S.

It is worth to draw attention to the firs pair of cities:
Bialystok and Bydgoszcz. In this case the highest qualified
similarity SK,id(Ai|AI , Bi|BI) is reached for the subfamily
K with dropped the group of people aged 60-69. For two other
pairs the highest similarity is achieve for the whole families
I . This is due to diminishing similarity of subfamilies.

Due to space limitation we do not discuss the presented
case in details. We also have to resign from comparing
provinces of the country. Such comparison leads to computing
similarity of families of different cardinalities.

V. CONCLUSIONS

The paper introduced methodology for similarity evalua-
tion designed for distinct spaces of sets. Proposed approach
provides a wide variety of modeling possibilities. Designed
relations allow to calculate similarities of two sets belonging
to distinct spaces, and also similarities of two spaces of sets.

To our knowledge, there are no such approaches in the
literature. Sets of interest belong to distinct spaces. In such
situation we cannot calculate similarity of two distinct spaces
using classical methods. Analogically, there are no commonly
accepted similarity relations for two distinct spaces. In this
context, proposed methodology is an original contribution to
the field of widely understood information modeling. The
objective of this paper was to introduce key concepts behind
the proposed similarity relations.

In contrast to comparison of two concepts belonging to
the same space, when we try to compare two concepts from
different spaces there are no shared features, that we can
assess. Qualitative comparison, which is the crux of the set-
theoretic approach to similarity modeling fails for sets belong-
ing to distinct universes and all the more it fails to compare
two distinct spaces. Our methodology is based on the only
comparable knowledge available in such situations: sets and
subsets cardinalities.

Proposed procedure for spaces similarity evaluation takes
advantage of underlying division of given two spaces into
disjoint subsets. Such structuring is commonly observed in
nature - phenomena from the same universe are divided into
groups. We take advantage of such division assuming that
spaces structuring is a subject of similarity. Presented formulas
for similarity calculation are inspired by human cognitive
processes and they express rather ,,pessimistic” evaluations
through selected aggregation operators.

The objective of this paper was to introduce researched
methodology. We aimed to focus on proposed similarity rela-
tions. Theoretical discussion is supported with a case study,
where we compared 4 cities by their populations’ age.

In future authors plan to continue research in this direction.
We are interested in similarities of structured spaces with al-
ternative definitions of the structuring, for example inclusions.
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