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Abstract—
Tracking multiple targets with non-linear dynamics is a chal-

lenging problem. One of the popular solutions, Sequential Monte
Carlo-Probability Hypothesis Density (SMC-PHD) filter, deploys
a Random Set (RS) theoretic formulation along with the Sequen-
tial Monte Carlo approximation, which is a variant of Bayes
filtering. The performance of Bayesian filtering-based methods
can be enhanced by using extra information incorporated as
specific constraints into the filtering process. Following the same
principle, this paper proposes a constrained variant of the SMC-
PHD filter, in which the inherently vague human-generated data
are transformed into a set of constraints using a fuzzy logic
approach. These constraints are enforced to the filtering process
by applying coefficients to the particles’ weights. The Soft Data
(SD) reports on target agility level; wherein, the agility refers to
the case in which the observed dynamics of the targets deviates
from its given probabilistic characterization. Consequently, the
proposed constrained filtering approach enables dealing with
multitarget tracking scenarios in presence of target agility, as
demonstrated by the experimental results presented in this paper.

I. INTRODUCTION

In the literature, a large number of methods has been pro-
posed to tackle the problem of tracking multiple targets [10].
The Probability Hypothesis Density (PHD) filter [5] is one
of the most popular multiple target tracking approaches. The
sampling-based moment approximation methods, in particular
the Sequential Monte Carlo (SMC) approach, have also been
widely deployed to extend PHD filter to deal with non-linear
tracking scenarios [7]. On the other hand , the problem of
tracking targets whose dynamics include multiple-switching
regimes, also known as maneuvering target tracking, has been
studied extensively as reflected in the review paper series
by Li & Jilkov [22], [23], [24]. The uncertainty regarding
target mode and its transitions are typically characterized in
a Markovian manner, using the so-called transition probability
matrix (TPM), denoted by π [25]. The Interacting Multiple
Model (IMM) is one of the most commonly used approaches
to tackle this problem, which is deployed to develop the IMM
SMC-PHD filter proposed in [1].

In this paper, we consider the problem in which dynamics
of the maneuvering multiple-targets might deviate from the
probabilistic characterization represented by TPM. We refer
to this problem as agile multitarget tracking, and consider
agility level to be directly associated with the likelihood of
unpredictable target maneuvers. Agile multiple target tracking

is an important and challenging problem; which, to the best
of our knowledge, has been rarely addressed in the literature.
This lack of interest is partly due to the difficulty of obtaining
data regarding the agility level of targets using the conventional
sensory mechanisms.

On the other hand, a relatively recent trend in the data fusion
community aims at exploiting data provided by humans [26],
[27], [9]. The conventional data provided by calibrated sensors,
also referred to as hard data, is typically well characterized.
In comparison, human-generated data, known as soft data
[20] is typically unstructured, vague, and subjective. However,
humans can provide high level information regarding targets
that could be very difficult or impossible to obtain using hard
conventional sensors. A tremendous amount of research has
been studied on data fusion using conventional sensors. In
contrast, limited work has been done to enable incorporating
soft data into the fusion process. Humans have advanced
cognitive abilities, which allow them to provide valuable
information regarding intricate target behaviors, including the
agility. Accordingly, the proposed approach in this paper
deploys soft human-generated data regarding targets’ agility
level to improve the performance of the IMM SMC-PHD filter
by incorporating soft data as constraints.

This paper is organized as follows. Section II summarizes
the background and an overview of the related literature
work. The proposed soft-data-constrained IMM SMC-PHD
filter is described in section III. In Section IV, a multitarget
tracking example is presented with simulation results. Finally,
conclusions are given in Section V.

II. BACKGROUND

A. Related Work

Early work to exploit external knowledge as constraints in
order to improve tracking performance can be traced back
to the early 1990s [12]. The constrained Bayesian filtering
literature contains a wide spectrum of techniques, including
pseudo-measurement [13], clipping [14], projection [15], and
optimization-based methodologies [16]. The enforced con-
straints themselves are also diverse: linear, non-linear, soft,
hard, equality, and inequality [17]. Variants of the constrained
particle filtering methods have also been proposed in the
literature, assuming a variety of domain-specific constraints
[18], [19]. As discussed by Simon [11], for the case of linear
systems with linear constraints, all of the existing approaches
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lead to the same optimal state estimate; whereas, for non-
linear cases, the number of state estimation techniques can
be overwhelming. This is because the constrained non-linear
filtering problem can be viewed from many vantage points.

In the literature, limited work has studied the fusion of
data produced by human and non-human sensors. Hall et
al. [20] provide a brief review of ongoing work on dynamic
fusion of hard/soft data, identifying its motivation and ad-
vantages, challenges, and requirements. A recent preliminary
research in this area is the work on generating a dataset for
hard/soft data fusion intended to serve as a foundation and a
verification/validation resource for future research [32]. Very
recently, a Dempster-Shafer theoretic framework for soft/hard
data fusion was proposed that relies on a novel conditional
approach for updating, as well as a new model to convert
propositional logic statements from text into forms usable by
Dempster-Shafer theory [31]. Another trend of work along
this area is focused on the so-called human centered data
fusion paradigm and puts emphasis on the human role in
data fusion process [30], [29]. This new paradigm considers
humans as active participants in the data fusion process and not
merely as soft sensors but also as hybrid computers and ad-hoc
teams (hive mind). It relies on emerging technologies such as
virtual worlds and social network software to support humans
in their new fusion roles. In spite of these accomplishments,
research on hard/soft data fusion, as well as human-centered
fusion is still in its fledging stage and should provide rich
opportunities for further theoretical advancement and practical
demonstrations in the future [28].

B. IMM SMC-PHD
The Probability Hypothesis Density (PHD) filter proposed

by Mahler [5] is a well-known multitarget tracking approach.
It relies on propagation of a first-order statistical moment of
the multitarget posterior derived using the random set theory.
The PHD filter can be implemented via the Gaussian Mixtures
(GM) [6] or the Sequential Monte Carlo techniques [7]. SMC
approaches have the advantage of computational tractability
[3] and provable convergence properties [7], [4]. In addition,
there is no need for the assumptions to be made on the
form of the underlying probability density; therefore, they
are applicable under the most general circumstances. The
SMC approximation of the IMM PHD filter is applicable
to track multiple maneuvering targets with nonlinear, non-
Gaussian dynamics. In particular, the SMC-PHD filter [21] has
been extended using the interacting multiple-model principle
(IMM SMC-PHD) to enable tracking of multiple maneuvering
targets[2].

Algorithm 1 shows the steps of the IMM SMC-PHD filter.
As shown in the first step of the Algorithm 1, there is an
initialization of an augmented particle set [{xnt , wnt }

N
n=1]; in

which, each particle consists of a state xn, weight wn and
a mode rn, and N is the total number of particles. After the
particles’ mode is predicted as shown in step 2.1; it is followed
by a mode-dependant state prediction of the targets. For the
target with state xt−1 at time step t− 1, the probability that it
will survive at time t is given by et|t−1(xt−1). The prediction

step is as defined in step 2.2, where the Density Dt|t−1(.) is
similar to probability density except that it does not integrate to
unity, δ(.) is the Dirac Delta function, and wt−1 is the weight
of the nth particle at time t− 1. The function ft|t−1(.) in this
equation characterizes the Markov target transition density.

Algorithm 1: IMM SMC-PHD

[{xnt }Nn=1] =IMM SMC-PHD [{xnt−1}Nn=1, zt]

Step 1: Initialization: {xnt , rnt , wnt }Nn=1

Step 2: Prediction

Step 2.1: Mode prediction

p(rt|z1:t−1)

=
∑
m,m′∈N

∑NPt
n=1 hmm′(x

n
t−1)w

n
t−1δ(m− rnt−1)

Step 2.2: Mode-dependant state prediction

Dt|t−1(xt, rt|z1:t−1)

=
∑NPt
n=1 w

n
t|t−1δ(xt − xnt|t−1, rt − rnt|t−1)

wnt|t−1 = et|t−1(x
n
t|t−1)ft|t−1(x

n
t|t−1|xnt−1, r

n
t|t−1)

Step 3: Correction (Updating)

wnt = (1− PD(xnt|t−1)) +
∑NZt
i=1

PD(xnt|t−1)ft|t(z
i
t|x

n
t|t−1,r

n
t|t−1)

λtct(z
i
t)+ψt(z

i
t)

with the likelihood function,

ψt(z
i
t) =

∑NPt
n=1 PD(x

n
t|t−1)ft|t(z

i
t|xnt|t−1, r

n
t|t−1)w

n
t|t−1

Step 4: Evaluate number of targets

T̂t =
∑NPt
n=1 w

n
t

Step 5: Grouping & clustering estimations

Step 6: Go to step 2

The predicted PHD can be corrected with the availability of
measurements z1:t at time step t to get the updated PHD. We
assume that the number of false alarms is Poisson distributed
with the average rate of λt, and that the probability density
of the spatial distribution of false alarms is ct(zt). Let the
detection probability of a target with state xt at time step t be
PD(xt), updating or correction step based on measurement
data is defined in step 3, where NZ

t indicates the number
of measurements at time t. The single-target/single-sensor
measurement likelihood function is defined by ft|t(.) in this
equation.

In contrast to the Particle filter, in PHD filter the summation
of the particles’ weights is not equal to one, rather it is equal
to the total number of targets at that moment. In other words,
the expected number of targets at time step t is the summation
of the weights of all the particles at that moment. In step 4, the
total number of targets is estimated, where T̂t and Np

t indicate
the number of estimated targets and the number of particles at
time t, respectively. In the next step, particles are clustered to
provide final targets’ estimations.

2255



Fig. 1: The syntax considered for soft data reports

III. SD-CONSTRAINED IMM PHD FILTER

This section presents the proposed soft-data-constrained
IMM SMC-PHD filter used to tackle the problem of agile
multitarget tacking. The filter uses a Fuzzy logic approach [8],
[34] to model and incorporate the soft data.

A. Soft Data Modeling Using Fuzzy Logic
Fuzzy inference systems can be used to capture the un-

certainty arising from the soft data vagueness. One could
argue in favor of probabilistic approaches as an alternative
to fuzzy inference systems for soft data processing. However,
the probabilistic measures are most appropriate when dealing
with ill-defined (random) variables hitting well-defined sets;
whereas, fuzzy measures enable calculating the membership
of well-known variables in ill-defined (vague) sets [28]. There
has been rapid growth of research in fuzzy control and fuzzy
modeling since Zade [34] first gave a mathematical foundation
of fuzzy systems. Mamdani’s fuzzy inference method [33], the
most commonly used fuzzy methodology, is used in this paper,
and the defuzzification method used is Centroid.

Soft data reports are supplied by a human observer and are
assumed to comply with a specific syntax and semantics, both
predefined by an ontology. Please note that, an appropriate
Natural Language Processing (NLP) model can be used to
format raw soft data according to the specified syntax. The
syntax for the soft data report is shown in Figure 1, in which,
each report is a natural language expression that reports on
the agility level of the target along with the certainty level
presumed by the reporter. In other words, each report is an
expression comprised of a target-identification term, target ID,
a qualifier term to express the level of certainty presented by
the report, and a term to represent the perceived agility level
of the target.

The semantics used to interpret given soft data can be
explained as follows, with three different categories for
the Reported Agility Level (RAL) and three different cat-
egories for the Reported Certainty Level (RCL). For RAL,
the report can be extremely, highly, or marginally/not, and
for RCL, it can be considered as certainly, almost, or
perhaps; i.e., RCL∈{“certainly”, “almost”, “perhaps”} and
RAL∈{“extremely”, “highly”, “marginally/not”}. Therefore, a
set of FISs are defined based on the soft data report; i.e.,
the rules are defined based on the reported RAL, and fuzzy
membership functions are defined using RCL. As a result,
nine different FISs that have different rules and different
membership functions are modeled (step 1 in Algorithm 2).

Fig. 2: OSPA distance calculation procedure including predict-
ing clusters using both IMM SMC-PHD & TPM followed by
computing the distance between two predicted densities

For a given soft data, one of the FISs is selected based on the
corresponding RCL and RAL inputs (step2 in Algorithm 2).

In the mode prediction step, early in SDC IMM SMC-PHD
method, the same number of particles (NM ) is transferred to
each mode, where N is the total number of particles and M
is the total number of modes (step 4.1 in Algorithm 2). For
particles with their current mode defined by m, the next mode
(m′) is predicted using the TPM. That is, respective value is
extracted from the transition matrix, πmm′ . The value of πmm′
is also assigned to a variable called the Stochastic Agility
Discount (SAD). For each particle, the next mode is also
predicted using the IMM SMC-PHD filter. Then the prediction
step is performed using the predicted mode for each case,
and the difference of the resulting clouds is evaluated using
the Optimal Sub-Pattern Assignment (OSPA) [35], in order to
compare the distance of these two density clouds (Figure 2).
The OSPA is defined as follows:

d
(c)

p (X,Y ) = (
1

β
(minπ∈

∏
β

α∑
i=1

d(c)(xi, yπ(i)))
p+cp(β−α))

1
p

(1)
where X = {x1, ..., xα} and Y = {y1, ...yβ} are finite subsets,
α and β ∈ No = {0, 1, 2, ...}, 1 ≤ p < ∞ and c > 0; in our
simulations, p = 1 and c = 50. The output of this step is called
the Expected Cluster Weight (ECW), and shows the estimated
target’s agility with respect to the maneuvering characteristics
defined by the TPM (step 4.2 in Algorithm 2).

After choosing the FIS, the value ECW , which represents
the divergency of the target behaviour with respect to the TPM,
along with the SAD are the inputs to the FIS. The output of
the FIS is the set of constraints [{Ct}N1=n] used to reweigth
the particles (step 5 in Algorithm 2), in order to incorporate
the external knowledge in the estimation process (step 6 in
Algorithm 2).

Figure 3 shows the fuzzy inference systems for two cases in
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(a) (b)

Figure 3. Exemplary fuzzy inference systems for soft data report as: (a) “target is certainly extremely agile” and (b) “target is
perhaps marginally/not agile”

(a) (b)

Figure 4. The effect of soft data report’s certainty level on fuzzy inference system, with soft data report as: (a) “target is
certainly extremely agile” and (b) “target is perhaps extremely agile”

(a) (b)

Figure 5. The effect of soft data report’s certainty level on fuzzy inference system, with soft data report as: (a) “target is
certainly marginally agile” and (b) “target is perhaps marginally agile”
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TABLE I: Fuzzy rules for the case of: RCL=“certainly”
&RAL=“extremely”

if (ECW is high) & (SAD is high) then (Cis med)

if (ECW is high) & (SAD is med) then (C is low)

if (ECW is high) & (SAD is low) then (C is vlow)

if (ECW is low) & (SAD is high) then (C is med)

if (ECW is low) & (SAD is med) then (C is high)

if (ECW is low) & (SAD is low) then (C is vhigh)

TABLE II: Fuzzy rules for the case of: RCL=“perhaps”
&RAL=“marginally/not”

if (ECW is high) & (SAD is high) then (C is vhigh)

if (ECW is high) & (SAD is med) then (C is high)

if (ECW is high) & (SAD is low) then (C is med)

if (ECW is low) & (SAD is high) then (C is vlow)

if (ECW is low) & (SAD is med) then (C is low)

if (ECW is low) & (SAD is low) then (C is med)

which the soft data is reported as “target is certainly extremely
agile” (Figure 3(a)) and “target is perhaps marginally/not agile”
(Figure 3(b)). The membership functions of the output are
defined based on the value reported for the RCL. As shown in
Figure 3(a), the membership functions are narrower and have
less overlap to reflect a higher certainty level of the report;
whereas, in the case of a less certain report, they are wider
and have more overlap.

The rules of the FIS are adapted based on the value reported
for the RAL. Table I (which corresponds to Figure 4(a)) and
Table II (which corresponds to Figure 5(b)) demonstrate a set
of rules defined for two different RALs. Table I shows the rules
defined when the RAL is “extremely”, and Table II depicts a
case in which the reported RAL is “marginally/not”. In these
tables, the terms “vlow”, “med” and “vhigh” represent very
low, medium and very high, respectively. Please note that,
Figures 3(a) and 3(b) correspond to the fuzzy rules presented
in Table I and II, respectively, with the inputs (ECW is low)
and (SAD is low). The discussion presented in Section III.B
elaborates on how the fuzzy rules for each FIS are adapted to
achieve the desired constrained filtering behaviour.

B. Incorporating Soft Data as Dynamic Constraints
As discussed in the previous section, the FIS is modeled

based on the inputs RAL and RCL. After that, divergency
of the target behaviour with respect to the TPM is evaluated
(ECW ) and is the first input to the FIS. For each particle,
based on its previous mode (m) and its predicted mode (m′),
the respective value of TPM is selected (SAD) and is the other
input to the FIS. Then, constraints are calculated based on the
fuzzy rules and are incorporated into the particles’ weights.

Figures 4 and 5 show the effect of the inputs on the fuzzy
inference output for two different fuzzy models selected based
on the soft data report. These two figures are deployed to show

how variation in the soft data report affects the constraints
produced by FIS. To make the figures clearer and to briefly
explain how the fuzzy rules are modeled to infer the constraints
based on the report, some of the cases are explained as follows:

Algorithm 2: SDC IMM SMC-PHD

[{xnt , Cnt }Nn=1] =SDC IMM SMC-PHD [{xt−1}Nn=1, zt, SD]

Step 1: Define a set of FIS

Step 1.1: Define rules based on RAL

Step 1.2: Define membership functions based on RCL

Step 2: Interpret SD: {RCL & RAL}

Selecet FIS based on given RCL & RAL

Step 3: Particle Initialization

Step 4: Mode Prediction

Step 4.1: Cluster Particle cloud into M particle clouds

PCm : m = 1, ...M

Step 4.2: For PCm : 1, ...,M (Figure 2)

Predict next mode (m’) using TPM

Predict m’ using generic IMM PHD

ECW α Distance of the two clouds using OSPA

SAD α The respective element of TPM based on m and m’

Step 5: Compute constraints:

For n=1:N

ECW α OSPA & SADn
t α πmm′

Cnt = FIS(SADn
t , ECWt)

Step 6: Apply constraints to particles’ weights

For n=1:N

wnt = wnt × Cnt
Step 7: Resampling

Step 8: Mode-dependant state prediction

Step 9: Correction (Updating)

Step 10: Evaluating number of targets

Step 11: Grouping & clustering the estimates

Step 12: Go to Step 4

Let us consider the case in which the target is agile; there-
fore, the ECW is high, since the distance between the density
predicted by IMM SMC-PHD filter and TPM is large. If the
report is “target is certainly extremely agile”, the FIS shown
in Figure 4.a is selected for the inference process based on the
RAL=“extremely” and RCL=“certainly”. If the SAD is low
for the nth particle, then the constraint coefficient applied to
the weight of the respective particle should be very high, Table
I and Figure 3(a) depict the same situation, and vice versa.
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That is, for particles with a high SAD value, indicating that
the particle is behaving based on the behaviour characterized
by TPM, the constraint should be low to decrease the weight of
the respective particle, since in reality the target is agile and its
trajectory is not based on the behaviour characterized by TPM.
Based on the similarity of these two estimations calculated
by TPM and IMM SMC-PHD, and the agility reported, the
constraints are evaluated and are then applied to the respective
particles. If the report indicates the existence of agility and the
target is agile, i.e. it does not behave in a similar fashion to the
TPM, the particles in dominant mode should get lower weights
and the rest of the particles should be assigned higher weights
in order to survive and to re-generate more. After incorporating
the constraints into particles’ weights, a resampling step is
performed. If the target’s agility level, which is input by the
user, is high and the target is not agile, then the particles that
follow the behavior defined by TPM should get low weights to
gradually disappear. On the other hand, the rest of the particles
should get higher weights in order to survive.

The soft-data-inspired dynamic constraints affect the parti-
cles’ weights before the resampling step; therefore, the weight-
ing of the particles is as follows:

wnt = wnt−1p(zt|xt, r = m′)Cnt (2)

Cnt = FIS(SADn
t , ECWt) n = 1, ..., N (3)

in which the constraints (Cnt ) are calculated in step 5 of
Algorithm 2. Algorithm 2 has many steps similar to those in
Algorithm 1, and it also adds a number of additional steps
to accomplish the mode prediction. The same concept of Soft
data modeling and incorporating the constraints to the filtering
process is presented and detailed in our previous work [9];
in which, a soft-data-constrained multi-model Particle filtering
approach was proposed.

IV. SIMULATION RESULTS

A two dimensional tracking example is used to compare
the impact of the soft data in the case of agility in target
dynamics. There are five targets that can appear and disappear
successively, with initial positions of (3×102, 4×102)m, (4×
102, 3 × 102)m, (6 × 102, 8 × 102)m, (6 × 102, 10 × 102)m,
and (7 × 102, 5 × 102)m. Figures 6 and 7 show target
trajectories with no agility and high agility, respectively.
There are three modes: a constant velocity model and two
coordinated turn models. The Markovian transition probability
matrix indicating the transition probability between different
modes is shown below:

[hmm′ ] =


0.1 0.45 0.45

0.7 0.1 0.2

0.7 0.2 0.1

 (4)

The TPM represents the state transition probability from
the mth mode to the m′th mode. Constant velocity and
coordinated turn models are described as follows, respectively:

xt =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 + xt−1 + σt (5)

xt =


1 sin(Ωt−1T

Ωt−1
) 0 − 1−cos(Ωt−1T )

Ωt−1

0 cos(Ωt−1T ) 0 1− sin(Ωt−1T )

0 1−cos(Ωt−1T )
Ωt−1

1 sin(Ωt−1T )
Ωt−1

0 sin(Ωt−1T ) 0 cos(Ωt−1T )

 + xt−1 + σt

(6)
where Ωt is the turning rate at time step t, and T , which is
the sample time, is equal to one. σ is an i.i.d sequence of
zero-mean Gaussian vectors with a covariance Q.

Q =



T 4

4
T 2

2 0 0

T 2

2 T 0 0

0 0 T 4

4
T 2

2

0 0 T 2

2 T

 q (7)

The level of the power spectral density of the corresponding
continuous process noise (q) is equal to 1 × 10−3. Perfor-
mance evaluation of multitarget tracking algorithms is of great
practical importance in the design and comparison of tracking
systems. In order to evaluate the performance of the proposed
method, a consistent metric, recently proposed, called OSPA,
is used as defined in the Section III.A.

Figure 6. Targets trajectory without agility
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Figure 7. Targets trajectory with agility

A. Scenario I: Impact of Incorporating Soft Data

In this scenario, targets are highly agile, i.e, targets are
expected to make turns based on TMP; however, they travel
only in a straight line during the simulation. Figure 8 demon-
strates a comparison of the OSPA for the case with no soft
data provided, i.e., the generic IMM SMC-PHD filter, and the
proposed SDC IMM SMC-PHD filter with the soft-data report
“target is certainly extremely agile”.

Figure 8. Soft-data effect in case of agility

The OSPA distances for both filters are shown in Figure
8. As shown in this figure, the proposed method, SDC IMM
SMC-PHD filter, has less OSPA distance during the simulation
time, which shows more accurate tracking performance. It
is clear that when the targets do not switch their modes,
there are no obvious differences between them; however,
when maneuvers occur, the OSPA distances increase, i.e. at
simulation times t = 25 and t = 40. This result occurs because
when the conditional model probabilities and switching rates
have small values, there may be very few particles for one or
more models in the IMMSMC-PHD filter, especially if there
is agility in the target dynamics. Then the empirical density
spanned by all particles with such a mode does not perform an
accurate approximation of the corresponding exact conditional
density. Such problems have been solved by the proposed
algorithm, since the exact conditional density is approximated
by incorporating the external knowledge.

B. Scenario II: Impact of Soft Data Certainty Level
In this set of experiments, the effect of the soft data’s

certainty level of the soft data is examined and compared
(Figure 9), for a case in which the target is agile and the
reports are “target is certainly highly agile” and “target is
perhaps highly agile”. In both cases, the reported soft data
provides a correct information regarding the targets’ agility
level; however, the certainty levels of the reports are different.
The effect of the constraints on the particles’ weights and
therefore the filters’ performance can be observed in this figure.

Figure 9. Impact of the soft data report’s certainty level

As shown, when correct soft data is reported regarding the
agility level of the target, the report with the higher certainty
provides better approximation, i.e., a lower OSPA distances
are observed. When the certainty level decreases, since the
constraints are not that effective anymore, they have less effect
on the particles’ weights and therefore the approximation is not
as accurate.

C. Impact of Number of Particles
Different number of particles are used in order to evaluate

the resulting effects. As shown in Table III, in SMC-based
methods, the number of particles used is very important. The
accuracy of the approximation is directly proportional to the
size of the particle set (N ); increasing the total number of
particles increases the accuracy of the approximation, but also
increases the computational cost. In other words, choosing the
number of particles is a trade-off between the accuracy and
the computational resources.

TABLE III: Impact of number of particles

Number of
Particles

Average simulation
time(s)

Average OSPA
distance(m)

100 10 40.01

500 70 30.84

1000 180 23.59

V. CONCLUSION

In this paper, we considered maneuvering multitarget track-
ing situations, wherein target maneuvers may deviate from
their stochastic characterization represented by the jump
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Markovian matrix. We refer to this phenomenon as agile
multitarget tracking and propose a constrained variant of the
IMM SMC-PHD filter that can leverage soft human-generated
data regarding target agility using a fuzzy logic approach. The
constraints are enforced by applying coefficients to particles’
weights. These coefficients are produced by a fuzzy inference
system, which is developed to enable inference using vague
human-generated soft data. Three categories of experiments
were performed in order to evaluate the effect of incorporating
the soft data, the impact of the certainty level of the reported
soft data, and the obtained tracking performance with respect
to the size of the deployed particle set. The results of the
first two categories of experiments demonstrate the ability of
the proposed fuzzy inference system to successfully capture
the vagueness of soft human-generated data regarding target
agility. The last category of experiments shows the anticipated
trade-off between the computational complexity and the overall
performance of the proposed approach with respect to the
number of particles.
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