
 
 

 

  

Abstract— In this paper, we will present analytical 
derivations of the simplest the Interval Type-2 Fuzzy PID 
(IT2-FPID) controller output which is composed of only 4 rules. 
Thus, we will first propose a new visualizing method called 
Surface of the Switching Points (S-MAP) in order to better 
analyze the derivation of the Switching Points (SPs) of the 
Karnik-Mendel algorithms. We presented mathematical 
explanation of the S-MAP and showed that the SPs are 
determined by only two Boundary Functions (BFs) for the 
simplest IT2-FPID controller. We will then give the simplified 
analytical derivation of the simplest IT2-FPID controller 
around the steady state via the employed BFs and S-MAP. We 
have illustrated that the simplest IT2-FPID controller is in fact 
analogous to a conventional PID controller around the steady 
state. We presented the simplest IT2-FPID controller output in 
terms of the parameters of the antecedent IT2-FSs. We 
examined the effect of the design parameter over IT2-FPID 
control system performance. In the light of the observations, we 
presented a simple self-tuning mechanism to enhance the 
transient state and disturbance rejection performance. 

Keywords—Simplest Interval type-2 fuzzy PID controllers; 
Karnik- Mendel Method, Switicing Points. 

I. INTRODUCTION 

Recently, the research focus is on Interval Type-2 Fuzzy 
Logic Controllers (IT2-FLCs) since the they achieve 
satisfactory and robust control performance because of the 
additional degree of freedom provided by the Footprint of 
Uncertainty (FOU) in their Membership Functions (MFs) 
[1-2]. However, since the IT2-FLCs employ Interval Type-2 
Fuzzy Sets (IT2-FSs), a Type-Reduction (TR) procedure is 
required to compute the crisp output. The Karnik-Mendel 
(KM) method is widely used as the TR method [3]-[4]. 
IT2-FLCs have been much interest especially in control 
applications and the superiority of the IT2-FLCs over the 
type-1 counterparts is shown in [1], [5]-[12]. In [1], it is 
shown that the IT2-FLCs have better handle with 
uncertainties and unknown dynamics. The control surface of 
the IT2-FLC around the origin is smoother than Type-1 Fuzzy 
Logic Controllers (T1-FLC), thus the risk of oscillations is 
reduced and the disturbances cause smaller changes in control 
signals [5], [13]. Although the advantages of the IT2-FLCs 
have been shown, the systemic design and stability analysis 
of the IT2-FLCs is still open problem since the analytic 
derivation of the IT2-FLCs is relatively more complex in 
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comparison to its type-1 counterpart [13], [14]. So far, the 
stability analysis of the interval type-2 fuzzy model based 
control systems is examined in [15] and the stability of the 
IT2-FLCs is presented in [16] by using an alternative 
type-reduction method [17] (which enables to write the 
output of the IT2-FLC in a closed form). Moreover, analytical 
derivations of the Interval Type-2 Fuzzy PI and PD (IT2-FPI 
and IT2-FPD) controllers are obtained in [18] and [19] by 
dividing the input space to several number of sub-regions. 
Kumbasar [11] derive the closed-from formulation of the 
single input Interval Type-2 Fuzzy PID (IT2-FPID) 
controller. The research interest on this topic still continues to 
understand and analyze the internal structure of the IT2-FLCs 
better and design more systematic controllers. 

In this study, we will present analytical structural analysis 
of the simplest IT2-FPID controller which is composed of 
four rules. We will present a novel graphical method called 
Surface of Switching Points Map (S-MAP) to visualize and 
understand better the variation of the Switching Points (SPs) 
selection of the KM algorithm. The S-MAP is a novel plot 
that illustrates the SP selection of the KM algorithm which is 
based on the Boundary Function (BF) based KM (BF-KM) 
[21]. The BF-KM TF method is an enhancement to the 
original KM TR algorithms and eliminates the iterative nature 
of the KM algorithm. With the aids of the S-MAP and 
BF-KM, we will derive the closed-from formulation of the 
simplest IT2-FPID controller around the steady state and 
show that the IT2-FPID controller is analogous to a PID 
controller. We will present the output of the simplest 
IT2-FPID controller in terms of the parameters of the 
antecedent IT2-FSs of the rules. We will present a detailed 
investigation of the design parameter to show and examine 
the effect of this parameter over IT2-FPID control system 
performance. In the light of the observations, we will present 
a simple self-tuning mechanism and the effectiveness is 
shown on simulation studies.  

The paper is organized as follows. Section II gives brief 
information about the general structure of the simplest 
IT2-FPID controllers. Section III presents the proposed the 
S-MAP. Section IV presents the analytical structure of the 
simplest IT2-FPID controllers and a simple tuning 
mechanism. Section VI includes the conclusions. 

II. THE STRUCTURE OF THE SIMPLEST IT2-FPID 
CONTROLLERS 

In this section, we will first present the general structure of 
the IT2-FPID controllers and then give the properties of the 
simplest IT2-FPID controller studied in this paper. The 
IT2-FPID controllers are constructed by choosing the inputs 
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as error (݁) and derivative of error ( ሶ݁) and the output as the 
control signal (ݑ) as illustrated in Fig. 1. Here, the input 
scaling factors (SFs) ܭ and ܭௗ	normalize the inputs to the 
universe of discourse where the MFs of the two inputs are 
defined. Thus, the inputs ݁ and ሶ݁ are transformed to ܧ and ܧሶ  
while the output (ܷ) of the fuzzy controller is scaled by the 
output SFs ܭ  and ܭ to the control signal (ݑ) as follows: ݑ ൌ ܷܭ  ܭ නܷ	݀(1) ݐ 

The fuzzy rules of the simplest IT2-FLC are ܴ:			IF			ܧ	is	ܣሚ		and		ܧሶ 	is	ܤ෨ 		THEN			ܷ	is	ܥ,ݍ ൌ 1,… , ܳ ൌ 4 
(2) 

where ܣሚ  and ܤ෨ (݅, ݆ ∈ ሼ1,2ሽ) are the Interval Type-2 Fuzzy 
Sets (IT2-FSs) which are the antecedent MFs of the inputs ܧ 
and ܧሶ  respectively, ܥ is the consequent crisp set and	ܳ is the 
total number of the rules.	The crisp output of the IT2-FLC can 
be described with the type reduced sets as shown in [20], then, 
the output of the IT2-FLC can be formulized as:  ܷ ൌ ܷ  ܷ2  (3) 

where ܷ and ܷ are the end points of the type reduced sets  
and determined as follows: ܷ ൌ ܷ∗ ൌ minሺ ܷሻ (4) 

ܷ ൌ ܷோ∗ ൌ maxሺ ܷோሻ (5) 

where ܷ∗and ܷோ∗ are the type reduced set calculated by the 
KM algorithm with respect to the optimal SFs (ܮ∗ and ܴ∗) that 
minimize and maximize respectively following equations: 

ܷ ൌ ∑ 	 ݂	ܥୀଵ  ∑ 	 ݂ܥொୀସୀାଵ∑ 	 ݂	ୀଵ  ∑ 	 ݂ொୀସୀାଵ 	 (6) 

ܷோ ൌ ∑ 	 ݂ܥோୀଵ  ∑ 	 ݂ܥொୀସୀோାଵ∑ 	 ݂ோୀଵ  ∑ 	 ݂ொୀସୀோାଵ 	 (7) 

where ܮ and ܴ are the candidate SPs of the KM algorithm 
and  ݂  and ݂  represent the lower and upper bounds of a 
Firing Interval (FI) (ܨ) which are calculated as ݂ ൌ ෨ߤ ∩  ෨ೕ (8)ߤ

݂ ൌ ෨ߤ ∩ ܨ ෨ೕ (9)ߤ ൌ ቂ	 ݂, ݂	ቃ	 (10) 

where ߤ෨  and ߤ෨  are the Lower MFs (LMFs) and Upper 
MFs (UMFs) of the input ߤ ,ܧ෨ೕ and ߤ෨ೕ are the LMFs and 

UMFs of the input ܧሶ  respectively, ∩  denotes the t-norm 
operator which is the algebraic product in this study. 

Fig. 1. IT2-FPID controller structure 

Fig. 2. The antecedent and consequent MFs of IT2-FLC 

In the simplest IT2-FPID controller structure, we will 
define the antecedent MFs of IT2-FLC with two uniformly 
distributed symmetrical triangular IT2-FSs as shown in Fig. 
2a and Fig. 2b and the employed IT2-FSs can be described 
with two parameters, the core of the UMF and LMF (ܿ) and 
the height of the LMF (݉). Here, for the employed IT2-FLC 
structure, ܣሚଵ, ܣሚଶ, ܿଵଵ, ܿଵଶ, ݉ଵଵ and ݉ଵଶ are used for the error 
input (ܧ) while ܤ෨ଵ, ܤ෨ଶ, ܿଶଵ, ܿଶଶ, ݉ଵଶ and ݉ଶଶ are used for 
the derivative of the error input (ܧሶ ). In the employed 
IT2-FLC, the cores of the IT2-FSs are assigned as ܿଵଵ=	ܿଶଵ=െ1 and ܿଵଶ=	ܿଶଶ=1 in order to have universe of 
discourse and the heights of the LMFs are assumed to equal, 
i.e. ݉ଵଵ=݉ଵଶ=݉ଶଵ=݉ଶଶ=ܯ to generate symmetrical FOU in 
each IT2-FS. The linguistic terms Negative (N) and Positive 
(P) are represented by ܣሚଵ and ܣሚଶ IT2-FSs for the first input 
ሶܧ) besides for the second input ,(ܧ) ሻ they are characterized 
by ܤ෨ଵ and ܤ෨ଶ. The IT2-FS antecedent MFs of the employed 
IT2-FLC can be expressed as follows: ߤ෨భ ൌ ൬1 െ 2ܧ ൰ܯ, ෨భߤ ൌ ൬1 െ 2ܧ ൰ (11) 

෨మߤ ൌ ൬1  2ܧ ൰ܯ, ෨మߤ ൌ ൬1  2ܧ ൰ (12) 

෨భߤ ൌ ቆ1 െ ሶ2ܧ ቇܯ, ෨భߤ ൌ ቆ1 െ ሶ2ܧ ቇ (13) 

෨మߤ ൌ ቆ1  ሶ2ܧ ቇܯ, ෨మߤ ൌ ቆ1  ሶ2ܧ ቇ (14) 

where ܯ  is the height of the LMFs. The MFs of the 
consequent part are defined with three singleton consequents 
which are Negative ሺܰሻ=െ1, Zero ሺܼሻ=0	and Positive ሺܲሻ=1 
as shown in Fig.2c. In this context, the simplest IT2-FPID 
controller has totally four rules as shown in Table 1.  

TABLE 1 - THE TYPE-2 FUZZY RULE BASE 

If 
If 
If 
If 

E  is N 
E  is N 
E  is P 
E  is P 

and 
and 
and 
and 

Ė is N 
Ė is P 
Ė is N  
Ė is P 

Then  
Then  
Then  
Then  

U is N 
U is Z 
U is Z 
U is P 

 
Hence, the firing intervals of each rule can be expressed as: 
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ଵܨ ൌ ቂ	 ଵ݂, ଵ݂	ቃ ൌ ෨భߤൣ ∩ ,෨భߤ ෨భߤ ∩ ൌ						෨భ൧ߤ 1 െ ܧ െ ሶܧ  ሶ4ܧܧ ,ଶܯ 1 െ ܧ െ ሶܧ  ሶ4ܧܧ ൨ (15) 

ଶܨ ൌ ቂ	 ଶ݂, ଶ݂	ቃ ൌ ෨భߤൣ ∩ ,෨మߤ ෨భߤ ∩ ൌ						෨మ൧ߤ 1 െ ܧ  ሶܧ െ ሶ4ܧܧ ,ଶܯ 1 െ ܧ  ሶܧ െ ሶ4ܧܧ ൨ (16) 

ଷܨ ൌ ቂ	 ଷ݂, ଷ݂	ቃ ൌ ෨మߤൣ ∩ ,෨భߤ ෨మߤ ∩ ൌ							෨భ൧ߤ 1  ܧ െ ሶܧ െ ሶ4ܧܧ ,ଶܯ 1  ܧ െ ሶܧ െ ሶ4ܧܧ ൨ (17) 

ସܨ ൌ ቂ	 ସ݂, ସ݂	ቃ ൌ ෨మߤൣ ∩ ,෨మߤ ෨మߤ ∩ ൌ						෨మ൧ߤ 1  ܧ  ሶܧ  ሶ4ܧܧ ,ଶܯ 1  ܧ  ሶܧ  ሶ4ܧܧ ൨ (18) 

Then, the derived FIs are used in the type-reduced set 
formulation of the IT2-FLC given in Equations (6) and (7). 
Clearly, the FIs are the functions of inputs (ܧ and ܧሶ ) and the 
height of the LMFs (M) then the crisp output of the IT2-FLC 
(ܷ) is determined with respect to ܧ ,ܧሶ  and ܯ. Therefore the 
height of the LMFs, ܯ, is the only design parameter of the 
simplest IT2-FPID controller. Hence, the performance of the 
simplest IT2-FPID directly depends on the choice of ܯ 
parameter.  

III. SURFACE OF SWITCHING POINTS MAP 
 In this section, we will discuss the switching point 

selection of the KM algorithm and then using two BFs we will 
employ a method called Boundary Functions Based KM 
(BF-KM) [21] for determining the switching points of the 
simplest IT2-FPID controller. 

The output of the IT2-FLC is determined with respect to 
the optimal switching points (ܮ∗ and ܴ∗) in Equations (4) and 
(5). In this context, the KM algorithm is used to determine the 
switching points for computing ܷ 	and ܷ  [20] and the KM 
algorithm calculates the switching points iteratively with 
respect to Equations (6) and (7) by following conditions: ܥ  ܷ  ,ାଵܥ ܮ ൌ 1,… , ܳ െ 1 ൌ ோܥ (19) 3  ܷோ  ,ோାଵܥ ܴ ൌ 1,… , ܳ െ 1 ൌ 3 (20) 
As mentioned in the previous section, in the employed 
simplest IT2-FPID controller structure there are only four 
consequents (ܥଵ=ܰ=െ1, ܥଶ=Z=0, ܥଷ=Z=0, ܥସ=P=1) and 
four fuzzy IF-THEN rules. Initially, these consequents have 
been sorted in ascending order. In the simplest IT2-FLC 
structure, there are only three possible SPs (∀	ܮ, ܴ ∈ ሾ1,2,3ሿ) 
are obtained as given in Equations (19) and (20). Also, it is 
shown in [21] that the SPs never equal to 2 for the simplest 
IT2-FLC. Therefore, only three feasible SPs which KM 
algorithm will compute, are determined as {1=ܴ ,1=ܮ}, 
 is the SP ∗ܮ Reminding that .{3=ܴ ,3=ܮ} and {3=ܴ ,1=ܮ}
that minimizes ܷ  and ܴ∗ is the SP that maximizes ܷ  with 
respect to Equations (6) and (7). Then, the optimal SPs must 
satisfy the following conditions (KM conditions):  

∗ܮ ൌ ቐ1 if ܷଵ  ܷଶ and ܷଵ  ܷଷ2 if ܷଶ  ܷଵ and ܷଶ  ܷଷ3 if ܷଷ  ܷଵ and ܷଷ  ܷଶቑ (21) 

ܴ∗ ൌ ቐ1 if ܷଵ  ܷଶ and ܷଵ  ܷଷ2 if ܷଶ  ܷଵ and ܷଶ  ܷଷ3 if ܷଷ  ܷଵ and ܷଷ  ܷଶቑ (22) 

where ܷ௪  and ܷ௪are the candidate solutions of type reduced 
sets (in Equations (6) and (7)) calculated with respect to ݓ, 
and  ݓ is the candidate value of the corresponding SP. By 
solving Equations (4) and (5) in terms of Equations (19) and 
(20) after substituting Equations (11) to (18), the BFs for the 
selection of the optimal SPs (ܮ∗ and ܴ∗) can be obtained as 
follows: ܤሺܧሶ ሻܯ, ൌ 1 െ ሶܧ െ ଶܯ െ ଶ1ܯሶܧ െ ሶܧ  ଶܯ   ଶ (23)ܯሶܧ

ሶܧோሺܤ ሻܯ, ൌ 1  ሶܧ െ ଶܯ  ଶെ1ܯሶܧ െ ሶܧ െ ଶܯ   ଶ (24)ܯሶܧ

Here, the BFs are determined as a function of only ܧሶ  and ܯ. 
The optimal SPs (ܮ∗ and ܴ∗) are determined with respect the 
following conditions:   ܮ∗ ൌ ቊ1 if ܧ  ሶܧ൫ܤ ൯3ܯ, if ܧ  ሶܧ൫ܤ  ൯ቋ (25)ܯ,

ܴ∗ ൌ ቊ1 if ܧ  ሶܧோ൫ܤ ൯3ܯ, if ܧ  ሶܧோ൫ܤ  ൯ቋ (26)ܯ,

Thus, we can determine the SPs of the KM algorithm with no 
need to perform the iterative procedure of the KM algorithm. 
Using the two BFs given in Equations (23) and (24) we can 
easily visualize the SPs. With the help of this analysis, we will 
present a novel visualizing method called the Surface of 
Switching Points Map (S-MAP) which helps us to understand 
and analyze the selection of SPs of the KM algorithm without 
using its iterative procedure. In this visual method, the values 
of the SPs are project to a three dimensional space with 
respect to the input variables. In the three-dimensional space, 
a point is expressed with three terms; the values of ܧ and ܧሶ  
(for x-axis and y-axis) and the SPs values (for z-axis).  

We will consider four cases in order to show how the 
S-MAP can be used for analyzing the selection of SPs of the 
KM for the simplest IT2-FPID controller. Thus, the BFs 
defined in Equations (23) and (24) for obtaining S-MAPs are 
illustrated in Fig. 3 when the height of the LMFs is selected as 
M=0.2, 0.5, 0.8, 1. Then, the S-MAPs is obtained using the 
BFs and the optimal SPs given in Equations (25) and (26).  As 
shown in Fig. 4a, Fig. 4b and Fig. 4c, there are only three 
different colored regions with respect to the three SPs, which 
are mentioned above for the simplest IT2-FPID controller; 
the blue region for {1=ܴ ,1=ܮ}, the green region for {3=ܴ ,1=ܮ} and the red region for {3=ܴ ,3=ܮ}. 
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Fig. 3.  The boundary functions for 1 ,0.8 ,0.5 ,0.2=ܯ 

Fig. 4. The S-MAPs for (a) 0.2=ܯ, (b) 0.5=ܯ, (c) 0.8=ܯ, (d) 1=ܯ 

Fig. 5. The SPs found using the KM algorithm by quantizing the input space 
for (a) 0.2=ܯ, (b) 0.5=ܯ, (c) 0.8=ܯ, (d) 1=ܯ 

The same results can be obtained when the KM algorithm 
would be used in the input space (ܧ ∈[-1, 1] and ܧሶ ∈[-1, 1]) 
and iteratively. The SPs are solved by various iterations after 
quantizing the input space. Fig. 5 shows the results obtained 
for {1 ,0.8 ,0.5 ,0.2}=ܯ and here the black lines represent the 
quantized input values. As it can easily be observed, the 
proposed S-MAPs illustrated in Fig. 4a, Fig. 4b, Fig. 4c and 
Fig. 4d exactly matches with the SPs obtained from the KM 
algorithm illustrated in Fig.5, Fig. 5b, Fig. 5c and Fig. 5d 
respectively. In addition, it should be stated that when M is 
chosen to be 1, as expected the simplest IT2-FLC reduces to 
the T1-FLC since the LMFs and the UMFs fully overlap and 
only two regions on the S-Map appear since the FOU 
vanishes. The detailed information that gives more 
generalized remarks on this subject can be found in [21]. 

Consequently, the outcomes of the S-MAP analysis can be 
interpreted for simplest IT2-FPID controller as follows: 

• The left and the right SPs of the KM algorithms can be 
clearly displayed corresponding to the values of the 
inputs, ܧ and ܧሶ , in the S-MAP 

• Each region on the S-MAP points out different SPs of 
the KM algorithm (for instance {3=ܴ ,1=ܮ}) 

• The size of the FOU (in terms of ܯ) changes the area 
around the origin of S- MAP  

• The three regions on the S- MAP are determined by 
two conditions given in Equations (25) and (26) with 
two BFs given in Equations (23) and (24). 

IV. THE ANALYTICAL STRUCTURE OF THE SIMPLEST 
IT2FPID CONTROLLER 

The main goal of the analytical analysis of the S-MAP 
presented in the previous section is to determine the switching 
points of the KM algorithm using a conditional expression 
involving two quite simple BFs with respect to ܧ ,ܧሶ  and ܯ. 
This observation will lead us to derive the output of the 
IT2-FLC (ܷ) in a closed-form formulation since the iterative 
nature of the KM algorithm is eliminated for the particular 
circumstances.  

As it is known, when the value of M decreases, the size of 
the FOU increases, and as observed from analysis of the 
S-MAP of the simplest IT2-FPID controller, the region at 
where 1=∗ܮ and ܴ∗=3 and which is located around the origin 
 ,expands. From the point of the control theory view ,(ሶ=0ܧ=ܧ)
the origin of the S-MAP characterizes the steady-state point 
of the closed-loop system since the error (݁) and derivative of 
error ( ሶ݁) of the system are defined as ܧ ൌ ሶܧ ݁ (27)ܭ ൌ ௗܭ ሶ݁ (28) 
approach to zero when the inputs of the IT2-FLC approach to 
zero. Then, the motivating result of this remark will lead us 
further analysis performed only on the region of the origin as 
the robustness of IT2-FPI controllers are examined in [14].  

The output of the simplest IT2-FLC can be defined with 
three output terms with respect to the SPs that can be derived 
easily by the BFs given in Equations (23) and (24). Hence, the 
output of the IT2-FLC can be expressed as follows: 
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ܷ ൌ ቐ ଵܷଵ ݂݅ ܧ  ܤ ܽ݊݀ ܧ  ோଵܷଷܤ ݂݅ ܧ  ܤ ܽ݊݀ ܧ  ோܷଷଷܤ ݂݅ ܧ  ܤ ܽ݊݀ ܧ   ோቑ (29)ܤ

where 

ଵܷଵ ൌ ቀെ	 ଵ݂  ସ݂ቁ2 ቀ ଵ݂  ଶ݂  ଷ݂  ସ݂ቁ  ቀെ ଵ݂  ସ݂ቁ2 ቀ ଵ݂  ଶ݂  ଷ݂  ସ݂ቁ (30) 

ଵܷଷ ൌ ቀെ	 ଵ݂  ସ݂ቁ2 ቀ ଵ݂  ଶ݂  ଷ݂  ସ݂ቁ  ቀെ ଵ݂  ସ݂ቁ2 ቀ ଵ݂  ଶ݂  ଷ݂  ସ݂ቁ (31) 

ܷଷଷ ൌ ቀെ	 ଵ݂  ସ݂ቁ2 ቀ ଵ݂  ଶ݂  ଷ݂  ସ݂ቁ  ቀെ	 ଵ݂  ସ݂ቁ2 ቀ ଵ݂  ଶ݂  ଷ݂  ସ݂ቁ (32) 

In this study, we will present and examine the analytic 
derivations of the simplest IT2-FLC around the steady state; 
therefore ଵܷଷ  is more essential for this study because it 
represents the region around the origin (the green region in 
S-MAP).  By using FIs and (31), ଵܷଷ can be expressed as  

ଵܷଷ ൌ ሶܧܣ  ܧܣ  ሶܧܧሺܥ ଶ  ሶܧ ܤଶሻܧ	  ሶܧܧܥ4  ሶܧܦ ଶ  ଶܧܦ  ሶܧଶܧܦ ଶ (33) 

where ܣ ൌ ሺ6ܯଶ  ,ସሻܯ2 ܤ ൌ ሺ1  ܥ	,ଶሻଶܯ3 ൌ ሺ2ܯଶ െ ,ସሻܯ2 ܦ ൌ ሺെ1  ଶܯ2 െܯସሻ (34) 

Here, ଵܷଷ constructs a nonlinear control law, which depends 
on a nonlinear function of the height of the LMFs, ܯ. The 
simplified output of the simplest IT2-FLC around the origin 
can be approximated for  1  ሶܧ െ ଶܯ  ଶെ1ܯሶܧ െ ሶܧ െ ଶܯ  ଶܯሶܧ ൏ ܧ  1 െ ሶܧ െ ଶܯ െ ଶ1ܯሶܧ െ ሶܧ  ଶܯ   ଶ (35)ܯሶܧ

when the nonlinear terms E2, Ė2 and EĖ are taken as zero. 
Then, ଵܷଷ can be expressed simply as ଵܷଷ ൌ ܸሺܯሻܧ  ܸሺܯሻܧሶ  (36) 
where ܸሺܯሻ is the nonlinear gain and defined as ܸሺܯሻ ൌ ܤܣ ൌ ଶܯ6  ସ1ܯ2  ଶܯ6   ସ (37)ܯ9

Then by substituting Equations (1) and (36), the closed-form 
formulation of the simplest IT2-FPID controller for the 
steady state can be constructed as follows:  ݑ ൌ ܧሻ൫ܯܸሺܭ  ሶܧ ൯  ܧሻන൫ܯܸሺܭ  ሶܧ ൯	݀(38) ݐ 

By substituting Equations (27) and (28) into Equation (38), 
we obtain the following control law ݑ ൌ ݁ܭሻሺܯܸሺܭ  ௗܭ ሶ݁ሻ ݁ܭሻනሺܯܸሺܭ  ௗܭ ሶ݁ሻ	݀(39) ݐ 

After rearranging the terms in Equation (39), we obtain the 
control law around the origin as follows: ݑ ൌ ܸሺܯሻሺܭܭ  	ௗሻ݁ܭܭ  ܸሺܯሻܭܭ න݁ ݐ݀ ܸሺܯሻܭܭௗ ሶ݁ (40) (36) 

Furthermore, for the sake of the simplicity, the ratios of input 

SFs (ߙ) and output SFs (ߚ) and the additional term (ߛ) which 
is a function of ratios of SFs (ߙ and ߚ), is defined as: ܭௗ ൌ ܭ  (41)ܭߙ ൌ ߛ  (42)ܭߚ ൌ 1   (43) ߚߙ
After substituting Equations (41)-(43) into (40), the simpler 
expression of the control law is obtained as follows: ݑ ൌ ܸሺܯሻܭܭሺ1  ሻ݁ߚߙ  ܸሺܯሻܭܭߚන݁݀ݐ ܸሺܯሻܭܭߙ ሶ݁	ൌ ܸሺܯሻܭܭߛ ൬݁  ߛߚ න݁݀ݐ  ߛߙ ሶ݁൰ 

(44) 

Clearly, the control law of the simplest IT2-FPID is 
equivalent to the conventional PID controller structure given 
in Equation (45). However the main difference between the 
simplest IT2-FPID controller and the conventional PID 
controller is that the gain of the IT2-FPID controller is 
variable while the gain of the conventional PID controller is 
static. The PID controller formulation is given below.  

ݑ ൌ ܭ ቌ݁  1ܶ න ݁ሺ߬ሻ݀߬௧
  ௗܶ ݀݁ሺݐሻ݀ݐ ቍ (45) 

Here, Kc represents the static controller gain for the 
conventional PID controller and the variable controller gain 
for the simplest IT2-FPID controller. By matching Equations 
(44) and (45) term by term, we obtained the variable 
controller gain (ܭ), integral time constant ( ܶ) and derivative 
time constant ( ௗܶ) of the simplest IT2-FPID controller for the 
steady state as follows: ܭ ൌ ܸሺܯሻܭܭߛ	(46)  

ܶ ൌ γ/β	 (47) 

ௗܶ ൌ α/γ	 (48) 
Consequently, we obtained the closed-form formulation of 

the simplest IT2-FPID controller around the steady state in 
terms of the nonlinear function ܸሺܯሻ and the SFs. As it can 
be seen from the above derivations, ܸሺܯሻ changes directly 
the proportional gain of the simplest IT2-FPID controller. 
Thus, we can adjust the proportional gain of the simplest 
IT2-FPID controller by simply tuning the value, ܯ. Hence, 
the change of ܸሺܯሻ respect to ܯ	is analyzed and illustrated 
in Fig. 6. From the prior knowledge of the IT2-FLCs, we can 
obtain a T1-FLC when ܯ is chosen as 1, then the value of 
nonlinear gain turns ܸሺܯሻ to be 0.5 as shown in Fig. 6. An 
interesting observation from Fig. 6 is that we also obtain a 
T1-FLC when ܯ  is assigned as 0.448. The gain of the 
simplest IT2-FPID controller increases which means that the 
closed–loop system has aggressive behavior when the 
nonlinear function ܸሺܯሻ is high, similarly, the closed-loop 
system has sluggish behavior if ܸሺܯሻhas relatively a low 
value. Consequently, we will obtain a smoother controller 
than T1-FPID when ܯ is chosen less than 0.448. Also, when ܯ is chosen between 0.448 and 1, we will be designing an 
IT2-FPID controller more aggressive than type-1 counterpart.  
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Fig. 6. The change of		ܸሺܯሻ	with respect to the height of the LMFs, ܯ 

As it is known from the control theory, there is a tradeoff 
between the set point tracking and the disturbance rejection 
performances [22]. If a closed loop system has an aggressive 
behavior, then the disturbances can be rejected quickly but 
high overshoots and oscillations will occur. On the other 
hand, if a closed loop system has a sluggish behavior, then the 
overshoots and oscillations reduce while the disturbances are 
rejected in longer time. Using these observations and above 
mentioned assumptions, the design parameter ܯ  can be 
assumed as the online tuning parameter which directly 
changes the gain of the simplest IT2-FPID controller. In this 
context, we consider the obtained closed-form formulation of 
IT2-FPID controller for the steady state (in Equations (45) to 
(48)) in order to improve both set point tracking and 
disturbance rejection performances for determining and 
tuning the value of ܯ in an online manner. 

In order to improve the closed-loop control performance 
the following meta-rules are obtained:  
• When the system output is around the set point, the gain 

should be larger in order to reject disturbances as fast as 
possible; 

• When the system is far away from the set point, the gain 
should be smaller in order to reduce overshoots.  

So, we claim that after a set point change the controller gain 
should increase by time, so overshoots and oscillations will 
be reduced with negligible comprise of the settling time. In 
addition, the disturbances it will be quickly rejected. Then, 
we consider only possible IT2-FPID gains corresponding to 
the interval of ܯ ∈ ሾ0.1, 0.448ሿ  since we desire to more 
smooth controller action. The lower value of ܯ is set as 0.1, 
since any value less than 0.1 results a very low controller 
gain, which extremely slows the closed loop response. 

  
The following simple heuristic function, which has only 

error as the input, is proposed for tuning ܯ  in an online 

manner: ܯሺܧሻ ൌ ሺ1 െ ሻ݄ଶ|ܧ|  ݄ଵ (49) 
Here, ݄ଵ determines the feasible lower limit of ܸሺܯሻ, which  
is set to 0.1, and ݄ଵ+݄ଶ  determines the upper limit of the ܸሺܯሻ, which is set to 0.448. Note that, ݄ଵ and ݄ଶ assure the 
minimum and maximum values of the ܸሺܯሻ since ܸሺܯሻ is 
monotonic for ܯ ∈	 ሾ0.1, 0.448ሿ interval as seen in Fig. 6. 

V. SIMULATION STUDY 
In order to show the benefit of the proposed simple tuning 

method, the unit step and disturbance rejection performances 
of the Self Tuning IT2-FPID (STIT2-FPID), IT2-FPID and 
T1-FPID controllers are examined via simulations on the first 
order plus dead time processes defined with the following 
transfer function: ܩሺݏሻ ൌ ݏ߬ܭ  1 ݁ିఏ௦ (50) 

So as to make a fair assessment the overshoot (%OS), the 
settling time (Ts) and the Integral Absolute Error (IAE) 
performance measures are considered. The robustness against 
parameter uncertainty of the proposed method is also 
investigated. In this context, four different cases are 
considered; the nominal system ܩሺݏሻ, (0.6=ߠ ,2=߬ ,1=ܭ) 
and the three perturbed systems; ܩଵሺݏሻ, (1.2=ߠ ,1=߬ ,1.3=ܭ), ܩଶሺݏሻ, (0.9=ߠ ,2.3=߬ ,0.7=ܭ), ܩଷሺݏሻ, (0.3=ߠ ,1.5=߬ ,1.5=ܭ).  

The consequent and antecedent MFs of T1-FLC and 
IT2-FLCs are selected as mentioned in Section II. The SFs are 
set to ܭ=1, ܭௗ=0.2, ܭ=2, ܭ=2, note that the T1-FPID and 
the IT2-FPID controllers have identical SFs. The height of the 
LMF of the employed IT2-FPID controller is constant and it 
is set to 0.22 to show that the response of the simplest 
IT2-FPID controller will be slow compare to T1-FPID.  

The responses of the controllers are illustrated in Fig. 6a for 
the nominal system for a step set-point change and an input 
disturbance. For all the simulations, an input disturbance is 
applied at 20th second with magnitude of 0.3. The responses 
are illustrated for the perturbed systems in Fig. 6b, Fig. 6c and 
Fig. 6d. The overall results are tabulated in Table 2. The 
STIT2-FPID controller improves the overall performances in 
every sense compared to the simplest IT2-FPID and T1-FPID 
controllers. For example, as show in Fig. 6a, for the nominal 
system response, the T1-FPID has the Ts with 7.11 s but the 
highest OS with 13.68% because of the aggressive nature of 
the T1-FLC, while the simplest IT2-FPID has less OS with 
11.12% but the longest Ts with 10.35 s because of the smooth 
nature of the IT2-FPID (0.22=ܯ).However, the STIT2-FPID 
structure has the best OS% and approximately same Ts with 
T1-FPID with 10.61% and 7.58 s respectively. 

TABLE 2. SIMULATION RESULTS 

 G0(s)  G1(s)  G2(s)  G3(s) 

 OS% Ts IAE  OS% Ts IAE  OS% Ts IAE  OS% Ts IAE 
T1-FPID 13.68 7.11 2.33  52.76 11.15 3.20  20.29 13.49 3.50  4.04 4.85 1.37 
IT2-FPID 11.12 10.35 2.91  49.19 7.13 3.12  15.83 13.48 4.04  2.89 6.56 1.90 

STIT2-FPID 10.61 7.58 2.40  45.02 7.92 2.83  14.91 13.59 3.48  3.41 5.01 1.48 
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Fig. 7. (a) The closed loop control performances for the nominal system ܩሺݏሻ and (b) the variation of the height of the LMFs, M 

 
Fig. 8. The closed loop performances for (a) the perturbed system 1, ܩଵሺݏሻ 
(b) the perturbed system 2, ܩଶሺݏሻ and (c) the perturbed system 3, ܩଷሺݏሻ 

The reason behind this is that the proposed STIT2-FPID act 
like the IT2-FPID when the system far away the reference 
which provides smooth control action for set point tracking 
and then it act like the T1-FPID when the system output about 
the set point which provides aggressive control action against 
disturbances. Hence, it can be interpreted that the proposed 
STIT2-FPID controller benefits the superiorities of the 
T1-FPID and IT2-FPID controllers. Similar comments can be 
made for the perturbed systems.  

In contrast, the STIT2-FPID structure may slightly 
increase the possibility of oscillation. For example, for the 
perturbed system 1 response illustrated in Fig. 6c, IT2-FPID 
has less oscillation around the set point, but STIT2-FPID 
controller still improves the overall performance since 
STIT2-FPID has nearly 10% better Ts and IAE values than 
IT2-FPID. Hence, the STIT2-FPID structure is robust against 
disturbances and parameter uncertainties because of its 
IT2-FPID base. 

VI. CONCLUSIONS AND FUTURE WORK 
In this study, we presented the analytical structural analysis 

of the simplest IT2-FPID controller which is composed of 
four rules. We will present a novel graphical method called 
S-MAP to visualize and understand better the variation of the 
SPs selection of the KM algorithm. With the aids of the 
S-MAP and BF-KM, we derived the closed-from formulation 

of the simplest IT2-FPID controller around the steady state 
and showed that the IT2-FPID controller is in fact analogous 
to a nonlinear PID controller. We have investigated how the 
design parameter, i.e. the FOU size, affects the controller 
performance by examining the controller gain. In the light of 
the observations, we proposed a simple self-tuning structure 
based on a heuristic function to enhance control performance 
of the IT2-FPID controllers. We have presented comparative 
simulation studies where the STIT2-FPID structure is 
compared to the IT2-FPID and T1-FPID controllers. The 
outcomes of the studies showed that the superiority of the 
proposed STIT2-FPID structure is related to hybrid nature of 
the self-tuning structure because it benefits the advantages of 
the T1-FPID and IT2-FPID controllers by changing the size 
of the FOU in an online manner.  

For our future work, we aim to focus on more sophisticated 
tuning mechanism which might improve the control 
performance better. 
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