
 
 

 

  

Abstract—This paper investigates the structure and 
properties of interpolative generalized conjunction/disjunction 
(GCD) aggregators. The main advantage of interpolative 
aggregators is the possibility to include suitable properties and 
to exclude inconvenient properties of aggregators. Using this 
method we can create new forms of logic aggregators by 
interpolating between heterogeneous base aggregators, i.e. 
aggregators that belong to different families and have different 
logic properties. The resulting interpolative aggregators then 
extend the desirable properties inherited from the base 
aggregator classes. We propose a general interpolative GCD 
aggregator (IGCD) and its important uniform special case. 
IGCD can be used to build compound aggregators and complex 
logic aggregation structures with suitable logic properties. 

I. INTRODUCTION 
GGREGATION operators are important components of 
many decision models. In the case of decision models 
that are used for evaluation and comparison of complex 

systems and alternatives the basic properties of logic 
aggregators include monotonicity, internality, idempotency 
and compensativeness. In addition, such aggregators must 
express different degrees of importance of individual inputs, 
and consequently they must be commutative only in the 
special case of equal importance, and in all other cases they 
must be noncommutative. Logic aggregators that have such 
properties are regularly implemented using means [12][4] and 
called averaging functions or averaging aggregators [1][13].  

In mathematical literature [15][13] the process of 
aggregation is considered using any nonempty real interval, 
bounded or not.  In the case of logic aggregation we are only 
interested in aggregation within the unit hypercube. So, we 
have a vector of continuous logic variables 1( ,..., )nx x=x , 

,ix I∈  1,..., , [0,1]i n I= =  and the aggregation function 

: , 1nf I I n→ > . Not surprisingly, there are many families of 
aggregation functions and to include all of them the 
aggregation functions are defined in [1] and [13] very 
generally as functions that are nondecreasing in each 
argument and satisfy two boundary conditions as follows: 

, , 1, ( ) ( )
(0,0,...,0) 0, (1,1,...,1) 1 .

n nI I n f f
f f
∀ ∈ ∀ ∈ > ≤  ≤

= =
x y x y x y  

( ≤x y denotes , 1,...,i ix y i n≤ = ; however, if : i ii x y∀ ≤  
and {1,..., } : j jj n x y∃ ∈ < , that is denoted ,≤ ≠x y x y ). 

Two significant families of aggregation functions that are 
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closely related to logic operations are conjunctive and 
disjunctive aggregators implemented using t-norms and 
t-conorms and the averaging aggregators that are 
implemented using means. Both families provide models of 
simultaneity and substitutability (replaceability) [10]. 
However, models of simultaneity and substitutability 
implemented using t-norms and t-conorms are strong in the 
sense that conjunctive aggregation functions satisfy 

( ) min( )f ≤x x  and disjunctive aggregation functions satisfy 
( ) max( )f ≥x x [1] [13], where min and max denote the 

pure/full conjunction 1min( ) min( ,..., )nx x=x and the 
pure/full disjunction 1max( ) max( ,..., )nx x=x . As opposed to 
that, the averaging aggregation functions are weaker in the 
sense that an aggregator is considered predominantly 
conjunctive if min( ) ( ) mid( )f≤ ≤x x x  and predominantly 
disjunctive if mid( ) ( ) max( )f≤ ≤x x x , where mid denotes 
the arithmetic mean 1mid( ) ( ... ) /nx x n= + +x , and 

( ) mid( )f =x x only if 1 ... nx x= =  and in all other cases 
( ) mid( )f x x . A related fundamental difference between 

these families is that averaging functions support internality 
and idempotency, and t-norms and t-conorms are not 
idempotent. In the evaluation area idempotency is a necessary 
property: if all components of a system have the same value 
(same suitability degree), then that value is the overall value 
of the whole system. Since the averaging functions by 
definition satisfy internality min( ) ( ) max( )f≤ ≤x x x , then if 
x I∈  and ( , ,..., )x x x=x  we have  ( , ,..., )f x x x x=  
(idempotency is a consequence of internality and 
monotonicity). The last fundamental difference between the 
averaging aggregators and t-norms/conorms is the strict 
monotonicity of averaging aggregators inside nI . 
Interpolative logic aggregators are applicable primarily in 
evaluation and consequently, in this paper we focus on the 
family of averaging aggregators. 

The paper is organized as follows. In Section II of the 
paper we introduce a set of definitions that characterize logic 
aggregators. In Section III we analyze additive properties of 
andness and orness indicators. Development and properties 
of interpolative GCD aggregators are presented in Section IV 
and Section V. 

II. PROPERTIES OF LOGIC AGGREGATORS 
In the context of logic aggregation of degrees of preference 
(or suitability, or degrees of fuzzy membership), we use logic 
aggregators : , 1nA I I n→ >  that generalize classic Boolean 
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logic operations and have the following properties: 
Definition 1. A logic aggregator : nA I I→  is an averaging 

function that satisfies (a) strict monotonicity inside nI , (b) 
continuity, (c) internality, (d) idempotency, (e) 
compensativeness, and (f) boundary conditions, as follows: 
( ) , , ( ) ( )

        ]0,1[ , ]0,1[ , , ( ) ( )

n n

n n

a I I A A

A A

∀ ∈ ∀ ∈ ≤  ≤

∀ ∈ ∀ ∈ ≤ ≠  <

x y x y x y

x y x y x y x y

( ) , , , [ ( ), ( )]

        , , ( )

n n

n

b I I c A A

I A c

∀ ∈ ∀ ∈ ≤ ∀ ∈ 

∃ ∈ ≤ ≤ =

x y x y x y

z x z y z

1 1( ) min( ,..., ) ( ) max( ,..., )n
n nc I x x A x x∀ ∈  ≤ ≤x x

( ) ( , ,..., )d x I A x x x x∀ ∈  =  

1

1

( ) ]0,1[, ]0,1[, , δ ]0,1[

         ( ,..., ε ,..., ε ,..., )

         ( ,..., ,..., ,..., ),     0 ε δ , 0 ε 1

( ) (0,0,...,0) 0, (1,1,...,1) 1.

i j ij

i i j j n

i j n i ij j j

e x x i j

A x x x x

A x x x x x

f A A

∀ ∈ ∀ ∈ ≠ ∃ ∈ 

− + =

< ≤ < + ≤

= =

 

Note 1. For this type of aggregators, idempotency is a direct 
consequence of internality and the boundary conditions are a 
direct consequence of idempotency. 
Definition 2. Logic aggregators are symmetric 
(commutative) if they generate the same result for any 
permutation of arguments; if not, they are asymmetric 
(noncommutative): 

{1,..., }, {1,..., }, ,

(..., ,..., ,...) (..., ,..., ,...) ,  or

(..., ,..., ,...) (..., ,..., ,...) .

i j

i j j i

i j j i

i n j n i j x x

A x x A x x

A x x A x x

∀ ∈ ∀ ∈ ≠ ≠ 

=


 

Note 2. Asymmetry is indispensable for supporting semantic 
aspects of aggregation, primarily for modeling different 
degrees of importance or arguments. Asymmetry is usually 
realized using different weights of aggregators and in such 
cases the symmetry is a special case that corresponds to equal 
weights. 
Definition 3. A logic aggregator A is conjunctive if it is 
concave in each argument: 

1 1 1

, , , ,
{1,..., }, (1 )

( ,..., ,..., ) ( ,..., ,..., ) (1 ) ( ,..., ,..., )
i

i n n n

t I a I b I a b
i n x ta t b

A x x x tA x a x t A x b x

∀ ∈ ∀ ∈ ∀ ∈ ≠
∀ ∈ = + − 

≥ + −  
Definition 4. A logic aggregator A is disjunctive if it is 
convex in each argument: 

1 1 1

, , , ,
{1,..., }, (1 )

( ,..., ,..., ) ( ,..., ,..., ) (1 ) ( ,..., ,..., )
i

i n n n

t I a I b I a b
i n x ta t b

A x x x tA x a x t A x b x

∀ ∈ ∀ ∈ ∀ ∈ ≠
∀ ∈ = + − 

≤ + −
 

Definition 5. A logic aggregator A is neutral if it is both 
concave and convex: 

1 1 1

, , , ,
{1,..., }, (1 )

( ,..., ,..., ) ( ,..., ,..., ) (1 ) ( ,..., ,..., )
i

i n n n

t I a I b I a b
i n x ta t b

A x x x tA x a x t A x b x

∀ ∈ ∀ ∈ ∀ ∈ ≠
∀ ∈ = + − 

= + −
 

Definition 6. A logic aggregator A has annihilator a I∈  in a 
specific argument , {1,..., }ix i n∈  if for ix a= and jx I∀ ∈ , 

j i≠  we have 1( ,..., ,..., )i nA x x x a= . Otherwise, A is an 
aggregator without annihilator in argument , {1,..., }ix i n∈ . 
Definition 7. A logic aggregator A has homogeneous 
annihilators if it is without annihilator in all arguments, or if 
it has the annihilator a in all arguments ( {1,..., }, ii n x a∀ ∈ =   
and jx I∀ ∈ , j i≠  ( )A a =x ). 

Definition 8. A logic aggregator A has heterogeneous 
annihilators if it has the annihilator a in a subset of 
arguments, and it is without annihilator in all other 
arguments. 
Definition 9. A conjunctive logic aggregator A with 
homogeneous annihilators is hard, if it is has the annihilator 0 
in each argument: 

1{1,..., }, 0, 0, ( ,..., ,..., ) 0i j i ni n x x j i A x x x∀ ∈ = ≥ ≠  =

A hard conjunctive logic aggregator is called a Hard Partial 
Conjunction (HPC) if ( ) min( )A >x x , ( ,..., )x x≠ =x x , 
x I∈  (the arguments are not all equal). 
Definition 10. A conjunctive logic aggregator A with 
homogeneous annihilators is soft, if it is without the 
annihilator 0 in all arguments: 

1{1,..., }, 0, 0, ( ,..., ,..., ) 0i j i ni n x x j i A x x x∀ ∈ > = ≠  >

A soft conjunctive logic aggregator is called a Soft Partial 
Conjunction (SPC) if ( ) mid( )A <x x , ( ,..., )x x≠ =x x , 
x I∈ . 
Definition 11. A parameterized conjunctive logic aggregator 
A that has homogeneous annihilators and can be either hard or 
soft is called a Partial Conjunction (PC). PC satisfies the 
condition min( ) ( ) mid( )A< <x x x , ( ,..., )x x≠ =x x , x I∈ . 
A symmetric PC is symbolically denoted 1( ) ... nA x x= Δ Δx  
and the asymmetric version is 1 1( ; ) ... n nA W x W x= Δ Δx W . 
 Definition 12. A disjunctive logic aggregator A with 
homogeneous annihilators is hard, if it has the annihilator 1 in 
each argument: 

1{1,..., }, 1, 1, ( ,..., ,..., ) 1i j i ni n x x j i A x x x∀ ∈ = ≤ ≠  =  

A hard disjunctive logic aggregator is called a Hard Partial 
Disjunction (HPD) if ( ) max( )A <x x , ( ,..., )x x≠ =x x , 
x I∈ . 
Definition 13. A disjunctive logic aggregator A with 
homogeneous annihilators is soft, if it is without the 
annihilator 1 in all arguments: 

1{1,..., }, 1, 1, ( ,..., ,..., ) 1i j i ni n x x j i A x x x∀ ∈ < = ≠  <  

A soft disjunctive logic aggregator is called a Soft Partial 
Disjunction (SPD) if ( ) max( )A <x x , ( ,..., )x x≠ =x x , 
x I∈ .  
Definition 14. A parameterized disjunctive logic aggregator 
A that has homogeneous annihilators and can be either hard or 
soft is called a Partial Disjunction (PD). PD satisfies the 
condition mid( ) ( ) max( )A< <x x x , ( ,..., )x x≠ =x x , 
x I∈ . A symmetric PD is symbolically denoted 

1( ) ... nA x x= ∇ ∇x  and the asymmetric version is 

1 1( ; ) ... n nA W x W x= ∇ ∇x W . 
Definition 15. A conjunction degree or andness α I∈ is a 
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degree of similarity between a symmetric (commutative) 
logic aggregator ( )A x  with homogeneous annihilators and 
the pure conjunction; its fixed values are: 

0,     if   ( ) max( )
α ,  if   ( ) mid( )  

1,     if   ( ) min( )

A
A
A

=
= =
 =

x x
x x
x x

½  

Andness can also be interpreted as a degree of membership of 
a logic aggregator in the fuzzy set of conjunctive aggregators. 
Definition 16. A disjunction degree or orness ω I∈  is a 
degree of similarity between a symmetric (commutative) 
logic aggregator ( )A x  with homogeneous annihilators and 
the pure disjunction; its fixed values are: 

0,    if   ( ) min( )
ω ,  if   ( ) mid( )  

1,     if   ( ) max( )

A
A
A

=
= =
 =

x x
x x
x x

½  

Orness can also be interpreted as a degree of membership of a 
logic aggregator in the fuzzy set of disjunctive aggregators. 
Definition 17. Simultaneity and substitutability 
(replaceability) are complementary properties. Consequently, 
andness and orness are complementary indicators: α ω 1+ = . 
Definition 18. The threshold andness θα is the lowest 
andness of the hard partial conjunction. 
Definition 19. The threshold orness θω is the lowest orness 
of the hard partial disjunction. 
Definition 20. The partial conjunction has the andness in the 
range α 1½< < . In the range θα α½< < the partial 
conjunction is soft and in the range θα α 1≤ <  the partial 
conjunction is hard.  
Definition 21. The partial disjunction has the orness in the 
range ω 1½< < . In the range θω ω½< < the partial 
disjunction is soft and in the range θω ω 1≤ <  the partial 
disjunction is hard. 
Definition 22. A logic aggregator is called the Generalized 
Conjunction/disjunction (GCD) if it has homogeneous 
annihilators and supports all values of andness α I∈ and all 
values of orness ω I∈ . Thus, GCD supports the full (pure) 
conjunction (min(x)), PC, neutrality (mid(x)), PD, and the 
full (pure) disjunction (max(x)). The continuous transition 
from conjunction to disjunction is realized by selecting 
appropriate values of andness/orness. 
Note 3: GCD can be symmetric or asymmetric. Andness and 
orness are defined for symmetric version of GCD. The 
arguments of GCD have weights, and in the case of 
symmetric version of GCD all weights are equal: 

1 ... 1 /nW W n= = = . Asymmetric versions of GCD are 
realized using two or more weights different from 1/ n . A 
symmetric version of GCD is symbolically denoted 

1( ) ... nA x x=  x  and the asymmetric version is 

1 1( ; ) ... n nA W x W x=  x W . 
Definition 23. GCD is uniform if each of its principal special 
cases (HPC, SPC, SPD, and HPD) partitions the region of 
andness/orness in equal parts (1/4 for each of them). In other 

words, the uniform GCD is characterized by θ θα ω 3 / 4= = . 
If HPC, SPC, SPD, and HPD partition the region of 
andness/orness in parts that are not equal, then such a version 
of GCD is nonuniform. 

III. ADDITIVITY OF ANDNESS AND ORNESS  
Three basic definitions of andness and orness are: 
(1) The local andness/orness [5]: 

   

1

1 1

1

1 1

... ( )
α ( ) ,

... ...
( ) ...

ω ( ) 1 α ( )
... ...

n

n n

n

n n

x x A
x x x x

A x x
x x x x

∨ ∨ −
=

∨ ∨ − ∧ ∧
− ∧ ∧

= − =
∨ ∨ − ∧ ∧

x
x

x
x x



 

 

 
(2) The mean local andness/orness [5]: 

   

1

1
1

1 1

1
1

1 1

α α ( ) ...

... ( )
    ...

... ...
( ) ...

ω 1 α ...
... ...

n

n

n

nI

n
nI

n n

n
nI

n n

dx dx

x x A
dx dx

x x x x
A x x

dx dx
x x x x

=

∨ ∨ −
=

∨ ∨ − ∧ ∧
− ∧ ∧

= − =
∨ ∨ − ∧ ∧







x

x

x

 

 

 

 
(3) The global andness/orness [7]: 

1 1 1

1 1 1 1

1 1 1

1 1 1 1

( ... ) ... ( ) ...
α

( ... ) ... ( ... ) ...

ω 1 α

( ) ... ( ... ) ...
( ... ) ... ( ... ) ...

n n

n n

n n

n n

n n nI I
g

n n n nI I

g g

n n nI I

n n n nI I

x x dx dx A dx dx
x x dx dx x x dx dx

A dx dx x x dx dx
x x dx dx x x dx dx

∨ ∨ −
=

∨ ∨ − ∧ ∧

= −

− ∧ ∧
=

∨ ∨ − ∧ ∧

 
 

 
 

x

x

 

According to [6] we have 

1 1

1 1

1( ... ) ...
1

( ... ) ...
1

n

n

n nI

n nI

x x dx dx
n

nx x dx dx
n

∧ ∧ =
+

∨ ∨ =
+




                                   (1) 

Consequently, using (1) the global andness/orness can be 
written as follows: 

1

1

( 1) ( ) ...
α

1
( 1) ( ) ... 1

ω 1 α
1

n

n

nI
g

nI
g g

n n A dx dx
n

n A dx dx
n

− +
=

−
+ −

= − =
−





x

x
            (2) 

Let us now consider compound logic aggregators that are a 
linear combination of k component aggregators: 

1 1
( ) ( ), 0 1, 1

k k
i i i i

i i
A p A p p

= =
= < < = x x  

1

1 1

1
1

1 1

1

... ( )
α ( ) ,

... ...
... ( )

α ... ,
... ...

( 1) ( ) ...
α , 1,..., .

1

n

n

n i
i

n n

n i
i nI

n n

i nI
gi

x x A
x x x x

x x A
dx dx

x x x x
n n A dx dx

i k
n

∨ ∨ −
=

∨ ∨ − ∧ ∧
∨ ∨ −

=
∨ ∨ − ∧ ∧

− +
= =

−





x
x

x

x



  

The local andness/orness, the mean local andness/orness, 
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and the global andness/orness are additive indicators. Let us 
now prove the andness/orness additivity theorem. 
Theorem. For compound logic aggregators that are a linear 
combination of 1k > component (base) aggregators the 
compound andness/orness is the same linear combination of k 
component andness/orness indicators: 

1 1
( ) ( ), 0 1, 1

k k
i i i i

i i
A p A p p

= =
= < < = x x  

1 1

1 1

1 1

α ( ) α ( ) , ω ( ) ω ( ) ,

α α ,          ω ω ,

α α ,            ω ω .

k k
i i i i

i i
k k

i i i i
i i

k k
g i gi g i gi

i i

p p

p p

p p

= =

= =

= =

= =

= =

= =

 

 

 

x x x x   

          (3) 

Proof. 
1

1 1

1
1

1 1

1
1 1

1 1

1

1 11 1

... ( )
α ( )

... ...

... ( )

... ...

( ... ) ( )

... ...

... ( )
α ( )

... ...

n

n n
k

n i i
i

n n
k k

i n i i
i i

n n
k k

n i
i i i

i in n

x x A
x x x x

x x p A

x x x x

p x x p A

x x x x

x x A
p p

x x x x

=

= =

= =

∨ ∨ −
=

∨ ∨ − ∧ ∧

∨ ∨ −
=

∨ ∨ − ∧ ∧

∨ ∨ −
=

∨ ∨ − ∧ ∧

 ∨ ∨ −
= = ∨ ∨ − ∧ ∧ 



 

 

x
x

x

x

x
x





 

Furthermore, in the case of mean local andness we have 

1
1

1 1 1

1
1

1 11 1

... ( )
α ...

... ...

... ( )
... α

... ...

n

n

k
n i

i nI
i n n

k k
n i

i n i iI
i in n

x x A
p dx dx

x x x x

x x A
p dx dx p

x x x x

=

= =

 ∨ ∨ −
=  ∨ ∨ − ∧ ∧ 

∨ ∨ −
= =

∨ ∨ − ∧ ∧



 

x

x





 

According to (2), in the case of global andness we have 

1
1

1
1 1

1
1 1

1α ( ) ...
1 1

1 ( ) ...
1 1

1 ( ) ... α .
1 1

n

n

n

k
g i i nI

i
k k

i i i nI
i i
k k

i i n i giI
i i

n n p A dx dx
n n

n np p A dx dx
n n

n np A dx dx p
n n

=

= =

= =

+= −
− −

+= −
− −

+ = − = − − 



  

 

x

x

x

 

Since orness is the complement of andness the proofs for 
orness directly follow from the proofs for andness; e.g.: 

1 1 1 1

1 1

α 1 ω α (1 ω ) ω

1 ω          ω ω   .

k k k k
g g i gi i gi i i gi

i i i i
k k

i gi g i gi
i i

p p p p

p p

= = = =

= =

= − = = − = −

= −  =

   

 
 

IV. INTERPOLATIVE LOGIC AGGREGATORS 
The additive local, mean local, and global andness/orness are 
different metrics of simultaneity and substitutability. The 

global andness/orness is the simplest and the most frequently 
used indicator. For simplicity, let us now assume that α and ω 
denote the global andness and orness. An aggregator A, 
parameterized with the global andness α and denoted 

( ;α)A x , can be interpolated between the base aggregators 

1 1( ;α )A x  and 2 2( ;α )A x  as follows: 

1 1 2 2( ;α) ( ;α ) (1 ) ( ;α ),A pA p A p I= + − ∈x x x  

1 2α α (1 )αp p= + − ,  1 2ω ω (1 )ωp p= + − . 
In this case the base aggregators 1 1( ;α )A x and 2 2( ;α )A x  are 
interpreted as fixed bounds of an interval and 
(assuming 1 2α α< ) inside the interval we use the linear 
interpolation yielding 1 2 2 1α α α , ω ω ω≤ ≤ ≤ ≤  . Thus, 

( ;α)A x can be interpreted as an interpolative aggregator with 
the range of andness 1 2α [α ,α ]∈ . 

In many applications it is convenient to use andness and 
orness as parameters of interpolative logic aggregators. If we 
define 2 2 1(α α) / (α α )p = − − , 1 2 11 (α α ) / (α α )p− = − − , 
then a parameterized interpolative logic aggregator can be 
defined using andness (or orness) as its parameter, as follows: 

2 1 1 1 2 2
1 2

2 1

(α α) ( ;α ) (α α ) ( ;α )
( ;α) , α α α

α α
A A

A
− + −

= ≤ ≤
−

x x
x   (4) 

For example, 1 2( , ;3 / 4)A x x can be interpolated between 

1 1 2 1 2( , ;2 / 3)A x x x x=  and 2 1 2 1 2( , ;1)A x x x x= ∧ as 
follows:  

1 2 1 2
1 2

1 2 1 2 1 2

(1 3 / 4) (3 / 4 2 / 3)( )
( , ;3 / 4)

1 2 / 3
3 1 3 1 3 2 1 3( ); α α α 1
4 4 4 4 4 3 4 4

x x x x
A x x

x x x x

− + − ∧
=

−

= + ∧ = + = ⋅ + ⋅ =
 

V. INTERPOLATIVE GCD  
The selection of threshold andness and threshold orness are 

fundamental decisions in the development of GCD. The most 
frequently used model of GCD is based on weighted power 
mean (WPM) [ ] 1/

1 1( ; ) lim ( ... )r s s s
n n

s r
M W x W x

→
= + +x W , 

r−∞ ≤ ≤ +∞ , 1( ,..., )nW W=W , 0 1, 1,...,iW i n< < = , 

1 1n
iW = [4][10]. In this case θα 2 / 3= , and θω 1= , i.e. the 

value of θα  is rather low and the value of θω is too high, so 
that the only hard partial disjunction is the pure disjunction 

1max( ,..., )nx x . Therefore, WPM is a nonuniform aggregator. 
Evaluators can be trained to efficiently use WPM as a logic 
aggregator in applications [8], but there is no evidence that this 
is the most suitable among many means [1][4][12] that can be 
used as logic aggregators. A natural way to approach this 
problem is to first investigate what is the distribution of 
threshold andness in human reasoning and then to specify 
requirements that the GCD aggregators should satisfy. 

An empirical analysis of the distribution of threshold 
andness in intuitive human reasoning [11] shows that 80% of 
both experts and non-experts suggest the range 

θ0.71 α 0.91≤ ≤  and the mean value θα 0.81= . So, there is a 
clear interest to have an interpolative GCD aggregator 
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(denoted IGCD) that provides independently adjustable values 
of the threshold andness and the threshold orness. 

In a general case of n attributes we can use the interpolative 
aggregator (4) to first create a threshold aggregator that is 
interpolated between the base aggregators of the geometric 
mean ( ;α )geo geoA x  and the pure conjunction ( ;1)conA x : 

θ θ
θ θ

(1 α ) ( ;α ) (α α ) ( ;1)
( ;α )

1 α
geo geo geo con

geo

A A
A

− + −
=

−
x x

x ,  

{1,..., }, 0, 0,i ji n x x j i∀ ∈ = ≥ ≠     

θ 1 θ( ,..., ,..., ;α ) 0i nA x x x = ,    θα α 1geo ≤ ≤  

The threshold aggregator has the annihilator 0 and provides a 
wide range of threshold andness; using (1) and (2) we have 

 

1/ 1/
1

1/ 1/
1 1

1

1

1/ 1/
θ 1 θ

θ θ

( ;α ) , 1

( 1) ...
α

1

( 1) 1
1 1 1 1 1

11 α ω
1 1

(1 α ) (α α
( ;α )

n

n n
geo geo n

n n
n nI

geo

n n

n

geo geo

n n
n ge

A x x n

n n x x dx dx

n

n n n n n
n n n n n

n n
n n n

x x
A

−

−

= ⋅⋅⋅ >

− + ⋅⋅ ⋅
=

−
 +    = − ⋅ =  −    − − + − +     

  − = =  −  − +   

− ⋅⋅ ⋅ + −
=



x

x 1

1

θ

)( ... )
ω

1 α 1
1 1

o n

geo

n

x x

n n
n n

−

∧ ∧

   −  ≤ ≤ − +   

 

In general asymmetric cases the threshold aggregator is using 
weights that are not all equal to1/ n : 

1
θ θ 11

θ θ
(1 α ) (α α )( ... )

( ; ,α )
ω

nW W
n geo n

geo

x x x x
A

− ⋅⋅⋅ + − ∧ ∧
=x W

θα α 1geo ≤ ≤                                                                      (5) 

We can now use the arithmetic mean, the threshold 
aggregator (5) and the pure conjunction as the base 
aggregators for an interpolative GCD. Let 

θ θ( ; ,α,α ), α αsC x W ½< <  denote the SPC with the 
threshold andness θα . By interpolating between the neutrality 
(weighted arithmetic mean) and the weighted threshold 
aggregator θ θ( ; ,α )A x W  we have:  

θ θ θ
θ

θ

(α α)mid( ; ) (α 1/ 2) ( ; ,α )
( ; ,α,α )

α 1/ 2s
A

C
− + −

=
−

x W x W
x W

1 1mid( ; ) ... n nW x W x= + +x W                                             (6) 

10 1, 1,..., , ... 1i nW i n W W< < = + + = ;  θα α½< < . 
Using similar notation, the HPC θ θ( ; ,α,α ), α α 1hC ≤ <x W  
should be interpolated between the weighted threshold 
aggregator θ( ; ,α )A x W and the pure conjunction: 

θ θ θ 1
θ

θ

(1 α) ( ; ,α ) (α α )( ... )
( ; ,α,α )

1 α
n

h
A x x

C
− + − ∧ ∧

=
−

x W
x W  

θα α 1≤ <                                                                           (7) 
According to (2), the global andness of an interpolative 

aggregator ( ; ,α)A x W has the following properties 

1

1

( 1) ( ; ,α) ...
α, (1/ ,...,1/ )

1
( 1) ( ; ,α) ...

α
1

n

n

nI

nI

n n A dx dx
n n

n
n n A dx dx

n

− +
= =

−
− + −

=
−





x W
W

1 x W
 

Since 1( 1) ( ; ,α) ... ( 1)αn nIn A dx dx n n+ = − − x W , we also 

have 
1

1

1

1

( 1) (1 ( ; ,α)) ...
1

( 1) ( 1) ( ; ,α) ...
1

1 ( 1)α 1 α
1

( 1) (1 ( ; ,α)) ...
1 α

1
( 1) ( ; ,1 α) ...

1

n

n

n

n

nI

nI

nI

nI

n n A dx dx
n

n n n A dx dx
n

n n
n

n n A dx dx
n

n n A dx dx
n

− + −

−
− + + +

=
−

− + − −= = −
−

− + − −
= −

−
− + −

=
−









x W

x W

1 x W

x W

      (8) 

From (8) we get De Morgan duality for GCD: 
 

    
( ; ,1 α) 1 ( ; ,α)
( ; ,α) 1 ( ; ,1 α)

A A
A A

− = − −
= − − −

x W 1 x W
x W 1 x W

                              (9) 

 
Partial disjunction can be developed using the same 

method as the partial conjunction. The simplest way is to 
select a desired value of the threshold orness θω  and then to 
create the PD θ( ; ,α,ω )D x W  as De Morgan dual of the PC 

θ( ; ,α,α )C x W that has the threshold andness θ θα ω θ= = : 
 

( ; ,α,θ) 1 ( ; ,1 α,θ), 0 α
( ; ,α,θ) 1 ( ; ,1 α,θ), α 1

D C
C D

= − − − < <
= − − − < <

x W 1 x W
x W 1 x W

½
½

     (10) 

 
E.g., for desired threshold θ , α θ 1geo ≤ ≤ we can use WPM 

and create the SPD ( ; ,α,θ)sD x W and the 
HPD ( ; ,α,θ)hD x W  using ( ; ,α,θ)sC x W  and ( ; ,α,θ)hC x W  
as follows: 
 

( ; ,α,θ) 1 ( ; ,1 α,θ), 1 θ α
( ; ,α,θ) 1 ( ; ,1 α,θ), 0 α 1 θ

s s

h h

D C
D C

= − − − − < <
= − − − < ≤ −

x W 1 x W
x W 1 x W

½
  (11) 

 
De Morgan duality is used in (10) and (11) for 
α \{0, ,1}I∈ ½  but it obviously holds in the whole range 
α I∈ . Using formulas (5)-(11) we can now define a general 
interpolative GCD aggregator   θ θIGCD( ; ,α,α ,ω )x W  
which has independently adjustable threshold andness θα  and 
threshold orness θω as shown in formula (12).    

1782



 
 

 

 
θ θ

1

θ
11

θθ θ
1θ θ 1

IGCD( ; ,α,α ,ω )
... , α 0 [Pure disjunction]

1 α αα1 (1 ) (1 ) ,  0 α 1 ω [Hard partial dis.]
1 α 1 α

ω αω 1 α 1 ωα1 (1 ) (1 ) (1
ω ω 1 α 1 α

i

i

n
nn geoW

i i
igeo geoi

nn geoW
i i i

igeo geoi

x x

x x

W x x x

==

==

∨ ∨ =

− −
− − + − < ≤ −

− −

−− + −−− − + − + −
− − − −

=

∏

∏

x W

¹

¹½
½ ½ θ

1

1 1

θθ θ
θ

11θ θ 1

1

) , 1 ω α   [Soft partial dis.]

... α [Neutrality]

α αα α 1 αα , α α [Soft partial con.]
α α 1 α 1 α

α α1 α
1 α 1 α

i

i

n
i

i

n n
nnn geoW

i i ii ii geo geoi

n geoW
i

geo i

W x W x

W x x x

x

=

== =

=

 
  − < <
 
 

+ + =

 −− −−  + + < <
 − − − −
 

−− +
− −



 ∏

∏

¹

½

½

½ ½
½ ½

θ
1

1
1

θ θ 1

, α α 1 [Hard partial con.]

... , α 1 [Pure conjunction]

α 1 , α α 1 , α ω 1; 0 1 , 1,..., , ... 1 , 1               (12)
1 1

n

i
igeo

n
n

geo geo geo i n

x

x x

n n W i n W W n
n n

=

−


















 ≤ <

 ∧ ∧ =

  =  −  ≤ ≤ ≤ ≤ < < = + + = > − +   

¹

 
TABLE I.   

DECOMPOSITION AND SPECIAL CASES OF THE UNIFORM INTERPOLATIVE GCD  

Aggregator 
decompo- 
sition and 
special 
cases 

UNIFORM INTERPOLATIVE GENERALIZED CONJUNCTION/DISJUNCTION

Conjunction (models of simultaneity)  

Neutrality

Disjunction (models of replaceability)

Pure 
Con. 

Partial conjunction Partial disjunction Pure 
Dis. 

Hard partial con. Soft partial con. Soft partial dis. Hard partial dis.

Symbol C CH+ CH CH- CS+ CS CS- A DS- DS DS+ DH- DH DH+ D

Andness 1 13
14  6

7  11
14  5

7  9
14  4

7  1
2  3

7  5
14  2

7  3
14  1

7  1
14  0 

Orness 0 1
14  1

7  3
14  2

7  5
14  3

7  1
2  4

7  9
14  5

7  11
14  6

7  13
14  1 

 
Fig. 1.  A simple form-type-mode-level decision process for selecting a uniform interpolative GCD aggregator. 

  C CH+  CH CH– CS+  CS CS–    A DS–  DS DS+ DH–  DH DH+    D 

Level Level

Type 
Full (pure) 

Partial 

Low 

Soft Hard 

Med ium

High Low 

Med ium

High 
Level Level 

Mode 

Type Full (pure) 

 

Low 

Soft Hard 

Med ium 

High Low 

Med ium 

High 

Disjunction  

Neutrality 

GCD decision steps: 

1. Form: conjunction 
or disjunction or 
neutrality? 

2. Type: partial or full 
(pure)? 

3. Mode: hard or soft? 
4. Level: low or 

medium or high? 

Form

Mode

Conjunction 

Partial 
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Note that θ θIGCD( ; ,α,α ,ω )x W  must be idempotent, and 
it is a weighted sum of idempotent functions:  

θ θ
11 1

IGCD( ; ,α,α ,ω ) i
nnn W

i i ii ii i
Q W x R x T x

== =
= + + ∏x W ¹   (13) 

Consequently, if we insert ( ,..., ),x x x I= = ∈x x  in (13), 
then we have that the sum of weights must be 1: 
 

θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ

IGCD( ; ,α,α ,ω ) (α,α ,ω ) (α,α ,ω )
                                          (α,α ,ω )

(α,α ,ω ) (α,α ,ω ) (α,α ,ω ) 1

x Q x R x
T x

Q R T

= = +
+

∴ + + =

x W

 
In addition, if we insert ( )1 1,...,n n= =W W and use (3) to 

compute the andness of (13) we have the following: 
 

1
1

θ θ θ θ2

θ θ

α (α,α ,ω ) 1 (α,α ,ω )
1 1

     (α,α ,ω )

nn nQ R
n n

T

−  = +  −  − +   
+

 

 
A natural next question is related the selection of threshold 

andness and threshold orness, and the definition of special 
cases of GCD. 

Generally, the region of hard partial conjunction can have 
a different size than the region of soft partial conjunction 

θ(α 3 / 4)≠ . Similarly, the region of hard partial disjunction 
can have a different size than the region of soft partial 
disjunction θ(ω 3 / 4)≠ . In addition, the conjunctive special 
cases of GCD need not necessarily be symmetric to the 
disjunctive special cases θ θ(α ω )≠ .  

In the absence of convincing arguments justifying the need 
for nonuniform distribution of hard and soft partial 
conjunction and disjunction, or the need for asymmetric 
conjunctive and disjunctive properties of GCD,  a default 
form of GCD should have symmetric PC/PD and uniform soft 
and hard ranges: θ θα ω 3 / 4= = . This value is close to the 
empirical mean value θα 0.81=  and inside the interval [0.71, 
0.91] defined as θ θ[α σ, α σ]− + where σ  denotes the 
standard deviation of the empirical distribution of θα .  

A Uniform Interpolative GCD  (or  UIGCD) is presented 
in Table I. The proposed UIGCD uses seven levels of 
simultaneity and seven levels of replaceability, providing 
easy and reliable choice of the most appropriate level [14]. In 
most cases the selection process consists of four easy steps 
illustrated in Fig. 1. Therefore, there are two binary decisions 
and two ternary decisions, what might an ultimate level of 
simplicity in selecting the most appropriate version of a GCD 
aggregator. The UIGCD aggregator should be a default 
version of GCD, suitable for a wide variety of users, 
including those that are not professional decision analysts. 

In the special case of two variables UIGCD takes the 
following form: 

1 2

1 2

3 3
4 4

1 2 1 2
1
4

3 6α
1 1 2 2 1 22

UIGCD( ; ,α, , )

1 3α(1 ) (1 ) (1 3α)[1 ( )] ,

                                                                        0 α

1 (4α 1)(1 ) (1 ) (1 )

                   

W W

W W

x x x x

W x W x x x−

− − − − − − ∨

≤ ≤

− − − − − − − −

=

x W

1 2

1 2

1 2α 1 1
1 22 4 2

6α 3 2α 1
1 1 2 2 1 21 22 2

31
2 4

1 21 2

          [1 ( )] ,        α

(3 4α)( ) ( ) ,

                                                                      α

(3 3α) (3α 2)( ) ,   

W W

W W

x x

W x W x x x x x

x x x x

−

− −

− − ∨ ≤ ≤

− + + + ∧

≤ ≤

− + − ∧ 3
4

1 2 1 2

           α 1

0 1,   0 1,   1                             (14)W W W W














 ≤ ≤
< < < < + =

 

According to (14), the 15 special cases of UIGCD 
aggregators presented in Table I are the following: 

1 2

1 2 1 2
+ 3 11

1 2 1 21 214 14

C( , )

CH ( , ) ( )W W

x x x x

x x x x x x

= ∧

= + ∧
  

1 2

1 2

3 4
1 2 1 21 27 7

9 5
1 2 1 21 214 14

CH( , ) ( )

CH ( , ) ( )

W W

W W

x x x x x x

x x x x x x−

= + ∧

= + ∧
    

1 2

1 2

9 31
1 2 1 1 2 2 1 21 27 14 14

3 3 1
1 2 1 1 2 2 1 21 27 7 7

CS ( , ) ( ) ( )

CS( , ) ( ) ( )

W W

W W

x x W x W x x x x x

x x W x W x x x x x

+ = + + + ∧

= + + + ∧
  

1 25 3 1
1 2 1 1 2 2 1 21 27 14 14

1 2 1 1 2 2

CS ( , ) ( ) ( )

A( , )

W Wx x W x W x x x x x

x x W x W x

− = + + + ∧

= +
   

1 2

1 2

5
1 2 1 1 2 27

3 1
1 2 1 214 14

3
1 2 1 1 2 27

3 1
1 2 1 27 7

DS ( , ) 1 (1 )

                    (1 ) (1 ) [1 ( )]

DS( , ) 1 (1 )

                  (1 ) (1 ) [1 ( )]

W W

W W

x x W x W x

x x x x

x x W x W x

x x x x

− = − − − +

+ − − + − ∨

= − − − +

+ − − + − ∨

   

1 2

1
1 2 1 1 2 27

9 3
1 2 1 214 14

DS ( , ) 1 (1 )

                    (1 ) (1 ) [1 ( )]W W

x x W x W x

x x x x

+ = − − − +

+ − − + − ∨
  

1 2

1 2

1 2

9 5
1 2 1 2 1 214 14

3 4
1 2 1 2 1 27 7

3 11
1 2 1 2 1 214 14

1 2 1 2

1 2 1 2

DH ( , ) 1 (1 ) (1 ) [1 ( )]

DH( , ) 1 (1 ) (1 ) [1 ( )]

DH ( , ) 1 (1 ) (1 ) [1 ( )]

D( , )
0 1,   0 1,   1                      

W W

W W

W W

x x x x x x

x x x x x x

x x x x x x

x x x x
W W W W

−

+

= − − − − − ∨

= − − − − − ∨

= − − − − − ∨

= ∨
< < < < + =         (15)

  

The presented aggregators illustrate a situation where the 
threshold andness and the threshold orness do not need to be 
below the value of αgeo . Experiments with human decision 

makers indicate that this is almost always acceptable. The 
selection of basic aggregators that we used (the arithmetic 
mean, the geometric mean, and the minimum function) is 
convenient because of the availability of function α ( )geo n  
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for all values of n.  
In cases where the computational simplicity is a primary 

goal, it is suitable to use the harmonic mean as the threshold 
andness aggregator: 

( )
1

θ 1 2
1 1 2 2 θ

θ θ 1 2
1 1 α 2 2 1

θ1 2
1 2 θ θ

θ 1 2 θ

1 1 ω 2 2 1 1 ω 2 2 θ θ

α α α 0.5 ,     0.5 α α     
α 0.5 α 0.5

α α1 α ( ),   α α 1,   α ln16 2
1 α 1 α

1 (1 ) (1 ),     0.5 ω 1,     ω α .

W W
W x W x

x x
W x W x

W W
x x

x x

W x W x W x W x

−

−

  − − + + + ≤ ≤ − −  Δ = 
   −− + + ∧ ≤ ≤ = −  − −  

∇ = − − Δ − ≤ ≤ =                (16)

 

In this case θα ln16 2 0.7726 3/ 4= − = >  and the region of 
HPC/HPD is slightly smaller than the region of SPC/SPD. So, 
this aggregator provides the symmetry between PC and PD, 
but not the perfectly uniform soft and hard ranges.   

Of course, there are many other candidates that can be used as 
basic aggregators [9]. The simplest way to create a three-base 
UIGCD is to use the weighted power mean 

( )1/
θ θ 1 1( ; ,α ) ...

rr r
n nA W x W x= + +x W directly as a threshold 

aggregator with θα 3 / 4= . Using numerical integration the 
corresponding values of exponent r for n=2,3,4,5 should  
respectively be -0.7201, -0.7317, -0.7205, and -0.7054. 
Another approach, yielding ultimate computational 
simplicity, is to use the harmonic mean 

( )θ θ 1 1( ; ,α ) 1 / / ... /n nA W x W x= + +x W  as the threshold 
aggregator and to interpolate soft partial conjunction between 
the arithmetic and harmonic means. A spectrum of threshold 
aggregators can also be designed using multiplicative 
techniques introduced in [9]. 

The concept of interpolative aggregators is not limited to 
idempotent aggregators only. Interpolative aggregators are a 
powerful technique for refinement and expansion of all types 
of aggregators. Interpolation can be efficiently applied to 
t-norms, t-conorms, and overlap and grouping functions [3]. 
E.g., the global andness of the min norm ( , )MT x y x y= ∧  is 
α 1=  and for the product norm ( , )PT x y xy=  is α 5 / 4= . 
Using  ( , ) (5 4α)( ) 4(α 1) , 1 α 5 / 4T x y x y xy= − ∧ + − ≤ ≤  we 
can realize a continuous transition between these two norms. 
The same holds for t-conorms. In addition, interpolative 
aggregators can provide a seamless transition between the 
region of idempotent aggregators (means) and the region of 
nonidempotent aggregators [2][3]. This opens a rather wide 
area for research of new aggregators and their applications, 
particularly in the field of image processing. 

        VI.  CONCLUSIONS 
Uniform and nonuniform versions of GCD are 

fundamental logic averaging aggregators used to model 
human evaluation reasoning. IGCD and UIGCD are simple 
and efficient implementations of GCD. Generally, logic 
averaging aggregators need to satisfy several fundamental 
conditions: (1) monotonicity, (2) continuous transition from 
conjunction to disjunction based on adjustable 
andness/orness, (3) soft and hard aggregation properties in 
order to include/exclude annihilators, (4) the use of weights 
that express relative importance of inputs, and (5) 

idempotency, which is needed in the vast majority of 
evaluation decision models. Such logic aggregators are 
means, and the search for suitable aggregators is most 
promising among monotonic special cases of the 
Bajraktarević mean [1][4]: 

1 1

1

( ) ( )
( )                              (17)

( )

: [0, [ , : [ , ] , strictly monotonic

n
i i ii

n
i ii

i

w x F x
B F

w x

w I F I

− =

=

 
 =
 
 

→ +∞ → −∞ +∞




x
 

No special case of ( )B x is known to perfectly satisfy all 
conditions that logic aggregators must satisfy, but for each 
fundamental condition there is a special case of (17) that 
satisfies the condition. Interpolative logic aggregators IGCD 
and UIGCD provide a way to integrate convenient special 
cases of (17) in a single interpolative form, and to provide all 
desirable logic properties in a single aggregator. In particular, 
interpolative logic aggregators provide independent control 
of both the threshold andness and the threshold orness.  
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