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Abstract—Breast cancer is one of the most frequently occurring
cancers among women throughout the world. In breast cancer
prognosis, grading plays an important role. In this paper, we
apply a novel method based on type-II fuzzy logic to Fourier
Transform Infra-red Spectroscopy based breast cancer spectral
data for the classification of breast cancer grade. A FTIR spectral
data set consisting of 14 cases of breast cancer has been used.
A zSlices based type-1I fuzzy logic approach has been used to
create prototype models for the classification of unseen breast
cancer cases. The prototype models are used with a similarity
measure to classify unseen cases of cancer. We have shown that
the T-1I similarity based model is a promising methodology for
classification.

Index Terms—Breast Cancer, FTIR, Type-II fuzzy logic, Sim-
ilarity Measures

I. INTRODUCTION

Breast cancer is one of the most common cancers among
women throughout the world. According to the latest report
by the Cancer Research, United Kingdom, it was the highest
diagnosed cancer in the year 2013 [1]. After the diagnosis of
cancer, monitoring its progress and re-occurrence of the dis-
ease (based on its complexity) for better prediction of survival
of patients is very important [2]. This process is generally
known as prognosis, which plays a vital role in predicting
the survival of patients. In estimating long term survival,
prognostic indices have shown good performance [3]. One of
the most widely used indices is the Nottingham Prognostic
Index (NPI), which considers tumour diameter, lymph node
status and tumour grade as parameters for prognosis. Of these,
grading is the most important parameter and is determined by
the Nottingham Grading System (NGS).

Breast cancer is classified as either grade-1 (G-I), grade-
2 (G-II) or grade-3 (G-III). G-I patients have more chance
of long term survival where as G-III is the most severe and
long term prognosis of such patients is poor. Classification
of cancer grading involves a complicated procedure involving
microscopic evaluation of cancer sample and different experts
may disagree in predicting the grade. This complex manual
method can result in variable prognosis and sub-optimal treat-
ment [4]. In the literature, various efforts have been made
using advanced computational methods for classification of
breast cancer grade, but there is no universally accepted global
method [5]. A relatively new technique is the use of Fourier
Transform Infra-red Spectroscopy (FTIR) in combination with
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different machine learning methods for differentiating breast
cancer cells from normal cells [6].

In this paper, we apply a newly developed Type-II (T-II)
fuzzy logic model to a complex breast cancer FTIR spectral
data set in order to help clinicians in the classification of breast
cancer grade. The data set used consists of multiple cases of
each grade. We consider two types of uncertainty, one within
the spectra of a case of a grade (intra-case) and another when
comparing with other cases of same grade (inter-case). Five
features have been extracted from each case as interval data
from features in the spectral region. The interval data of each
case has been used to create type-I (T-I) fuzzy sets for each
feature. After that these T-I fuzzy sets are combined to create
zSlices based General Type-II fuzzy sets (zGT-II) for each
grade. These zGT-II fuzzy sets are then used as prototypes
with unseen cases of cancer for grade classification. T-I fuzzy
sets are created for unseen spectral data and then compared
against the benchmark prototype zGT-II fuzzy sets for each
grade using a recently proposed similarity measure [7]. Based
on these scores, unseen cases are assigned a grade. We have
selected T-II fuzzy logic for this study as it has been shown to
perform well when there are multiple layers of uncertainties
in the data set [8]. To the best of our knowledge, this is first
attempt to create zGT-II fuzzy sets from FTIR spectra, with
interval valued data.

The rest of this paper provides a brief background of
breast cancer grading, FTIR, fuzzy logic with a focus on T-II
fuzzy logic, and the similarity measure used for this work.
It is followed by a description of the data set, details of the
proposed model, the results after applying the model and a
discussion on the results.

II. BACKGROUND
A. Breast Cancer Grading

One of the most frequently used methods throughout the
world for breast cancer grading is the NGS which is based on
the microscopic evaluation of tumour cells by the histopathol-
ogist. The morphological variations found in the cells are
considered including the form and shape of the cells for the
classification of the grade [9], [10]. The grade is categorised as
G-I (less aggressive appearance of tumour), G-II (intermediate
appearance of tumour) or G-III (more aggressive appearance
of tumour). As it is a very complex manual procedure, the
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chances of even an expert histopathologist making an error
are high. Correct prediction of grade is vital in long term
survival analysis and prognosis, and prescription of appropriate
treatment of the disease [10]. There is a need to develop
automated tools that can help clinicians in grade prediction
in real clinical practice.

B. FTIR

FTIR is a technique based on the principle that when an
infrared (IR) beam is passed through a sample, the functional
groups within the sample absorb the IR radiation and the rest
of the radiation passes through. The resulting spectrum creates
a molecular fingerprint of a sample, no two unique molecular
structures produce the same infra-red spectrum [6].

C. T-II Fuzzy Logic

Classical or Type-I (T-I) fuzzy sets were introduced by
Zadeh in 1965 [11]. General Type-II fuzzy sets (GT-II) were
then introduced by Zadeh as a generalisation of T-I fuzzy
sets [8], [12]. By generalisation, it means that instead of
using a single point membership grade on the domain z, the
membership grade itself is a T-I fuzzy set. For our proposed
model, we use the zSlices approach in which a GT-II fuzzy
set is represented by slicing it in the third dimension (z)
at a level z; to create a zSlices based type-Il fuzzy set
(zGT-1I) [13]. The result of this process is a set of zSlices
which are Interval Type-II (IT-I) fuzzy sets with a secondary
membership grade of z;, in contrast to the regular IT-II fuzzy
sets whose secondary membership grade is always one. Thus,
each zSlice can be written as:

Z::/ / o/ (2, us) 1
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Then fuzzy set Fis represented as a collection of zSlices:
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where I represents the number of zSlices. Increasing the
number of zSlices to represent a T-II fuzzy set increases the
resolution of the representation [14], achieving an ever closer
approximation to the original GT-II set.

D. Similarity Measures

Similarity measures are used to describe how similar fuzzy
sets are. For the current model, we have used a new similarity
measure introduced by McCulloch et al [7]. In our model, this
measure is used to calculate the similarity between a zGT-1I
fuzzy set and a T-I fuzzy set. Each zSlice is weighted and the
weighted average of Jaccard’s similarity for IT-II fuzzy sets is
computed for each zSlice. The method can be summarized by
the following equation:

S 2S\(P.,,U)
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where S is a similarity function for the zGT-1I fuzzy set P
and an unseen T-1 fuzzy set U. Sy is a similarity function
applied to the IT-II fuzzy set at zLevel ¢ shown as P; and
the unseen T-I fuzzy set U. L is the set of zLevels used in
P, and z; represents a particular zLevel (secondary degree of
membership). A value of 0 indicates disjoint sets where as a
value of 1 means the sets are identical.

E. T-1I Medical Applications

A recent review by Melin and Castillo [15] has shown that
applications of T-II fuzzy sets in classification and pattern
recognition are increasing. Researchers are increasingly inclin-
ing towards the use of T-II fuzzy logic in complex scenarios
and problems where more and more uncertainty is involved,
such as face recognition [16]. In the medical sciences, Chumk-
lin and Auephanwiriyakul [17] developed a system based on
GT-1I fuzzy sets for the detection of microcalcification in
Mammograms for breast cancer with 89.47% correct results.
The use of T-II fuzzy sets for breast cancer grade classification
with spectral data sets is a relatively new area of research and
it is a motivation behind our work.

III. DATA SET DESCRIPTION

The data set used for initial experiments has been obtained
from the University of Illinois at Urbana Champaign, USA
[18]. There are two cases of G-I, 26 cases of G-II and six
cases of G-III. Instead of using whole spectral range for the
experiments, we have selected the spectral region between
1000-1800 cm™! for our experiments, on the basis that the
area around this region has been found to provide valuable
information about the data [6]. Data from the selected spectral
region was pre-processed by a process of standard base line
correction and normalisation to remove abnormalities found in
spectra. For this initial study, we have used two cases of G-I,
six cases of G-II and six cases of G-III. In this way we have
a complex data set with multiple numbers of cases for each
grade with a high level of uncertainty involved making it an
ideal problem for the application of T-II fuzzy logic.

IV. MODEL STRUCTURE

The model used for this work creates T-I and zGT-II fuzzy
sets based on interval data extracted from spectral features
which are used as a prototype for grade classification of unseen
cancer cases. A block diagram of the model is shown in Fig. 1.
Now we describe the stages for the model.

A. Feature Extraction

In the first stage, five features were selected for the ex-
periments. The region 1000-1800 cm™! was divided into three
sections in line with Chiu et al’s [19] division of the region.

Five features have been selected from these three regions.
The location and the area covered by each region is shown
in Fig. 2. For each feature, two absorbance values are used
from each spectrum to create an interval. Maximum peak
height and minimum absorbance values are used to create
an interval. For example, for feature 1, minimum absorbance
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Select five features for each grade

Features are based on absorbance values at different wave lengths
in the spectral region

|

Create 6 T-I fuzzy sets for each feature for each grade (G-I: 2
cases with 3 sets per case,

G-II: 6 sets from 6 cases, G-I1I: 6 sets from 6 cases)

|

Combine 6 T-I fuzzy sets into a zGT-II fuzzy set with cases
represented as z-axes (zSlices)

We have one zGT-II fuzzy set per feature per grade with 6 zSlices

Each zGT-II fuzzy set of a grade is considered as a prototype for
that grade for a particular feature

|

Select spectra from unseen data for any grade for each of the five
features

Create a T-1 fuzzy set with 30 spectra per feature

|

Use weighted zsliced based similarity measure to find similarity
between created T-I fuzzy set and zSlices of prototype zGT-I1
fuzzy sets for each feature for each grade.

A similarity score for zSlices for each feature for each grade is
obtained by this method

l

Based on the results of similarity measure, predict the grade of
unseen data by using the following methods

e Maximum sum of summation of similarity scores

Majority vote

Discuss the results of similarity scores for each feature for each
grade and classification method

Describe a Grade profile for each grade on the basis of features
and similarity scores

Fig. 1. Block diagram of the model structure

value A and maximum absorbance value B are combined to
create an interval (A, B) as shown in Fig. 2. For feature 5,
two distinct peak heights have been used to create an interval.
Every spectrum used has a set of five interval values each for
a feature.

B. T-I Fuzzy Set Creation

For the second stage, T-I fuzzy sets have been created from
the interval data. We have initially selected 30 spectra to create
a T-I fuzzy set. As there are 30 values for each set, the primary
membership domain is divided into 30 sections ranging from
1/30 to 30/30. As we have two cases from G-I, 26 cases from
G-II and six cases of G-III, we have decided to create six T-I
fuzzy sets for each grade per feature from these cases. For
G-I, three regions from two cases have been selected making
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it six sets in accordance with other grades. For G-II, we have
selected six cases out of 26 and for G-III, spectra from all
six cases have been included. We have six sets of 30 spectra
from each grade per feature. In total we have 90 T-I fuzzy sets
for all features for all grades. The T-1 fuzzy sets are created
with the help of the following Equation for interval data as
described by Miller et al [20]:

u(A) =1/ U A

i1=1

U U (ani)

+y2/
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+u/ U U U Ap N A Ag)
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L
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and y is the degree of membership over the domain z. It
represents the number of intervals overlapping at a certain
point. If A, is a series of intervals where i € {1....N} and
N is the number of the intervals, then the T-I fuzzy set A is
defined by the membership function p(A). In Equation 4, the
‘/” sign refers to degree of membership and is not a division
sign and the addition symbol represents the union. The T-1
fuzzy set is created by taking the union of all the intervals
which are associated with a membership of ¥, the union of
all possible two tuple intersections of intervals are associated
with y» and so on. Fig. 3 shows examples of created T-1 fuzzy
sets for various features for all three grades. These sets aim
to cover the intra-case uncertainty found within spectra of a
single case.

C. zGT-1l Fuzzy Sets Creation

In the next stage, zGT-II fuzzy sets have been created by
combining six T-I fuzzy sets using the method described by
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Fig. 3. Examples of T-I fuzzy sets for various features for different grades

Wagner et al [21]. »05-
For our data set, for each feature, we create a zGT-1I fuzzy e
set. Each zGT-II fuzzy set has six zSlices. For each grade, we
have five zGT-1I fuzzy sets. There are 15 benchmark zGT-1I
fuzzy sets to be used for classification of unseen spectral data.
The created zGT-1I fuzzy sets for the features of G-I, G-II
and G-III are shown in Figs. 4, 5 and 6 respectively. Each (d) Feamre-4
zGT-II fuzzy set has been created by combining the six T-I
fuzzy sets for each feature. The z-axis shows the six zSlices.
It can be observed from the figures that these zSlices aim to
cover both the intra-case and inter-case uncertainties in the
interval data taken from spectra of the same case and from
different cases of the same grade. The created zGT-II fuzzy
sets serve as benchmark prototypes for the unseen spectral
data to be classified.

0.15 %/
D. Model Testing with a Similarity Measure

. . (e) Feature-5
In the next stage, we aim to classify the unseen spectra

for each grade. For this purpose, two sets of unseen spectral Fig. 4. 3D plots for zGT-I fuzzy sets for features 1-5 for G-I
data are selected from the two cases of G-I, six sets from
the six G-II cases and six sets from the six cases of G-III.
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TABLE 1
SIMILARITY SCORES FOR G-I WITH TEST DATA FOR CASE 1

Feature G-I G-I G-III
1 0.9264 | 0.8397 | 0.8235
2 0.8938 | 0.8035 | 0.7905
3 0.8122 | 0.8452 | 0.8790
4 0.6407 | 0.5194 | 0.5347
5 0.9001 | 0.8391 | 0.8719
Sum 4.1732 | 3.8469 | 3.8996
Majority Vote W L L
TABLE II

SUMMARY OF RESULTS WITH TEST CASES BY THE SUMMATION AND
MAIJORITY VOTE METHOD

Type | Test Cases Correct Incorrect Correct Incorrect
Classification | Classification | Classification | Classification
Summation Summation Majority Vote | Majority Vote

G-1 2 2 0 2 0

[eXi 6 i 5 2 3 (1 Tie)

G-I 6 6 0 3 1 (2 Tie)

All of these T-I fuzzy sets are compared against the prototype
zGT-1I fuzzy sets for each feature of each grade using the
method described in Equation 3 that uses a weighted similarity
criteria. A similarity score is obtained for each comparison.
For the grade classification of the unseen data, we have used
two methods.

1) Summation over similarities

2) Majority vote

In the first method, we record a similarity value for each
feature of each grade and then compute the sum of all feature
similarities for each grade and report the grade with the
maximum value as the predicted grade. In the second method
we take the grade with the maximum value for each feature as
a vote. The grade with maximum number of votes is reported
as the classified grade.

V. RESULTS

Table I shows an example of the similarity scores obtained
after testing with case 1 of G-I with both classification methods
for all grades. W in the table indicates a winner in the majority
vote and L indicates a failure. A tie occurs if two features have
equal votes. It can be seen that except feature 3, all features
are able to classify the test case of G-I correctly, and both
the majority vote and summations methods classify correctly.
Following this, all test cases were compared in the same way.

Table II shows a summary of the results including the
correct / incorrect classifications made with the summation and
majority vote methods. It can be seen that summation method
correctly classifies all cases of G-I and G-III and 17% of G-II
cases. The majority vote method correctly classifies all of G-I,
33% of G-II and 50% of G-III cases. Neither method achieved
better than could be expected with random classification (33%)
on G-II.

VI. DISCUSSION

Fig. 7 shows a grade profile for two cases of G-I testing data,
plotting similarity scores for features as described in previous
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Fig. 7. Grade profile for two cases of G-I

section. For each feature, the similarity scores for each grade
have been shown as a group of vertical bars with similarity
score values ranging from O to 1. It can be seen that features 1,
2 and 5 provide high scores for the correct grade in both cases
and although feature 4 provides the lowest similarity scores, it
still gives the highest score to the correct grade. Feature 3 is
a more inconsistent feature as it classifies case 2 correctly but
classifies case 1 as G-III. It can also be observed that there are
significant differences between G-I similarity scores compared
to G-1I and G-III for all features where G-I was chosen. That
is why both maximum sum of similarity and majority vote
performed well for G-I. Another observation is that scores
for G-I and G-III remained very close to each other in more
features. We conclude that features 1, 2 and 5 are the most
useful as benchmark features to distinguish G-I from other
grades.

Fig. 8 shows grade profiles for six test cases of G-II. Previ-
ously we have seen that both classification methods perform
poorly suggesting that G-II is not clearly distinguishable from
other grades. However, there are some interesting observations
that we can make by looking at Fig. 8. Feature 1 is able to
classify the correct grade for cases 2, 3, 4 and 6 and case 5
is narrowly mistaken as G-III. Feature 2 correctly classified
the grade for cases 3 and 6 where as for cases 2, 4 and 5 it
was very close to classifying the correct grade. Feature 5 only
classified correctly for case 1. In the majority of the cases
where G-II was not classified correctly, it was classified as
G-III. This is generally the case in real world scenarios, as
G-II and G-III are considered very close to each other and
chances of false classification remain high. We conclude that
only feature 1 is able to classify the correct for majority of the
G-II cases (4 out of 6) while the other features are inconsistent,
this suggests that feature 1 is useful as a benchmark feature
for identifying G-II from other grades.
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TABLE III
SUMMARY OF GRADE PROFILES (CORRECTLY CLASSIFIED / TOTAL TEST

CASES)
Grades | Feature 1 | Feature 2 | Feature 3 | Feature 4 | Feature 5
1 2/2 2/2 172 2/2 2/2
11 4/6 2/6 2/6 2/6 2/6
il 0/6 3/6 5/6 1/6 4/6

Fig. 9 shows grade profiles for six test cases of G-III with
their similarity scores for each feature of each grade. It can
be seen that feature 3 always classifies correctly except for
case 1. Feature 5 also classified the correct grade for 4 out of
6 cases (cases 2, 3, 4, and 5). In the case of features 1 and
2, G-III scores were slightly less than G-II where as in case
of feature 4, G-III is falsely classified as G-I for cases 2, 5
and 6. We conclude that features 3 and 5 are best suited for
classifying G-III correctly for the majority of the cases and
may be used as benchmark features for G-1II classification.

Table III shows a summary of the features with correctly
classified cases for each grade. The results indicate that
features performed differently for the three grades. Feature 3 is
only significant in G-III classification and did not perform well
for any other grade. Similarly, feature 2 only performed well
for G-I and incorrectly classified all other grades. Our results
indicate that various features based on different regions of
the same spectra provide different information, and some are
more useful for cancer grade classification than others. zGT-1I
fuzzy sets based on interval data from spectral regions have
been shown to be useful in extracting important information
regarding cancer grade from FTIR data. The zGT-II fuzzy sets
can be useful in classification problems where both inter and
intra variabilities among spectra are involved.

VII. CONCLUSION

In this paper, we have shown that T-II fuzzy sets can be
used to represent valuable information from spectral data sets
in which high levels of uncertainties are involved. In particular,
we use the different dimensions of the GT-II sets can be used
to simultaneously represent the variation found in the single
feature from a number of regions within a single case (intra-
case variation) and the variation found between different cases
of the same class (inter-case variation).

We have created zGT-1I fuzzy sets with interval data ex-
tracted from features from various spectral regions within
FTIR data in the context of breast cancer grading. These
zGT-1II sets have been used in a novel model that utilises a
similarity-based approach for classification applications. We
have used a breast cancer grading as a case study to test
the method with a real-world complex data set. While not
statistically significant, the results are very promising and they
demonstrate that this is an important area of research.

In future, we will test the proposed model on a number of
different case studies to evaluate its robustness and general-
isability. We will also conduct extended experiments on this
breast cancer data set using all of the cases available.
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