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Abstract— In a preceding contribution, we proposed a novel
combination method by means of a fuzzy linguistic rule-
based classification system. The fuzzy linguistic combination
method was based on a genetic fuzzy system in order to
learn its parameters from data. By doing so the resulting
classifier ensemble was able to show a hierarchical structure
and the operation of the latter component was transparent to
the user. In addition, for the specific case of fuzzy classifier
ensembles, the new approach allowed fuzzy classifiers to deal
with high dimensional classification problems avoiding the curse
of dimensionality. However, this approach strongly depended
on one parameter defining the complexity of the final classifier
ensemble and in consequence affecting the final accuracy. To
avoid this tedious problem, we propose to automatically derive
this parameter. For this purpose, we use the most common evo-
lutionary multiobjective algorithm, namely NSGA-II, in order
to optimize two criteria, complexity and accuracy. We carry out
comprehensive experiments considering 20 UCI datasets with
different dimensionality, showing the good performance of the
proposed approach.

I. INTRODUCTION

Classifier ensembles (CEs), also called multiclassifiers, are
machine learning tools capable to obtain better performance
than a single classifier when dealing with complex classifica-
tion problems, especially when the number of dimensions or
the size of the data are really large [1]. The most common
base classifiers are decision trees [2], neural networks [3],
and more recently fuzzy classifiers [4], [5], [6], [7].

CE design is essentially based on two stages [8]: the
learning of the component classifiers and the design of
the combination mechanism for the individual decisions
provided by them into the global CE output. The overall
accuracy of the CE relies on the performance and the proper
integration of these two tasks.

The research area of combination methods is very active. It
considers both the direct combination of the results provided
by all the initial set of component classifiers to compute the
final output (classifier fusion) and the selection of the best
single classifier or classifier subset which will be taken into
account to provide a decision for each specific input pattern
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(static/dynamic classifier selection [9] and overproduce-and-
choose strategies [10]). Besides, hybrid strategies between
the two groups have also been introduced [1].

While the weighted majority vote could be considered
as the most extended classifier fusion combination method
[11], many other proposals have been developed in the
specialized literature, including several successful procedures
based on the use of fuzzy set theory and, specifically, of fuzzy
aggregation operators [12], [13].

In a recent study [14], we introduced a framework to derive
a fuzzy rule-based classification system (FRBCS) playing the
role of the CE combination method. This fuzzy linguistic
combination method presented an interpretable structure as it
was based on the use of a single disjunctive fuzzy classifica-
tion rule per problem class as well as on the classical single-
winner fuzzy reasoning method [15], [16]. The antecedent
variables corresponded to the component (fuzzy) classifiers
(thus its number is bounded by the existing number) and each
of them had a weight associated representing the certainty
degree of each ensemble member in the classification of
each class. A specific genetic algorithm (GA) to design
such FRBCS-based combination method (FRBCS-CM) was
proposed with the ability of selecting features and linguistic
terms in the antecedent parts of the rules. In such way, it
performed both classifier fusion and classifier selection at
class level.

The resulting system is a genetic fuzzy system (GFS) [17],
[18] dealing with the interpretability-accuracy trade-off in a
proper way [19]. In that contribution the FRBCS-CM was be
applied on fuzzy rule-based classifier ensembles (FRBCEs)
generated from the bagging methodology we proposed in [6].
Therefore, the resulting FRBCE showed a clear hierarchical
structure composed of two levels of FRBCSs allowing it to
deal with high dimensional problems.

However, this approach has one significant drawback. The
proposed GFS strongly relies on one parameter (provided by
the user a priori) defining the desired complexity level for the
final CE, which in consequence affects the final accuracy. To
avoid this tedious issue, we propose to automatically derive
this parameter in the current contribution.

To do so, we use the most common evolutionary mul-
tiobjective (EMO) algorithm [20], namely NSGA-II [21],
as an engine to design FRBCS-CM. It will simultaneously
optimize two different criteria: complexity (eliminating its
manual definition a priori) and accuracy. In addition, it will
generate several FRBCE designs with different accuracy-

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 1968



complexity trade-offs in a single run as a consequence
of the nature of the EMO algorithms. A comprehensive
study will be conducted on twenty datasets with different
dimensionality from the UCI machine learning repository
to test the performance of the derived FRBCEs. We will
compare our proposal with the original FRBCE, as well as
with the GFS-based FRBCS-CM proposed in [14], showing
the performance advantage of our proposal.

This paper is set up as follows. In the next section, the pre-
liminaries required for a good understanding of our work (CE
combination methods, fuzzy CE combination methods, and
our approach for designing FRBCEs considering bagging)
are reviewed. Section III describes the proposed FRBCS-
CM framework, structure and the proposal of NSGA-II to
design it. The experiments developed and their analysis are
shown in Sec. IV. Finally, Sec. V presents some concluding
remarks and future research lines.

II. PRELIMINARIES

This section explores the current literature related to CE
combination methods and reviews our generation method for
FRBCEs.

A. Classifier Ensemble Combination Methods

There are two main approaches in the literature for the
combination of the outputs provided by a previously gener-
ated set of individual classifiers into a single CE output [22]:
classifier fusion and classifier selection.

Classifier fusion relies on the assumption that all ensemble
members make independent errors. Thus, combining the
decisions of the ensemble members may lead to increasing
the overall performance of the system. Majority voting, sum,
product, maximum and minimum are examples of functions
used to combine their decisions [23]. The most extended
one is the weighted majority voting, which allows to weight
the contribution of each individual classifier to the final
decision according to its “classification competence” using
coefficients of importance [11].

Alternatively, classifier selection is based on the fact that
not all the individual classifiers but only a subset of them will
influence on the final decision for each input pattern. Two
categories of classifier selection techniques exist: static and
dynamic [9], [22]. In the first case, regions of competence
are defined during the training phase, while in the second
case, they are defined during the classification phase taking
into account the characteristics of the sample to be classified.
There is also another family of static classifier selection
methods based on the assumption that the candidate classi-
fiers in the ensemble could be redundant. These methods are
grouped under the name of overproduce-and-choose strategy
(OCS) [10] and they are based on the fact that a large set of
candidate classifiers is generated and then selected to extract
the best performing subset (removing duplicates and poor-
performing candidate classifiers), which composes the final
CE used to classify the whole test set. In addition, hybrid
methods between the latter families have been proposed, such
as the GA-based dynamic OCS procedure introduced in [24].

The FRBCS-CM used in the current contribution belongs
to the static OCS group and it is able to either completely
remove a whole candidate classifier or to reduce its contri-
bution to only some specific classes with a specific weight
measuring our confidence in the individual classifier for that
specific class (as done in other existing classifier selection
methods such as [25], [26]). All the latter is performed
using a human-interpretable structure generated by means
of a EMO-based FRBCS using NSGA-II.

B. Classifier Ensemble Fuzzy Combination Methods

Fuzzy set theory has been extensively and successfully
considered for classifier fusion. The use of fuzzy connectives
to combine the outputs of the component classifiers of
an ensemble was first proposed in [27]. Since then, many
different fuzzy aggregation operators have been considered in
the specialized literature [12], [13], [28]. In [13] the accuracy
of some of them was compared to that of seven of the usual
crisp (i.e., non-fuzzy) aggregation operators when considered
as combination operators for Boosting classifier ensembles.
The conclusions drawn from that experimentation were that
fuzzy combination methods clearly outperformed non-fuzzy
ones.

Besides, some other works have extended the classifier
fusion scope and have proposed some techniques which show
some similarities with our proposal. On the one hand, Bula-
cio et al. [29] introduced a hybrid classifier selection-fusion
strategy, considering Sugeno’s fuzzy integral as combination
method and a greedy heuristic for the ensemble member
selection. On the other hand, Lu and Yamaoka [30] intro-
duced a fuzzy combination method specifically designed for
a hybrid ensemble of three classifiers which showed the novel
characteristic of allowing the user to incorporate human
expert knowledge on the bias of the component classifiers.
This is done by means of an additional refinement module
based on a FRBS comprised by Mamdani-type fuzzy rules.
Lu and Yamaoka’s fuzzy combination method makes use of a
fuzzy reasoning process where the following components are
considered: a linguistic partition for the ensemble members’
outputs, a fuzzy aggregation of their membership degrees
and a defuzzification method to modify them, and a new
(crisp) aggregation for each class in order to take the final
CE decision corresponding to the largest aggregated class
membership value.

As said, the latter procedure can be complemented by
expert-defined fuzzy rules to adjust the importance of the
decisions taken for each class according to the nature of
the component classifiers. Hence, the FRBS is used as a
refinement module for the fuzzy combination method de-
cisions. Nevertheless, this strategy shows several problems
such as its specificity to the consideration of a simple three-
classifier ensemble, its highly complex structure composed
of two different nature fuzzy reasoning modules, the need of
manually defining the fuzzy rules in the refinement module
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1 and the impossibility to perform classifier selection (which
of course is not required in the simple ensemble structure
considered).

C. Bagging Fuzzy Classifier Ensembles

We take the methodology for the base fuzzy classifier
generation that we described in [6] as a base. We incor-
porated FURIA [31], [32] into a CE framework based on
classical CE design approaches [2], [33], [34] in order to
generate FRBCEs. We concluded that pure bagging without
additional feature selection obtained the best performance
when combined with FURIA-based fuzzy classifiers. Thus,
we consider the use of bagging with the entire feature set to
generate the initial FURIA-based FRBCEs.

In order to build these FRBCEs, a normalized dataset is
split into two parts, a training set and a test set. The training
set is submitted to an instance selection procedure in order to
provide the K individual training sets (the so-called bags) to
train the K FURIA-based FRBCSs. In every case, the bags
are generated with the same size as the original training set,
as commonly done.

The fuzzy classification rules Rk
j considered show a class

Ck
j and a certainty degree CF k

j in the consequent: If xk
1

is Ak
j1 and . . . and xk

n is Ak
jn then Class Ck

j with CF k
j ,

j = 1, 2, . . . , N , k = 1, 2, . . . ,K. The voting-based fuzzy
reasoning method is used to take the decision of the individ-
ual classifier [35], [15].

After performing the training stage on all the bags in
parallel, we get an initial whole FRBCE, which is validated
using the training and the test errors as well as a measure
of complexity based on the total number of rules in the
FRBCSs. The standard majority voting approach is applied
as the classifier fusion method [1], [23]: the ensemble class
prediction will directly be the most voted class in the
component classifiers output set. In the case of a tie, the
output class is chosen at random.

For a more detailed description on the methodology, the
interested reader is referred to the provided references.

III. AN EVOLUTIONARY MULTIOBJECTIVE
OPTIMIZATION APPROACH TO DESIGN A FUZZY

LINGUISTIC COMBINATION METHOD FOR
BAGGING FRBCES

The next subsections will respectively provide a detailed
description of the FRBCS-CM structure introduced in [14]
and of the composition of the EMO algorithm based on
NSGA-II designed to derive its fuzzy knowledge base.

A. Fuzzy linguistic combination

As said in Section II-C, the FRBCSs considered in the
ensemble will be based on fuzzy classification rules with
a class and a certainty degree in the consequent. Let Rk

j

1It could be feasible when using a very small number of component
classifiers –only three– but not with dealing with a more usual larger number.
In fact, the FRBSs considered in their experimentation are only composed of
a single rule with three inputs as well as the authors mention they were not
able to incorporate expert knowledge to the Bayesian component classifier

be the j-th rule of the k-th member of an ensemble of K
components,

if x is Ak
j then Class Ck

j with CF k
j ,

where Ck
j ∈ {1, . . . , nc} and nc is the number of classes.

We will use the expression Gk = {Rk
1 , . . . , Rk

Nk
} to denote

the list of fuzzy rules comprising the k-th ensemble member.
Let us partition each one of these lists into so many sublists
Gk

c as classes. Gk
c contains the rules of Gk whose consequent

is the class c.
Let us also define Rk(x) to be the intermediate output of

the k-th member of the ensemble, which is the fuzzy subset
of the set of class labels computed as follows:

Rk(x)(c) =
∨
{j|Ck

j =c} CF k
j ·Ak

j (x). (1)

Each component FRBCS maps an input value x to so
many degrees of membership as the number of classes in
the problem. The highest of these memberships determines
the classification of the pattern. That is to say, the k-th
FRBCS classifies an object x as being of class FRBCSk(x) =
arg maxc∈{1,...,nc}Rk(x)(c). Observe also that Rk(x)(c) is
the result of applying the fuzzy reasoning mechanism to the
knowledge base defined by the sublist Gk

c .
The simplest linguistic combination of the component

FRBCSs consists of stacking a selection of some of the rules
Rk

j into a single large rule base. Let us define a binary matrix
[bck] ∈ {0, 1}nc×K , and let us agree that, if bck is zero, then
Gk

c is removed from the ensemble and Rk(x)(c) = 0. This
selection is equivalent to the hierarchical FRBCS comprising
nc expressions of the form:

if (member1 says that class is c) or . . . or (memberK says
that class is c) then class is c,

where the asserts “(memberk says that class is c)” have a
degree of certainty bck determined by the rules in the sublist
Gk

c , and those asserts for which bck is zero are omitted. The
fuzzy output of this selected ensemble is

RI(x)(c) =
∨
{(j,k)|Ck

j =c} bck · CF k
j ·Ak

j (x). (2)

We can define more powerful linguistic selections which
extend this basic fuzzy reasoning schema. In this paper we
will use a sparse matrix of weights [wck] ∈ [0, 1]nc×K and
operate as follows:

RII(x)(c) =
∨
{(j,k)|Ck

j =c} wck · CF k
j ·Ak

j (x). (3)

Thus, the selected ensemble can be seen as a hierarchi-
cal knowledge base with nc fuzzy classification rules with
weights in the antecedent part

if (member1(wc1) says that class is c) or . . .
(memberK(wcK) says that class is c) then class is c,

where the asserts “memberk(wck) says that class is c” have
a certainty determined by the rules in the sublist Gk

c , after
multiplying their confidence degrees by the same factor wck:
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0 0.556 0 0.454 0 0

0 0.822 0.064 0 0.114 0

0 1 0 1 1 0

0 0.689 0.042 0 0 0

0 0.744 0 0.236 0.114 0

0 1 1 0 0 0

0 1 1 0 1 0

0 1 0 1 0 0

SBX

two-point 
crossover

SBX

two-point 
crossover

Fig. 1. Coding scheme and crossover operation: an individual is a sparse matrix, which is represented by a list of indexes and a list of values.

if x is Ak
j then Class Ck

j with wCk
j k · CF k

j .

Again, those rules where wCk
j k = 0 are omitted.

In this case, any of these hierarchical rule bases we
have introduced is univocally determined by a matrix [wck].
Therefore, the search of the best selection involves finding
the best matrix [wck], according to two criteria, accuracy and
complexity, and guided by the NSGA-II algorithm that will
be detailed next. Notice that, this search involves a selection
process, because [wck] is a sparse matrix.

B. Main Components of our NSGA-II Approach

NSGA-II [21] is based on a Pareto dominance depth
approach, where the population is divided into several fronts
and the depth of each front shows to which front an indi-
vidual belongs to. A pseudo-dominance rank being assigned
to each individual, which is equal to the front number, is a
metric used for the selection of an individual.

We propose a hierarchical coding scheme where an in-
dividual is composed of binary vector at the first level
corresponding to the binary matrix [bck] and the vector of
real numbers at the second associated with the values of the
sparse matrix [wck] (see Figure 1). At the first level it is
decided whether the fuzzy rules of the given class of the
particular FURIA base classifier are activated or not, while
at the second level the weight is assigned to the given fuzzy
rules. A binary digit and a corresponding real number are
assigned to each gene, i.e. to a subset of rules for a given
class by one of FURIA base classifiers. When the binary
value is equal to 1, it means that the given fuzzy rules of the
corresponding classifier are activated and a real value (6= 0)
is provided, while when 0 is obtained by binary value, then
the given fuzzy rules are discarded and the real value is also
equal to 0.

The initial population is composed of randomly generated
individuals. To introduce a high amount of diversity, binary
tournament is used as selection mechanism. That means
that two individuals are randomly picked from the current
population and the best one is selected. The two winners
are crossed over to obtain a single offspring that directly
substitutes the loser. We have considered the classical two-
point crossover at the first level (binary vector) and the SBX
crossover at the second (real vector). The standard bit-flip (at

the first level) and the uniform (at the second level) mutation
operators are used. Both crossover and mutation operators are
applied with different pre-specified probabilities.

C. The Evaluation Criteria Used for Two-objective NSGA-II

In this subsection we describe the two considered opti-
mization criteria. We will utilize measures of two different
kinds combined into a two-objective fitness function:

• Accuracy. The training error (TE), which is a common
accuracy measure, is used. We compute the error of each
ensemble for a large number of bootstrapped resamples
of the training set, and use a quantile of the distribution
of these errors. This is intended to avoid overfitting
when there are outliers in the training set, and also to
detect the most robust selections, which are expected to
generalize better.

• Complexity. The complexity of the FRBCS-CM is
defined as the number of non-zero values. Specifically,
it is the number of active terms wck different than zero
in the sparse matrix:

Complx = |wCk
j k 6= 0| (4)

IV. EXPERIMENTS AND ANALYSIS OF RESULTS

This section is devoted to validate our new EMO-based
fuzzy linguistic combination method proposal. While the
first subsection introduces the experimental setup considered,
the next ones shows the results obtained in the experiments
developed and their analysis.

A. Experimental setup

To evaluate the performance of the FRBCS-CM with
NSGA-II in the ensembles generated, twenty popular data
sets from the UCI machine learning repository have been
selected (see Table I). In all of them, every attribute is
continuous. As can be seen, the number of features ranges
from a small value (5) to a large one (64), while the number
of examples does so from 208 to 19,020. We divided them
into two groups with Low dimensionality (with < 15attr.)
and with High dimensionality (with ≥ 15attr.) as it can be
seen in Table I.
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TABLE I
DATA SETS CONSIDERED

Data set #examples #attr. #classes
Low dimensional:

abalone 4178 7 28
breast 700 9 2
glass 214 9 7
heart 270 13 2
magic 19020 10 2

pblocks 5474 10 5
phoneme 5404 5 2

pima 768 8 2
wine 178 13 3
yeast 1484 8 10

High dimensional:
ionosphere 352 34 2

letter 20000 16 26
optdigits 5620 64 10
pendigits 10992 16 10

sat 6436 36 6
segment 2310 19 7

sonar 208 60 2
spambase 4602 57 2

texture 5500 40 11
vehicle 846 18 4

waveform 5000 40 3

In order to compare the accuracy of the considered classi-
fiers, we used Dietterich’s 5×2-fold cross-validation (5×2-
cv), which is considered to be superior to paired k-fold cross
validation in classification problems [36]. The Friedman test
and the Iman-Davenport are used for assessing the statistical
significance of the differences between algorithms, while the
Holm test is carried out in case of 1 × n comparison [37],
[38], [39].

The bagging FRBCEs generated are initially comprised by
50 classifiers. The NSGA-II for the FRBCS-CM derivation
works with a population of 100 individuals and runs during
1000 generations. The crossover probability considered is
0.6 and the standard mutation probability is 0.1. A different
run is developed with each of the variants proposed for
each initial FRBCE, thus resulting in 10 different runs per
dataset as a consequence of the 5×2-cv procedure. All the
experiments have been run on an Intel quadri-core i5-2400
3.1 GHz processor with 4 GBytes of memory, under the
Linux operating system.

Let us call P j
i the non-dominated solution set returned by

NSGA-II using the variant of fitness function i in the j-th run
for a specific problem instance; Pi = P 1

i

⋃
P 2

i

⋃
. . .

⋃
P 10

i ,
the union of the solution sets returned by the ten runs
obtained from 5x2-cv of algorithm i, and finally Pi the set of
all non-dominated solutions in the Pi set2 (aggregated Pareto
fronts). As a complement to the analysis of the numerical
results obtained we will provide graphical representations of
some of those aggregated Pareto fronts. When graphically

2Notice that, the pseudo-optimal Pareto front is the fusion of the Pi sets
generated by every variant of the EMO-based FRBCS-CM in all the runs
developed.

represented, these plots offer a valuable visual information,
not measurable, but sometimes more useful than numerical
values.

B. Experiments developed

Fig. 2. Graphical representations of the Pareto front approximations
obtained from the EMO approach for phoneme dataset. Objective 1 stands
for training error and objective 2 for complexity in terms of the number of
non-zero values.

Fig. 3. Graphical representations of the Pareto front approximations
obtained from the EMO approach for waveform dataset. Objective 1 stands
for training error and objective 2 for complexity in terms of the number of
non-zero values.

1) Analysis of the original Pareto front approximations:
First of all, in order to give a flavor of the results obtained,
we show a visual representation of the aggregated Pareto
front approximation for two selected datasets. Figures 2 and 3
represent a visualization of the front obtained for the texture
and waveform datasets.

An important conclusion that can be drawn is that our
approach works properly as it allows the evolutionary mul-
tiobjective method to derive a representative number of
solutions in the Pareto set approximations. Furthermore, the
proposed NSGA-II generates FRBCS-CM designs spreading
widely over the Pareto search space. They reach both edges
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TABLE II
COMPARISON OF THE AVERAGED PERFORMANCE OF THE FOUR SINGLE SOLUTIONS SELECTED FROM THE OBTAINED PARETO SETS

Best train Best complx Best tradeoff
Dataset Car Tra Tst Cmpl Red % Tra Tst Cmpl Red % Tra Tst Cmpl Red %
Low dim.:
abalone 13.5 0.4814 0.7560 621.8 55.6 0.5236 0.7524 513.7 63.3 0.4923 0.7538 546.9 60.9
breast 1.8 0.0000 0.0458 5.6 94.4 0.0026 0.0412 3.8 96.2 0.0026 0.0412 3.8 96.2
glass 4.3 0.0028 0.2860 90.9 74.0 0.0439 0.2822 75.7 78.4 0.0196 0.2776 79.3 77.3
heart 1.7 0.0015 0.1763 6.1 93.9 0.0096 0.1778 4.5 95.5 0.0096 0.1778 4.5 95.5
magic 6.9 0.0841 0.1309 22.8 77.2 0.0891 0.1304 6.1 93.9 0.0856 0.1309 11.1 88.9
pblocks 6.8 0.0057 0.0273 75.7 69.7 0.0086 0.0266 46.3 81.5 0.0067 0.0262 54.5 78.2
phoneme 8.3 0.0531 0.1239 24.9 75.1 0.0603 0.1241 6.6 93.4 0.0551 0.1230 12.0 88.0
pima 5.5 0.0193 0.2422 16.5 83.5 0.0378 0.2435 5.6 94.4 0.0255 0.2432 8.5 91.5
wine 1.0 0.0000 0.0405 13.8 90.8 0.0000 0.0405 13.8 90.8 0.0000 0.0405 13.8 90.8
yeast 9.8 0.1364 0.4019 205.8 58.8 0.1733 0.4014 139.4 72.1 0.1441 0.4009 157.6 68.5
Avg. Low 6.0 0.0784 0.2231 108.4 77.3 0.0949 0.2220 81.6 85.9 0.0841 0.2215 89.2 83.6
High dim.:
ionosphere 1.5 0.0000 0.1396 5.5 94.5 0.0028 0.1396 4.2 95.8 0.0011 0.1401 4.6 95.4
optdigits1 2.7 0.0000 0.0315 133.6 73.3 0.0008 0.0320 127.3 74.5 0.0005 0.0322 129.1 74.2
pendigits 4.0 0.0002 0.0143 151.0 69.8 0.0008 0.0148 130.1 74.0 0.0005 0.0138 135.7 72.9
sat 8.5 0.0028 0.0992 104.6 65.1 0.0083 0.1007 64.6 78.5 0.0040 0.1000 73.7 75.4
segment 3.5 0.0004 0.0303 89.2 74.5 0.0036 0.0328 75.8 78.3 0.0015 0.0304 79.7 77.2
sonar 1.2 0.0000 0.2183 3.4 96.6 0.0019 0.2192 3.2 96.8 0.0019 0.2192 3.2 96.8
spambase 6.1 0.0104 0.0555 21.1 78.9 0.0138 0.0549 5.5 94.5 0.0114 0.0557 9.8 90.2
texture 3.0 0.0001 0.0295 159.6 71.0 0.0013 0.0295 148.9 72.9 0.0006 0.0296 150.0 72.7
vehicle 3.8 0.0002 0.2655 38.7 80.7 0.0104 0.2667 29 85.5 0.0036 0.2603 31.9 84.1
waveform 4.2 0.0001 0.1498 28.1 81.3 0.0026 0.1479 16.5 89.0 0.0008 0.1496 19.9 86.7
Avg. High 3.9 0.0014 0.1033 73.5 78.6 0.0046 0.1038 60.5 84.0 0.0026 0.1031 63.8 82.6
Avg. 4.9 0.0399 0.1632 90.9 77.9 0.0498 0.1629 71.0 85.0 0.0434 0.1623 76.5 83.1

acquiring high performance for the two learning goals: accu-
racy (training error) and complexity (# of non-zero values).

In order to make a stronger conclusion, particular solu-
tions containing FRBCE designs with different accuracy-
complexity tradeoffs are extracted from the Pareto front
approximations and analyzed in detail in the next section.

2) Single Solutions Extracted from the Obtained Pareto
Front Approximations: Our objective is to analyze the final
performance of our proposal by imitating the procedure
expected to be followed by a human designer in order to
select a desired FURIA-based fuzzy CE structure from those
available in the obtained accuracy-complexity non-dominated
fronts.

From each Pareto front approximation, we have selected
three different solutions, the one having the best value in each
of the two objectives that have been optimized, training error
and complexity, as well as the one with the best accuracy-
complexity trade-off value. The trade-off solution is selected
as follows: 1000 random weights w1 ∈ [0, 1] are computed
for each solution and the two learning goals are normalized
to [0, 1]. The average value of the aggregation function of two
learning goals (training error and complexity) LG1 and LG2
is taken as: (w1 ∗LG1 + (1−w1) ∗LG2), and the solution
with the lowest aggregated value is selected. The other more
advanced, however highly computational solution is the one
presented in [40]. For each solution we present the values
of four different measures, training error (Tra), complexity
in terms of non-zero values (Cmpl), test error (Tst), and
complexity reduction (Red %). The average and standard
deviation values for each of the four different solutions in

the 20 problems are collected in Table II, together with the
cardinality of each Pareto set approximation.

In the light of this table, it can be noticed that the three sin-
gle solutions obtain good performance. The solutions based
on the best criterion (Best train and Best complx) obtain low
values in their optimization objective criteria, but they also do
so considering the second conflicting criteria. For instance,
Best train obtains low average training error (0.0399), while
maintaining high complexity reduction (77.9%). The best
tradeoff (tra-cmpl) solution obtains intermediate values on
average for both objectives (training error equal to 0.434
and complexity reduction equal to 83.1%). Considering the
test error, all the three approaches obtain similar results. The
best tradeoff solution obtains slightly better performance.

As our approach involves the joint optimization of two
different conflicting objectives, in our opinion their mixture
is the best accuracy-complexity combination for the selection
of the final solution. Thus, we will use the solutions with the
best trade-off (tra-cmpl) value for the final comparison.

3) Comparison of EMO-based FRBCS-CM with FRBCS-
CM and full ensemble with MV: In this subsection we present
a final benchmarking of the performance of FRBCS-CM with
NSGA-II. We compare it with the full original ensemble
using MV and with FRBCS-CM from [14]. This approach
is based on a GA, which uses a particular coding scheme,
storing only non-zero values. Thus, the complexity of the
final FRBCE is defined a priori. In order to make a fair
comparison, we define its complexity to be similar to the
one obtained by our proposal. That is to say, we will use 15
% of non-zero values (equivalent to an 85 % of reduction).
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Table III reports the test error of the FRBCEs on the
20 datasets. The proposed FRBCS-CM based on NSGA-II
outperforms the other approaches in 14 out of 20 cases (9
out of 10 for high dimensional datasets), obtaining the lowest
average test error.

The average rankings of each FRBCE obtained through the
Friedman test are shown in Table IV. The Iman-Davenport
test indicates significant differences between the algorithms
as the p-value is equal to 8.986e-6.

TABLE III
COMPARISON OF FRBCS-CM WITH NSGA-II WITH THE CLASSICAL

METHODS

MV FRBCS-CM + NSGA-II FRBCS-CM 15%
Dataset Test err. Test err. Test err.
Low dim.:
abalone 0.7458 0.7538 0.7559
breast 0.0409 0.0412 0.0446
glass 0.2822 0.2776 0.3103
heart 0.1822 0.1778 0.1815
magic 0.1346 0.1309 0.1333
pblocks 0.0288 0.0262 0.0278
phoneme 0.1332 0.1230 0.1270
pima 0.2385 0.2432 0.2503
wine 0.0393 0.0405 0.0416
yeast 0.4008 0.4009 0.4128
Avg. Low 0.2227 0.2215 0.2285
High dim.:
ionosphere 0.1459 0.1401 0.1475
optdigits1 0.0329 0.0322 0.0374
pendigits 0.0156 0.0138 0.0161
sat 0.1021 0.1000 0.1045
segment 0.0336 0.0304 0.0316
sonar 0.2269 0.2192 0.2202
spambase 0.0587 0.0557 0.0560
texture 0.0307 0.0296 0.0329
vehicle 0.2726 0.2603 0.2747
waveform 0.1492 0.1496 0.1553
Avg. High 0.1068 0.1031 0.1076
Avg. 0.1647 0.1623 0.1681

TABLE IV
AVERAGE RANKINGS OF THE FRIEDMAN’S TEST

Algorithm Ranking
FRBCS-CM + NSGA-II 1.300

MV 2.050
FRBCS-CM 15% 2.650

TABLE V
HOLM TEST FOR THE COMPARISON OF FRBCS-CM + NSGA-II WITH

THE OTHER APPROACHES.

Comparison p-value
FRBCS-CM + NSGA-II vs MV +(0.018)
FRBCS-CM + NSGA-II vs FRBCS-CM 15% +(3.925e-005)

The adjusted p-values of the Holm test comparing FRBCS-
CM + NSGA-II (the control algorithm) with the rest of
the FRBCE design approaches are presented in Table V
(the results showing a significant difference are presented

in bold font). It reveals significant differences in favor of
our approach when comparing with all the other FRBCEs.

Concluding, the proposed approach, FRBCS-CM with
NSGA-II generates very good results in terms of the test
accuracy of the final FRBCEs, which is the lowest than
the full ensemble with MV showing on average complexity
6 times higher and FRBCS-CM 15% (showing a similar
complexity level) previously proposed. That is confirmed
by the statistical tests performed, which indicated significant
differences.

V. CONCLUSIONS AND FUTURE WORKS

We have incorporated a EMO algorithm based on NSGA-
II in order to automatically derive a CE fuzzy combination
method based on the use of a FRBCS. This hybridization
between the fuzzy linguistic combination method and the
NSGA-II algorithm introduced some interesting characteris-
tics. It eliminates a tedious problem of selecting the com-
plexity of the system a priori. Additionally, it offers several
FRBCE designs with different accuracy-complexity trade-
offs in a single run. We carried out exhaustive experiments
using 20 high dimensional datasets from the UCI repository.
It turned out that our proposal provided very promising
results.

Although these experiments clearly showed the good
outcomes of this proposal, our next steps will concentrate
on testing different alternative operator mechanisms of the
NSGA-II algorithm. Furthermore, we would also like to
evaluate its behavior with other classical CE approaches
considering the standard machine learning classifiers.
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