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Abstract— Energy time series forecasting plays a crucial role 
in the process of energy planning. This topic has been, and is still 
attracting vast research activities that are performed by 
researchers in the academia and energy companies. Various 
techniques exist for energy time series forecasting, and the 
selection of the most suitable forecasting algorithm is not an easy 
process. For a clear application of such techniques in energy time 
series forecasting, there should be a clear distinction between 
these techniques. This paper compares the overall performance 
of the Time Delay Neural Network (TDNN), Neuro Fuzzy 
Inference System and Support Vector Regression (SVR). The 
efficiency of these techniques is compared in energy time series 
forecasting, and the performances of them are tested. The results 
of our analysis indicate that the Time Delay Neural network 
(TDNN) shows the best performances overall. 

Keywords—Comparison; Energy; Computational Intelligence; 
Forecasting; Time series. 

I.  INTRODUCTION 
One of the important criteria of the economic development 

is energy consumption. Industries changes strongly affect 
energy consumption. Consumption of energy has increased 
with growing population and prominent standards of living 
[1],[2]. Energy Information Administration has forecasted that 
consumption of energy will raise by 49% as of 2007 to 2035 
[3]. Energy consumption has considerably and definitely 
affected economic growth [4]. Consequently, an extremely 
accurate model for forecasting energy consumption must be 
developed. Many models and tools are currently available to 
forecast. The reason of forecasting is to meet prospect 
necessities, decrease unexpected cost and offer possible 
information to decision making [1]. Energy segment 
established huge interest from individuals and countries as it 
leads to comfortable living. With economic development 
energy consumption has become a life-sustaining index [5]. 
With regards to limitation of energy resources on earth, 
researchers focused on developing better approaches for 
predicting the future demand for energy to meet future supply, 
which will assist countries to plan their development activities 
appropriately, thus, avoiding under-or over-planning of future 
supply. If we are able to forecast energy consumption time 
series more accurately, we can make the world’s resources 

allocate to a right place that avoids wasting natural resource. 
Hence, providing accurate forecasts of energy consumption 
time series is of crucial importance for decision-makers, such 
as investment planning. Based on such a model, energy 
decision makers can also execute an energy conservation 
strategy or apportion of a certain amount of energy. 
There are several different approaches to time series modeling. 
Traditional statistical models including moving average, 
exponential smoothing, and ARIMA are linear in that 
predictions of the future values, Although linear regression is 
frequently utilized to forecast time-series data, but it is 
imprecise when observations are few or do not convince 
statistical assumptions [6]. 
Several techniques have evolved over the years for energy 
time series forecasting, and the use of computational 
intelligence models for forecasting is slowly beginning to 
replace traditional statistical methods, as the efficiency and 
faster convergence rates makes them more desirable.  
 Lee and Tong [7] claimed that the traditional linear time-
series model (ARIMA) cannot easily be used to fit nonlinear 
time-series data and consequently they developed a heuristic 
model to improve the precision of residual series. There have 
been several studies comparing the performance of energy 
time series forecasting models. Some studies [7] have 
compared the forecasting accuracy of different models, they 
presented models more accurate than ANN in forecasting or 
classification problems [8],[9],[10]. Togun and Baysec found 
that genetic programming performs as well as ANN in 
forecasting energy consumption [10].  
Many researchers have developed Neuro Fuzzy models to 
improve their forecasting precision. The Neuro Fuzzy model 
has been adopted in many forecasting studies, usually, real-
world data sets are difficult to collect and data sets contain a 
few observations [11]. Some significant algorithms have been 
proposed to train the neuro fuzzy models. The pioneers, 
Takagi and Sugeno, presented an adaptive algorithm for their 
fuzzy inference system [12].  
This work compares forecasting models which is applied to 
the same time-series data, to ensure high forecasting precision. 
In this paper, we compare strong computational intelligence 
techniques to forecast energy consumption time series. Energy 
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consumption time series data of International Institute of 
Energy Studies was used to test models. 

II. COMPUTATIONAL TECHNIQUES TO FORECAST 
Different methods, including computational intelligence 

based approaches have been proposed for energy consumption 
time series forecasting. This section describes three models 
that are used in forecasting energy consumption. 

A. Time Delay Neural Network 
Time-delayed neural network architecture is used to 

process the time-varying input data. The first input is delayed 
sequentially by a time-delay component in each input phase of 
the network, therefore, the time-delay produces the 
customized learning-rule such that the connection-weight will 
change only if the time-delayed input and current output are 
activated rather than if the current input and current output are 
activated concurrently. In other words, the output is associated 
with the earlier input rather than the current input, which can 
be expressed mathematically as follows: 
Δw(t) = x(t)y(t)  (1) 
The relationship between the input and output is given by: 
y(t) = w(t)x(t)  (2) 

Architecture of the time-delayed neural network showing the 
relationships between the time-delayed input, x(t − kΔt), 
connection-weights, wk (t,kΔt)  and their output, yk (t) . 

Let x(t)  and y(t)  denote the input and output data at 
time t , correspondingly, and w(t,τ )  denotes the connection-
weight between them with a lag-time, τ , then the modified 
time-delayed  learning-rule is given by: 

if x(t − τ) ≠ 0and y(t) ≠ 0  
then Δw(t,τ ) ≠ 0  
else Δw(t,τ ) = 0  

Where x(t − τ)  denotes the input data delayed by the lag-
time, τ , and Δw(t,τ)  denotes the change in connection-
weight (or the weight-change). Therefore, a continuous-time, 
time-delayed learning-rule is given by extending Eq. 1: 
Δw(t,τ ) = x(t − τ )y(t)  (3) 
For implementation, we use discrete lag-times (i.e., τ = kΔt ), 
in integral, k , multiples of Δt  to delay the input data by 
multiple delay-tap lines, thus, the time-delayed associative 
learning-rule at the k -th delay-line is given by: 
Δwk (t,kΔt) = x(t − kΔt)yk (t) (4) 
where k  is an integer constant, Δwk (t,kΔt)  is the change in 
the k -th connection-weight between the time-delayed input, 
x(t − kΔt), and the k -th output, yk (t) . 

A time-series data is used as the input to the network. 
This time-delayed input is cascaded into multiple branches as 
inputs to successive neurons to provide the inputs for the 
modified learning-rule (Eq. 4) to update the corresponding 
connection-weights. The network would produce as many 
outputs as there are discrete time-delays. The k -th output of 
the network is resulted from: 

yk (t) = wk (t,kΔt)x(t − kΔt)  (5) 

Alternatively, each of the delay-tap lines can be 
considered as feeding into a pseudo-neuron as the first 
(pseudo) layer of the network. This first layer can be 
considered as a pseudo-layer for the network because it does 
not perform further calculation, except for conceptualization 
of the equivalent neural network architecture. 

The output of the k -th time-delayed pseudo-input neuron (in 
the first pseudo-layer) can be expressed in terms of the initial 
input data by: 
xk (t) = x(t − kΔt)  (6) 

The main cause why we represent the network in this 
equivalent architectural form is that now the layer of time-
delayed inputs is a parallel layer rather than a cascaded 
sequential input layer. In other words, it transforms the data 
sequential time-series input into parallel inputs by the delay-
lines, which allows for simultaneous parallel processing rather 
than sequential processing. This represents the spatiotemporal 
transformation of the input data clearly by the alternate 
network architecture, although they are equivalent absolutely. 

Such a network would have a single sequential input, 
x(t) , branched into (k + 1)  parallel lines by k  discrete 
delays. It will also have k  outputs, yk (t) .  The k -th output 
of the network is given by: 
yk (t) = Δwk (t,kΔt)xk (t)  (7) 

These outputs can be further combined into a single 
output, y(t) , to form a network produces a single output data 
rather than multiple outputs. This results in the output of the 
network that computes the weighted-sum of all k  time-
delayed data mathematically: 

y(t) = yi(t)
i= 0

k

 

      = Δwi(t,iΔt)xi(t)
i= 0

k

 

      = Δwi(t,iΔt)x(t − iΔt)
i= 0

k

 

 (8) 

 

 
Fig. 1. Structure of the Time Delay Neural Network  model  
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Figure one showing the architecture of the single-input and 
single-output network that computes the weight-sum of time-
delayed input data. 

Therefore, this network architecture will present a single 
input and a single output to process the time-series data using 
a pseudo-input layer. This design satisfies the key goal of 
creating a neural network that correlates two time-series data, 
x(t)and y(t) , using a set of time-delayed associative 
learning-rules. 

It will be shown below that the cross-correlation 
coefficients are computed by the weight-sum of the time-
delayed inputs by the output neuron at the k -th connection-
weight after consecutive iterative training. 

When the network is trained with n iterations of the 
discrete time step, Δt , the resulting connection-weight is 
given by: 
 
w k ( n Δ t , k Δ t ) = w k ( 0 , k Δ t ) +

                       Δ w k ( j Δ t , k Δ t )
j = 0

n

 
(9) 

 
for t = nΔt and τ = kΔt . The continuous-time time-delayed 
learning-rule of Eq. (3) can be re-expressed in terms of the 
discrete-time step (for t = jΔt ) as: 
 
Δwk ( jΔt,kΔt) = x( jΔt − kΔt)y( jΔt) . (10) 
 
The resulting connection-weights after iterating n discrete 
time steps become: 
 
wk (nΔt,kΔt) = wk (0,kΔt) +

                       x( jΔt − kΔt)y( jΔt)
j= 0

n

  (11) 

B. Neuro Fuzzy Inference System 
A neuro-fuzzy model is a fuzzy system drawn in a 

neural network structure, combining the learning, parallel 
processing and generalization capabilities of neural networks 
and logicality, transparency and use of a priori knowledge in 
fuzzy systems. The mathematical description of neuro fuzzy 
model which is the most general formulation will be described 
in this section. The fuzzy inference system is constructed by 
fuzzy rules of the following type: 

( )pi

ippii

uuufythen
AuAndAndAuIfRule

,...,,ˆ
...:

21

11

=

==

 (12) 
Where Mi ...1=  and M is the number of fuzzy rules. 

puu ,...,1  are the inputs of network, each ijA  denotes the fuzzy 

set for input ju  in rule i and ( ).if  is a crisp function which is 
defined as a linear combination of inputs in most applications 

 pipiii uuuy ωωωω ++++= …22110ˆ  (13) 

Matrix form ( ) Wuay T ⋅=ˆ  
 therefore the output of this model can be calculated 
by 
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Where ( )jij uμ the membership function of jth is input 

in the ith rule and ( )uiμ  is the degree of validity of the ith 
rule. This system can be formulated in the basis function 
realization. The basis function will be 
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 (15) 
as a result 
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This neuro fuzzy model has two sets of adaptable 
parameters; first the antecedent parameters, which belong to 
the input membership functions such as centers and deviations 
of Gaussians, second the rule resulting parameters such as the 
linear weights of output in equation (13). It is commonly to 
optimize only the rule resulting parameters. This can be 
simply done by linear techniques like least squares [2]. A 
linguistic interpretation to determine the antecedent 
parameters is usually sufficient. Nevertheless, one can opt to 
use a more powerful nonlinear method to optimize all 
parameters together. Gradient based learning algorithms can 
be used in the optimization of resulting linear parameters. 
Supervised learning is aimed to minimize the following loss 
function (mean square error of estimation): 

 
( ) ( )( )∑

=

−=
N

i
iyiy

N
J

1

2ˆ1

 (17) 
Where N is the number of data samples. According to 

the matrix form of (13) this loss function can be extended in 
the quadratic form 

 NYYPWRWWJ TTT +−= 2  (18) 

Where ( ) AANR T1=  is the autocorrelation matrix, 
A is the pN ×  solution matrix whose ith row is ( )( )iua  and  

( ) yANP T1=  is the p dimensional cross correlation vector. 
From 

 
022 =−=

∂
∂ PRW
W
J

 (19) 
the following linear equations are obtained to 

minimize J: 
 PRW =  (20) 

and W is simply defined by pseudo inverse 
calculation. One of the simplest local nonlinear optimization 
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techniques is the steepest descent. In this method the direction 
of changes in parameters will be opposite to the gradient of 
cost function 

 
( ) ( ) ( )iRWP

iW
JiW 22 −=

∂
∂−=Δ

 (21) 
and 
 ( ) ( ) ( )iWiWiW Δ⋅+=+ η1  (22) 

Whereη  is the learning rate. In this paper, we have 
used a different approach from the usual neuro fuzzy method 
as used in [22] [23] [24]. The network structure of a neuro 
fuzzy model is illustrated by Figure 2.  
  Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 
       
     
        1w        1w     11fw  
  X           
           
            
             ∑     F 
            
           
  Y      2w      2w      22fw  
     
    

  A1 

  A2 

  B1 

  B2 
 

Fig. 2. Structure of the Neuro Fuzzy model  

C. Support Vector Regression 

Consider a set of training data )},(),....,,{( 11 AA yxyx , 

where each n
i Rx ⊂  denotes the input space of the sample 

and has a corresponding target value Ryi ⊂  for i=1,…, l 
where l corresponds to the size of the training data Error! 
Reference source not found., [21]. The scheme of the 
regression problem is to establish a function that can estimated 
future values precisely.  

The generic SVR estimating function takes the form: 
bxwxf +Φ⋅= ))(()(                                                  (23) 

where nRw ⊂ , Rb ⊂ and Φ denotes a non-linear 
transformation from nR  to high dimensional space. Our aim 
is to find the value of w  and b  such that values of x  can be 
determined by minimizing the regression risk: 

2

0 2
1))(()( wyixifCfR

i
reg +−Γ= ∑

=

A
 (24) 

where )(⋅Γ  is a cost function, C is a constant and vector w  
can be written in terms of data points as: 

∑
=

Φ−=
A

1

* )()(
i

iii xw αα  (25) 

By substituting equation (25) into equation (23), the generic 
equation can be rewritten as: 

 bxxxf
i

iii +Φ⋅Φ−=∑
=

A

1

* ))()()(()( αα  
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i
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=

A

1

* ),()( αα (26) 

 
In equation (26) the dot product can be replaced with 

function ),( xxk i , recognized as the kernel function. Kernel 
functions enable dot product to be performed in high-
dimensional feature space using low dimensional space data 
input without knowing the transformation Φ . All kernel 
functions must satisfy Mercer’s condition that corresponds to 
the inner product of some feature space. The radial basis 
function (RBF) is generally used as the kernel for regression: 

{ }2exp),( ii xxxxk −−= γ   (27) 
Theε -insensitive loss function is the most widely used cost 

function [21].The function is in the form: 

⎩
⎨
⎧ ≥−−−

=−Γ
otherwise

yxfforyxf
yxf

0
)(,)(

))((
εε  (28) 

By solving the quadratic optimization problem in (29), the 
regression risk in equation (24) and theε -insensitive loss 
function (28) can be minimized: 

∑∑
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A

1

** ,0,,0
i
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The Lagrange multipliers, *
ii andαα , represent solutions to 

the above quadratic problem that act as forces pushing 
predictions towards target value iy . Only the non-zero values 
of the Lagrange multipliers in equation (29) are useful in 
forecasting the regression line and are known as support 
vectors. For all points inside theε -tube, the Lagrange 
multipliers equal to zero do not contribute to the regression 
function. Only if the requirement ε≥− yxf )(  is fulfilled, 
Lagrange multipliers maybe non-zero values and used as 
support vectors. 

The constant C introduced in equation (24) determines 
penalties to estimation errors. A large C assigns higher 
penalties to errors so that the regression is trained to minimize 
error with lower generalization while a small C assigns fewer 
penalties to errors; this allows the minimization of margin 
with errors, therefore superior generalization capability. If C 
goes to considerably large, SVR would not allow the 
happening of any error and result in a complex model, while C 
goes to zero, the result would tolerate a large amount of errors 
and the model would be less complex.  
Now, we have solved the value of w  in terms of the Lagrange 
multipliers. For the variable b , it can be computed by 
applying Karush-Kuhn-Tucker (KKT) conditions which, in 
this case, implies that the product of the Lagrange multipliers 
and constrains has to equal zero: 

0)),((

0)),((
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=++−+
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and 

1651



0)(

0)(
** =−

=−

ii

ii

C

C

ζα

ζα
  (31) 

Where
iζ and *

iζ are slack variables used t

outside the ε -tube. Since 0, * =ii αα  

bCi ),,0(* ∈α can be computed as follows

),0(),(

),0(),(
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Putting it all together, we can use SVR wit
transformation. 

III. EXPERIMENTAL RESUL

In this section we compare models by usin
of International Institute of Energy Studies
dataset which were used by CIFE competi
data set is made up of 8 energy time series. 

A. Implement Models for Indexes Prediction
In the first stage, we normalize data ove

implement TDNN and then NFIS also SVR
best model with the least error. 

B. Performance Analysis 
For the purpose of evaluating accuracy o

compare their outcomes with each other. 
evaluations of the various techniques wer
ability to forecast the true parameters accura
the evaluations of the proximity of estimate
were based on three performance measures
comparison we use a common evaluation sta
absolute percentage error (MAPE), root me
(RMSE) and total error (TE). For the first 5
the MAPE and RMSE, were computed and
similarity, one of them was chosen that is 
while for the last 3 time series MAPE, RM
considered. 
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Where Y୧ is the actual value and  P୧ is the fo
ith test data obtained from the models and N
test data. Summary of evaluations in compar
shown in Table 1.  
The first column specifies the type of m
remaining columns list the TE, MA
performance measures for the estimators in
Regarding the computational results indic
TDNN has the best prediction accuracy of e
outperforms the other methods. So it can b

to measure errors 

and 0* =iζ  for 

s: 
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(32) 

thout knowing the 

LTS 
ng time series data 
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ition (2012)). The 

n 
er range, then, we 
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of models, we will 
The performance 

re based on their 
ately. Specifically, 
ed and true values 
. To carry out the 
atistic called mean 
ean absolute error 
5 time series, only 
d because of result 

shown in table 1, 
MSE and TE were 
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)/ D (34) 

35) 

forecasted value of N is the number of 
rison of methods is 

model used. The 
APE and RMSE 

n each technique. 
cated in Table 1, 
nergy indexes and 
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promising technique for en
problem. 

TABLE I.  COMPARISON OF VARI

Techniques 
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Time Delay 
Neural Network 

36 neurons in h
layer 

Adaptive Neuro 
Fuzzy Inference 

System 

10 rules and 
epochs 

Support Vector 
Regression 

linear kern
function with ε

and C=100
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results of our analysis indicate that the time delay neural 
network model consistently outperforms the neuro fuzzy and 
SVR. As this paper showed, it is very crucial to use TDNN in 
all time series forecasting problems. The results of this paper 
can be extended to other forecasting problems, such as, the 
time series of stock exchange market and other economical 
time series. 
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