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Abstract— This paper presents a novel comprehensive Fuzzy
extension to Multi-Entity Bayesian Networks (MEBN) that is
deemed a well-studied and theoretically rich language that
expressively handles semantics analysis, and effectively model
uncertainty management. However, MEBN lack the capability
of modeling the inherent conceptual and structural ambiguity
that is delivered with the knowledge gained through human
language. In this paper, Fuzzy MEBN that is a new version of
MEBN which is based on First-order Fuzzy Logic, and Fuzzy
Bayesian Networks is introduced. Furthermore, its applicability
is evaluated by implementing an application related to Vehicular
Ad-hoc Networks area. The results demonstrate that Fuzzy
MEBN is capable of dealing with ambiguous semantical and
uncertain causal relationships between the knowledge entities
very efficiently.

I. INTRODUCTION

S ITUATION awareness is undoubtedly the main result of
data and information fusion that is followed by knowl-

edge insight extraction. This is made more achievable nowa-
days as connectivity and mobility have been improved, and
further, resulted in the availability of data and information
surrounding us. However, although it is now easier to access
and make use of them, vast amounts of data and information
that come from various sources with different levels of
abstraction have become challenging to store, process, and
handle. Subsequently, this increases the need for attaining
reasonable automated knowledge discovery methodologies,
and makes their role more critical than ever. Nevertheless,
studies for acquiring knowledge rather than dealing with
unstructured information has been considered and argued by
researchers as early as the 1980s (see [17]).

First of all, it is necessary to note that in this paper,
data is deemed any low-level fact that specifies the features
of a certain entity, whereas information encloses the facts
about an already recognized entity and/or its relationships
with other entities. Moreover, Low-level Data Fusion (LLDF)
is defined as the fusion of low-level data produced by
physical sensors, and recognition of context-related entities
in a specific environment to form a unified picture [12].
High-level Information Fusion (HLIF) is the stepping stone
that combines theories, algorithms, and tools to explore
the knowledge that lies within the information generated
from multiple sources and exists among the relationships of
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various entities to draw a generic awareness of the situation
for the purpose of improving the accuracy and robustness of
the final decision and action. [7]

LLDF is deemed a well-studied discipline, as it has been
under thorough investigation for many years [12]. In contrast,
the HLIF research has only started to attract much attention
in the information fusion community as reflected by the
review articles published in that community within the last
few years [3], [4], [20]. Nonetheless, HLIF faces major issues
making its usage impractical . As a matter of fact, Blasch et
al. [4] outline the top ten trends of research in HLIF among
which the issues of introducing reference models, managing
uncertainty and analyzing semantics/ontologies are deemed
the most important areas of study that have not received
enough attention in the past.

Multi-Entity Bayesian Networks, introduced by Laskey
in [16] is a well-defined and theoretically rich language for
HLIF that tackles uncertainty management and semantics
analysis simultaneously. MEBN is a combination of First-
order Logic (FOL) and Bayesian Networks (BN), and is
considered as a powerful tool for modeling knowledge for
situation assessment. However, despite being a strong bridge
connecting structured knowledge (that is often expressed by
domain experts) to computational models, MEBN lacks the
capability of modeling some imperfect aspects of data such
as ambiguity1 that is an inherent characteristic of human
language, and the observations gained from the environment.
For instance, when referring to an entity in an environment,
various sources may use different identifiers that although
all can be semantically positioned in one category, they may
not be completely the same as identifiers used for defining
the semantic relationships. This is basically referred to as
semantic similarity in the literature [1].

In this paper, we propose a novel Fuzzy extension to Multi
Entity Bayesian Networks that completes our previously
introduced Fuzzy extension in [8] by adding fuzzy capability
in representing semantics relations. Accordingly, we first
redefine the semantics specifications of conventional MEBN
by incorporating notions of First-order Fuzzy Logic that is
mainly inspired by works of [19]. As a result, contextual
constraints of MEBN are generalized in a way to represent
the ambiguity that is usually delivered with the imperfect se-
mantic information. Furthermore, a new way of representing

1The terms “ambiguity” and ”vagueness” are used interchangeably
throughout this paper.
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Fuzzy Bayesian Networks (FBN) is also presented in this
paper, and the well-known Belief Propagation inference al-
gorithm in regular BN is updated to include fuzzy states with
a certain likelihood. Finally, to demonstrate the applicability
of Fuzzy MEBN, a road safety task in the area of Vehicular
Ad-hoc Networks (VANET) is realized, and the results are
compared to our previous ones.

The rest of the paper is organized as follows: Section 2
reviews some recent related works and positions our contri-
bution. In section 3 Fuzzy MEBN is introduced, and section 4
demonstrates one of its applications in VANET area. Section
5 highlights the experimental results, and conclusions are
presented in section 6.

II. RELATED WORKS

Major topics of current research in HLIF are presented by
Blasch et al. in [4]. In their survey paper, the authors extract
the top ten trends of HLIF from the conference papers and
panel discussions published within years 2000 to 2011, and
outline uncertainty management, and semantics and ontology
representation as the most important ones.

There are a wide range of discussions in the literature
about general and abstract models of HLIF. For instance,
D.A. Lambert in [15] introduces a comprehensive schema
with seven building blocks for designing an HLIF system.
In his proposed model, the blocks model a wide range of
fundamental concepts in HLIF starting from lower-level data
fusion methodologies to situation and impact assessment,
with added machine-readability capability, and modeled hu-
man mental status. However, despite being a well-designed
model, no implementation is provided for it.

A comprehensive study on information integration using
ontologies is conducted by Wache et al. in [22]. Accordingly,
the authors introduce structural and semantic heterogeneity
groups for heterogeneous sources of information. Neverthe-
less, some relative problems, such as confounding scaling
and naming conflicts rise when semantic heterogeneity is
taken into account. Besides, lack of common vocabulary
causes some difficulties in comparing ontologies that is re-
sulted to the introduction of hybrid methods that incorporate
a common vocabulary on top of the other ontologies.

Integration of semantic information and annotating sensors
based on their semantic structure is done by Heintz and
Dragisic in [9]. The authors use semantic web technologies
and Web Ontology Language (OWL) [21] to model an
ontology, define its vocabulary, and to determine the semantic
relationships between sources and destinations (i.e., sensors
and services) of data.

The fundamentals of HLIF methods for handling uncer-
tainty is outlined by Karlsson in [10]. In his technical report,
Karlsson categorizes the methods dealing with uncertainty,
so-called Uncertainty Management Methods (UMMs), into
three groups of Bayesian, Dempster-Shafer, and Imprecise
probability approaches. Moreover, Costa et al. in [5] propose
the Uncertainty Representation and Reasoning Evaluation
Framework (URREF) to improve the system-level metrics
such as timeliness, accuracy, and confidence. In other words,

their main goal is to study the effect of uncertainty on IF
systems. Therefore, they present an abstract model in which
different uncertainty handling tools such as probabilistic
methods, Dempster-Shafer theory, and Fuzzy Sets, can be
used in a plug-and-play fashion.

Another tool that models knowledge extraction in situation
assessment is Multi-entity Bayesian Networks (MEBN) pro-
posed by Laskey in [16]. MEBN are a combination of First-
order Logic (FOL) and Bayesian Networks (BN). In other
words, MEBN are defined as a language that encompasses
the expressiveness of FOL, and uncertainty management
power of BN. In general, MEBN are BN whose embodied
knowledge are structurally arranged using first-order logic
concepts, and thus handles both semantics representation, and
uncertainty management. A novel Fuzzy extension to MEBN
is proposed in this paper that is comprehensively introduced
in next section.

III. FUZZY MULTI-ENTITY BAYESIAN NETWORKS

Multi-entity Bayesian Networks (MEBN) is a First-order
Logic (FOL) based language that models probabilistic knowl-
edge by utilizing Bayesian Networks as its uncertainty anal-
ysis core. The main notion in MEBN are MEBN Fragments
(MFrags) that semantically and causally organize the con-
ceptually related pieces of knowledge. In fact, contextually
consistent MFrags (MFrags whose consistency constrained
are satisfied) reflect a local distribution on the possible values
of their residing random variables. Accordingly, a set of
MFrags whose consistency constraints are satisfied constitute
an MTheory with a unique joint probability distribution
that is computed using the local probability distributions of
MFrags.

Modeling semantic and causal relationships is the main
power of MEBN, but still, it lacks the capability to deal
with the ambiguity that is inherent in human language, and
since the knowledge base fed to MEBN is constructed based
on the information provided by a domain expert, inevitable
delivered ambiguity cannot be modeled properly. To deal
with this problem, a fuzzy extension to MEBN is previously
proposed in [8] that is deemed the first steps towards a
fully Fuzzy MEBN. In that model, fuzzy sets are defined on
the possible values of random variables, and besides, fuzzy
rule-sets are added to MFrags (see [16]) to enhance regular
Bayesian Network inference engine with fuzzy inference
system. Nonetheless, the proposed fuzzy extension in [8]
is still incapable of modeling the implicit ambiguity in the
entities that constitute the knowledge base, and is too naive
to model ambiguous relationships that exist between the
entities.

Here, we improve our previously introduced fuzzy exten-
sion to MEBN by replacing the FOL representation with
First-order Fuzzy Logic (FOFL) [19] when defining contex-
tual and semantic constraints. Therefore, the original MEBN
language is updated, and accordingly, some of its definitions
are refined. The interested reader is referred to [16] for more
thorough discussion about original MEBN and its different
aspects.
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A. Fuzzy Entities and Random Variables

A specific domain in MEBN language is modeled using
a predefined set of attributed entities, and determining se-
mantic and causal relationships between them. These entities
are identified by constants that are included in an infinite
collection of domain-specific constants (with meanings fixed
by the language), and are referred to by variables that
are included in an infinite collection of variable symbols.
Besides, features of entities and the relationships between
them are modeled using random variables that are drawn
from an infinite collection of both logical and domain specific
random variables. Following shows how the entities and
random variables are refined in Fuzzy MEBN language.
• Ordinary variable symbols: The ordinary2 variables are

deemed containers that refer to non-specific entities.
Ordinary variables names are alphanumeric strings that
begin with a lower case letter, e.g., veh13, env.

• Phenomenal constant symbols: Constants are repre-
sented by fuzzy sets with just a single member, i.e.,
fuzzy singletons. Constant names may contain both let-
ters and number, but must start with an uppercase letter,
and should be followed by a real-valued membership
degree subscript within range [0, 1] e.g., V ehicle0.85,
Environment1.0.

• Unique identifier symbols: The entities are assigned a
unique identifier symbol that are annotated with a fuzzy
membership degree, and are arranged in one of the
groups below:

– Truth value symbols and undefined symbol: Truth
values can either be a real number within range
[0, 1], or a member of a finite chain of truth values
L =< l1, l2, ..., ln > predefined by the language.

– Entity identifier symbols: Shown by E , the set of
entity identifier symbols are used by an interpre-
tation of the theory to label the specific entities.
Entity identifier symbols can be either numbers of
alphanumeric symbols starting with an exclamation
point and are subscripted with a real-valued mem-
bership degree ranging from 0 to 1, e.g., !V 4280.75.

• Logical connectives (random variables): All the logical
connective symbols, ¬,∨,∧,⇒, ⇔, and = are deemed
reserved logical random variables whose fuzzy inter-
pretations are predefined by the language. Therefore,
expressions such as (ψ ∨ φ) will be interpreted by
the fuzzy interpretation D as: D(ψ ∨ φ) =I D(ψ) ∨
D(φ), in which =I is read “is interpreted as”, and
operators such as ∨ or ∧ can be substituted with the
corresponding fuzzy logic s-norm or t-norm operators,
respectively. Finally, logical connectives look more like
random variables with truth-valued outputs, if written in
prefix notation. For example,⇒ (ψ, φ) is an implication
random variable with two random variables ψ and φ.

• Quantifiers: Universal ∀ and existential ∃ quantifiers

2As mentioned by Laskey in [16], the adjective “ordinary” is used to
differentiate between ordinary variables and random variables.

are interpreted by the fuzzy interpretation D predefined
by the language as D(∀xϕ) = inf∆D(ϕx(∆)) and
D(∃xϕ) = sup∆D(ϕx(∆)), respectively, wherein ∆ =

〈ε(α1)
1 , ε

(α2)
2 , · · · , ε(αn)

n 〉 is a vector of unique entity
identifier symbols (s.t. ε(αi)

i ∈ E) with a length equal
to the number of arguments that the logical (or domain
specific) random variable (see below) ϕ takes, and x is
an exemplar symbol.

• Findings: observed evidence is called finding in MEBN,
and are stored in the set Ω. Logical findings are assigned
a truth value within the range [0, 1] or from the finite
chain of truth values L = 〈l1, l2, ..., ln〉.

• Domain-specific random variable symbols: random
variable names in Fuzzy MEBN are alphanumeric
strings beginning with a capital letter. Each random
variable is assigned a positive integer that corresponds
to the number of argument it takes. Moreover,
random variables can have a set of finite or infinite
possible values. Accordingly, possible values of
logical random variables can be either within the
continuous range of [0, 1], or the finite chain of truth
values L = 〈l1, l2, ..., ln〉 predefined by the language.
Furthermore, possible values of phenomenal random
variables are defined as a subset of E ∪ {⊥}. In
addition, the degree of membership of phenomenal
random variables are predefined by their fuzzy
interpretation, so that a phenomenal random variable
R maps a vector of unique entity identifier symbols
∆ = 〈ε(α1)

1 , ε
(α2)
2 , · · · , ε(αn)

n 〉, called input arguments,
to another vector of unique identifier symbols
Γ = 〈γ(β1)

1 , γ
(β2)
2 , · · · , γ(βm)

m 〉, called fuzzy state or
fuzzy value assignment, with a certain degree. 3 In
other words, R : ∆ →µ Γ, in which the value of µ
for various arrangements of arguments and possible
values are predefined in the language by the fuzzy
interpretation of R. This can also be represented using
fuzzy relations [11] in which the truth values of a
relation of set of inputs are resulted. Therefore, using
fuzzy relations: R : 〈∆,Γ〉 → µ ∈ {l1, l2, ..., ln}, in
which 〈∆,Γ〉 is the concatenation of two vectors ∆
and Γ. Finally, it is notable to mention that logical
and phenomenal random variables in Fuzzy MEBN are
analogous to fuzzy predicate and functions, respectively.

Random variable terms in Fuzzy MEBN are created exactly
the same way as those of regular MEBN. In general, or-
dinary random variables (say u and v) are deemed atomic
random variable terms that may be used as input arguments
for both logical and phenomenal random variables (e.g.,
AreInCommunication(u, v) and Driver(v) respectively)
to make more complex random variable terms. Furthermore,
random variable terms can be logically related to each other
using logical connectives random variables. The resulting in-

3For simplicity, vector representations such as ∆ =

〈ε(α1)
1 , ε

(α2)
2 , · · · , ε(αn)n 〉 will be denoted by ∆ = 〈ε(αi)i | i = 1 · · ·n〉

from now on, and throughout the paper.
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terpretation of a complex random variable term is determined
by applying individual interpretations, which are predefined
by the language on all symbols of the language, and merging
them using the logical connectives interpretations.

B. Fuzzy MEBN Fragments (MFrags)

The building blocks of a MEBN Theory (MTheory) are
MEBN Fragments (MFrags) that semantically and causally
represent a specific notion of the knowledge.

Definition 1: A Fuzzy MFrag (FMFrag) is defined as
F = (C, I,R,G,D,S) which hosts three different types of
nodes, namely context nodes C, input nodes I and resident
nodes R. Context nodes represent the semantic structures
of knowledge by using First-order Fuzzy Logic sentences.
Moreover, input nodes act as bridges to resident nodes in
other FMFrags, and faciliate feeding any relevant information
to the current FMFrag. Finally, resident nodes are random
variables that are conditioned on the values of the context
and input nodes. Additionally, in an FMFrag F , G represents
a FMFrag graph, set, D contains local distributions per each
resident node, and S encompasses a set of fuzzy if-then rules
to be used by the Fuzzy Inference System (FIS). It should
be noted that the sets C, R, and I are pairwise disjoint, and
G is a Directed Acyclic Graph (DAG) whose nodes belong
to I ∪R, and the root nodes are members of I only. Finally,
context value assignment terms in C are used for enforcing
constraints under which the local distributions apply.

In FMFrags, contextual constraints will be assigned a truth
value that implies how much a constraint is satisfied. The
consistency constraint degree of FMFrags are then deter-
mined by referring to the fuzzy interpretations of the terms
defined in the FMFrag and built-in FMFrags, and calculating
the degree of satisfiability of the constraints as a whole. In
addition to the consistency constraints, the local probability
distribution in FMFrags are defined as a conditional prob-
ability distribution of the resident nodes given input/parent,
and context nodes. Calculating this conditional probability
is easy when the ordinary random variables used in the
parents of the resident random variable, and the resident
random variable itself are exactly the same. The problem
arises when there exist ordinary variables in the parents that
do not exist in the child. Such problems are usually tackled
by applying aggregation functions and combining rules [18].
Laskey in [16] uses the notion of influence counts to combine
the influence of multiple parents. Here, the same approach is
adopted, with some refinements for the new Fuzzy MEBN.

Definition 2: Let us assume that F is an FMFrag
within which there exists a resident random variable ψ(Θ)
parametrized by a vector of ordinary variables Θ = 〈θi| i =
1 . . . n〉:

1) B = {(θ1, ε1
(α1)), (θ2, ε2

(α1)), . . . , (θ1, εn
(αn))} is a

binding set of ordered pairs wherein θis are ordinary
variables, and εi(αi)s demonstrate unique entity iden-
tifier symbols that are represented by fuzzy singletons
whose membership degrees are shown by αis. Addi-
tionally, ∆ = 〈ε(αi)

i | i = 1 · · ·n〉 is a vector of size

n with elements arranged in the same order of θis in
ψ(Θ).

2) With B being a binding set, and ψ(∆) as the instance
of ψ after substituting respective εi

(αi) for each θi,
the value assignment {(Γ = φ(∆)} is achieved that
is called a potential influencing fuzzy configuration for
ψ(∆) in which φ(∆) is either an instance of one of
its parents, or a context random variable residing in its
FMFrag. Accordingly, Γ is a truth value (membership
degree) for context random variables, and denotes
a possible fuzzy state of φ(∆) for parent random
variables. The fuzzy states are gained using the local
distribution D and the fuzzy rule-sets S defined in the
FMFrag F .

3) With B as the binding set, and upon substituting each
unique entity identifier εi(αi) with ordinary random
variables θi, context constraints, which are reflected
by context random variables, are satisfied to some
degree based on their predefined fuzzy interpretation.
Thus, the truth value of context random variable φj is
calculated using Eq. 1:

L∗B = sup
∆B

(φj(∆B)) (1)

where the size of ∆B is equal to the number of inputs
that φj takes, and its elements are borrowed from the
binding set B. L∗B is also considered to be a set that
contains all the equal supremum values. 4. Accordingly,
an influencing fuzzy configuration is a potential fuzzy
configuration whose unique identifier assignments are
found using Eq. 2.

∆∗B = arg sup
∆B

(φj(∆B)) (2)

in which ∆∗B is a set of all the potential fuzzy configu-
rations that yield the supremum value in Eq. 1. Using
Eq. 2, equivalent influential fuzzy configurations are
those in which φ(∆i

B) = φ(∆j
B) for ∆i

B,∆
j
B ∈ ∆∗B

and i 6= j, and equivalence classes are distinct fuzzy
configurations of parents of ψ(θ).

4) Assuming that E = {ε1
(α1), ε2

(α1), ..., εn
(αn)} is a set

of unique identifier symbols, a partial fuzzy world Wf

for ψ(Θ) is constructed by instantiating its parents as
well as context random variables with each member
of E . Moreover, a partial fuzzy world state SWf

will
be the fuzzy value assignments of the generated partial
world.

5) Finally, the influence counts |SWψ
| for ψ(∆) is defined

as the number of influencing fuzzy configurations that
SWf

has for each equivalence class.
It is obvious that finding influence counts in Fuzzy MEBN
is exactly the same as in regular MEBN when all the
context random variables are assigned the same truth value
in different potential configurations. Otherwise, the number

4Supremum is used here for the sake of generality. In real experiments
with finite sets, it can be substituted with maximum.
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of cases in which the consistency constrained are satisfied
are reduced by applying Eq. 1 and Eq. 2.

Upon having their consistency constrained analyzed, and
after determining the configuration parent nodes, FMFrags
will have the probability distribution of their resident nodes
calculated as a conditional probability on the possible values
of the resident node given the values of its parents (input
nodes or findings), and context nodes. Next definitions show
how regular Bayesian Networks are replaced with Fuzzy
Bayesian Networks.

Definition 3: Let us assume that E is the set of unique
entity identifiers, and in an FMFrag F , Nψ is the set of all
possible values of an instance of the resident node ψ(Θ)
residing in F (showed by ψ(∆)). Then:

1) The fuzzy state of ψ(∆) is defined as the vector Γψ =
〈γj(βj)| j = 1 . . . |Nψ|〉 in which γj

(βj) ∈ Nψ for
γj ∈ E and βj as the degree of being in the individual
state γj .

2) The local probability distribution πψ(Γψ|SW) is a
conditional probability density function that shows the
likelihood of resident random variable ψ being in fuzzy
state Γψ given partial fuzzy world state SWf

that
contains the fuzzy states of both parent and context
nodes.

3) Since πψ(Γψ|SW) is a probability density function,
then η

∑
k πψ(Γk,ψ|SW) = 1 wherein Γk,ψs are vari-

ous fuzzy states that can be generated by exchanging
the membership degree βj of each individual state γj ,
and η is the normalization factor.

Regular Bayesian Networks (BN), are Directed Acyclic
Graphs (DAG) in which nodes represent random variables
with finite states, and edges specify conditional dependen-
cies between random variables. For each random variable
R, a Conditional Probability Table (CPT) is defined that
determines the likelihood of R being in one of its states
conditioned on the configuration of its parents.

Inference on BN is performed by first adding the obser-
vations to the network and then finding the likelihood of
the desired random variable by running one of the common
inference algorithms in BN such as Variable Elimination, or
Belief Propagation [14].

The Fuzzy Bayesian Networks (FBN) presented in this
paper is mainly based on the regular BN. However, major
differences include defining fuzzy states for random variable
nodes, and enhancing them with a set of fuzzy if-then rules
(coupled with a Fuzzy Inference System) that reflect the
knowledge of domain experts. Moreover, observations are
assigned a fuzzy state before being added to the FBN,
through passing a fuzzification process. Fuzzification of
continuous variables is straight forward and follows exactly
the same conventional common method presented by L.A.
Zadeh in [23] that maps a continuous value to fuzzy set
labels with their relative membership degrees. For instance,
measured speed of vehicle v (shown by Speed(v) in MEBN
language) will be fuzzified and lied in the fuzzy state
ΓSpeed = 〈Slowβ1 , Normalβ2 , Fastβ3〉, wherein unique

entity identifier symbols Slow, Normal, and Fast are fuzzy
sets defined on the universe of discourse of vehicle speed, and
the membership degrees are normalized. Furthermore, and
for discrete variables, linguistic modifiers that precede them
are analyzed to dynamically increase/decrease the fuzziness
of the sets defined on a particular discrete universe of
discourse. Subsequently, the fuzziness is altered using an
ambiguity factor imposed by function f(µA, α) = (µA)α,
for µA as the membership function defined over set A, and
α as the ambiguity factor. Function f is deemed the general
form of dilation and contradiction in fuzzy set theory.

As one of the major inference algorithms in BN, Belief
Propagation is presented next for three different cases. The
first case is a single node with no parents which may have
one, or many fuzzy rule sets (FRS) attached to it. In the
second case, a single node (with one or many FRS) is
demonstrated that just has a single parent with either a single
fuzzy state with a certain probability, or many fuzzy states
with probabilities that sum to one. Finally, the third case
represents a single node (again with one or many FRS) that
has multiple parents which all can be in their only fuzzy
states, or if having more than one fuzzy state, may produce
various configurations of fuzzy states. Following explains
each of these three cases more in detail.

Let us assume that ψ(∆) is an instance of resident random
variable ψ, with possible values γj

(βj), j = 1 . . . |Nψ|,
that is preceded by an arrangement of m parents Φ =
{φ1, φ2, . . . , φm} that in total create C configurations. There-
fore, P (ψ = γj

(βj)|Φ) = pij will be the probability of ψ
being at state γj(βj) given the ith configuration of parents,
and is stored in the CPT assigned to resident random variable
ψ. In FBN, random variables are in a fuzzy state with a
probability that represent the certainty about being in that
state. This is represented by vector Γ

pψ
ψ = 〈γj(βj)| j =

1 . . . |Nψ|〉 wherein |Nψ| is the number of possible values
of ψ, and pψ is the likelihood of being in fuzzy state Γψ .

1) No Parents: The fuzzy state of a random variable node
with no parents is obtained using the fuzzification process
described above, and the likelihood of being in that state is
obtained using the a priori probabilities defined for each of
its possible values. Accordingly, let us assume that ψ0 is a
random variable with possible values γj(βj), which has no
parents (Φ = ∅), and is in the fuzzy state Γψ0

= 〈γj(βj)| j =
1 . . . |Nψ0

|〉. Therefore, the likelihood pψ0
of being in fuzzy

state Γψ0
is found by calculating the following inner product:

pψ0 = ~β.πψ0 (3)

in which ~β = 〈β1, β2, . . . , β|Nψ0
|〉 is a vector of membership

degrees of possible values of ψ0 that are normalized to 1,
and vector πψ0 = 〈p1, p2, . . . , p|Nψ0

|〉T contains a priori
probabilities of being at each individual state γj . If more
than one FRS is assigned to ψ0, then

~pψ0
= B.πψ0

(4)

in which vector ~pψ0
contains the calculated probability using

Eq. 3 for each FRS, and B = 〈~βTj | j = 1 . . . |Sψo |〉T is a
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matrix with row j as the membership degrees ~βj that jth
FRS produces.

2) One Parent: Let us assume that random variable ψ1

has only one parent node Φ = {φ1} in fuzzy state Γ
pφ1
φ1

=

〈ϕr(ρr)| r = 1 . . . |Nφ1
|〉, and its own fuzzy state is also

inferred to be Γ
pψ1

ψ1
= 〈γj(βj)| r = 1 . . . |Nψ1

|〉 using the if-
then rules defined in the FRS assigned to ψ1. Therefore, with
~ρ as the vector of membership degrees of possible values of
parent φ1, pψ1

is calculated as:

pψ1 = η(~ρ.πψ1(ψ1|φ1).~βT )pφ1 (5)

wherein η is the normalization factor, ~ρ is a 1×|Nφ1 | vector,
πψ1

(ψ1|φ1) is a |Nφ1
|×|Nψ1

| CPT matrix, and ~β = 〈βj | j =
1 . . . |Nψ1

|〉T is the vector of membership degrees of possible
values of ψ1. Assuming that more than one FRS is assigned
to ψ1, and by constructing B same as the No Parents case,
Eq. 5 will be rewritten as:

~pψ1
= η(~ρ.πψ1

(ψ1|φ1).B)T pφ1
(6)

There is also a case in which a parent node might be in
different uncertain fuzzy states. For instance, let us assume
that parent φ1 is in K different fuzzy states Γ

pk,φ1
k,φ1

(with
probabilities pk,φ1 > 0 and

∑
k pk,φ1 = 1). Therefore, Eq. 5

is updated to:

pψ1 = η(R.πψ1(ψ1|φ1).~βT )T .~pφ1
(7)

where matrix R = 〈~ρTj | j = 1 . . .K〉T , contains the
membership degrees of each fuzzy state of parents at each
row, and ~pφ1

= 〈pj,φ1
j = 1 . . .K〉T is the arrangement of

their likelihoods.
3) Multiple Parents: If random variable ψ2 has more than

one parent Φ = {φ1, φ2, . . . , φm} each in their correspond-
ing fuzzy states Γ

pφi
φi

, i = 1 . . .m, then vector ~ρT is created
as follows:

~ρT = T (Γφ1
× Γφ2

× . . .× Γφm) (8)

in which T is the t-norm operator [23], and φi × φj is
the Cartesian product of possible values of φi and φj .
Accordingly, pψ2

is calculated as:

pψ2 = η(~ρT .πψ2(ψ2|Φ).~β)

m∏
i=1

pφi (9)

in which η is the normalization factor, pφi is the probability
of parent φi being at fuzzy state Γ

pφi
φi

, and πψ2(ψ2|Φ) is a
CPT matrix whose first and second dimensions are equal to
the number of different configurations that parents in Φ can
make, i.e.,

∏m
i=1 |Nφi |, and the number of the possible values

of ψ1, i.e., |Nψ1
|, respectively. Furthermore, for the case of

parents having more than one fuzzy state, K∗ =
∏m
i=1Ki

will be all the number of configurations that m parents make,
and Eq. 8 will be updated to:

RT = 〈T (Γφ1 × . . .× Γφm)Tj | j = 1 . . .K∗〉T (10)

that is a K∗ ×
∏m
i=1 |Nφi | matrix within which row i

represents the t-norm of ith configuration of fuzzy states of

parents. Moreover, the probabilities of each configuration are
represented by vector ~pΦ that is:

~pΦ = 〈
m∏
j=1

pi,φj | i = 1 . . .K∗〉T (11)

in which pi,φj is the probability of parent φj at the ith
configuration of parents. Finally, pψ2

is found using equation
below.

pψ2 = η(RT .πψ2(ψ2|Φ).~β)T .~pΦ (12)

At the end, if ψ2 has more than one FRS collected in the set
Sψ2

, then Eq. 12 will be upgraded to:

~pψ2 = η(RT .πψ2(ψ2|Φ).B)T .~pΦ (13)

which is a Sψ2
× 1 matrix, and B is created the same way

as Eq. 6.
The rest of this paper demonstrates a practical application

in Vehicular Ad-hoc Networks (VANET) area for the theory
presented so far.

IV. CASE STUDY

As a case study, Collision Warning System (CWS) in
VANET is chosen and implemented (see Fig. 1). The pro-
posed framework is mainly based on our previous work
presented in [8]. In this model, the data/information origi-
nates from different sources (i.e., the vehicle, surrounding
vehicles, infrastructure, or the driver) with various levels
of abstraction. Upon having their information attributes set,
interpretation of input entities are compared with the built-in
entities (predefined by domain experts within Fuzzy MEBN
structures) using semantic similarity methods such as those
introduced in [1]. Thereafter, the input entities are anno-
tated with a value between 0 and 1 (where 1 means that
both entities have exactly the same semantic meaning), and
are represented by fuzzy singletons. The inner structure of
Fuzzy MEBN is also determined by domain experts within
which the semantic side is modeled using First-order Fuzzy
Logic, and causal side is represented using our novel Fuzzy
Bayesian Network. Finally, the proposed belief propagation
algorithm in previous section is performed on a Situation-
Specific Fuzzy Bayesian Network (SSFBN) that is con-
structed based on the imprecise contextual information pro-
vided by domain experts and also input entities. According
to [13], four main entities that are involved in road safety
issues are Vehicle, Environment, Driver, and Demographic
which are in both semantic and causal relationships with each
other and their sub-entities.Some of the entities related to
Irregular Driving behavior, which is one of the major entities
involved in a near collision situation (see [8]) along with their
causal relationships are demonstrated in Fig. 2.
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ASP Average Speed 
DDL Distance Danger Level 
DIS Distance 
DRA Driver Attentiveness 
DRO Drowsiness 
DSL Driving Skill Level 
DRF Driver Faults 
IRD Irregular Driving 
DRE Driving Experience 
SMK Smoking 
UHD Using Hand-held Devices 
YOE Years of Experience 
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Fig. 2. Involved entities in an Irregular Driving Behavior, and their causal
relations

V. SIMULATION RESULTS

Two distinct scenarios are designed to evaluate the per-
formance of the proposed framework, and to emphasize the
applicability of the proposed model in a real world problem.
The first scenario models a single vehicle that obtains the
necessary data/information regarding itself, the environment,
and the driver locally, and using its own sensors. Further-
more, the second scenario adds vehicle-to-vehicle communi-
cation, with fixed number of neighbors (8 in our simulations),
and vehicle-to-infrastructure communication features to the
first scenario and therefore, enables the vehicle to obtain the
necessary data/information both locally and globally. Table I
briefly displays the specifications of these two scenarios. It
should be noted that the relative fuzzy states of each fuzzy
random variable associated with each of the input entities
are specified using the fuzzy rule-sets predefined by domain
experts. The generated SSFBN for the last situation (after
observing the driver smoking) of scenario 1 is depicted in
Fig. 3. As it is clearly shown in the figure, upon receiving
the observations, respective fuzzy states are calculated using
the fuzzy rule-sets attached to each fuzzy random variable.
Moreover, the probability of being in each of those fuzzy
states for each node is computed based on the number of
parents they have (see Section III).

TABLE I
KNOWLEDGE BASE (KB) OF SCENARIO 1 AND 2

Entity
State

Scenario 1 Scenario 2
Speed 120 km/h 60 km/h
Road Type Highway Highway
Daytime 4:30pm 10:00pm
Weather Sunny Partly Cloudy
Skill Level Very Professional So Amateur
Driving Faults 6 3
Years of Experience 10 2
Drowsy Yes Somehow
Using Device Somehow Yes
Smoking Yes No
Distance(VEH515) N/A Very Close
Distance(VEH516) N/A Very Close
Distance(VEH517) N/A Very Close

Fig. 3. Generated SSFBN for Scenario 1

The correct performance of the proposed framework is
demonstrated by adding the observations in a way to in-
tentionally make the situation close to an irregular driving
behavior, and then measuring the probability of being in
the fuzzy state assigned to Irregular Driving Behavior fuzzy
random variable. As it is shown in Fig. 4, along with adding
the observations the probability of being in an irregular
driving behavior fuzzy state (9.83% not having, and 90.17%
having irregular driving in our case) goes up to 48.37%.
In other words, the increase in the graph indicates that the
framework is correctly assessing an irregular driving behav-
ior situation. This is also observed in the second scenario
as the communication with three more vehicles are initiated,
and observations about the distance to them are injected to
the system (see Fig. 5). Hence, the probability of 9.83%
not having, and 90.17% having irregular driving behavior
increases accordingly, and reaches 51.12%.
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Fig. 4. Evolution of the probability of being in fuzzy state upon adding
observations in scenario 1
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Fig. 5. Evolution of the probability of being in fuzzy state upon adding
observations in scenario 2

The HLIF-related evaluation criteria introduced by Costa
et al. in [5] can be interpreted using the results presented
here. The proposed framework is specialized to be deployed
in VANET-related tasks, which by nature, benefit from a
broad range of data and information sources. The semanti-
cally relevant data and information sources are grouped into
Fuzzy MFrags to construct a particular entity, and further-
more, a specific task make use of a subset of them to assess
a situation. Such capability of AAS makes sure that only the
relevant inputs enter the system and other (irrelevant) ones
are kept away from the reasoning system. Furthermore, as
is was also shown in Figures 4 and 5, different evidences
have their own impact on the final outcome. Knowledge
and evidence handling is also perfectly managed by the
capabilities of the proposed Fuzzy MEBN in such a way
that it takes advantage of the expressiveness of FOFL and
uncertainty management power of BN. Moreover, the results
show that the proposed framework performs correctly in
assessing the Irregular Driving Behavior when it is run in
different scenarios. Finally, the proposed model is robust
since it is able to perform in different scenarios with varying
number of available evidence and still assess the desired
situation.

VI. CONCLUSION

In this paper, the theoretical foundation of Fuzzy Multi-
Entity Bayesian Networks (MEBN) is comprehensively dis-
cussed. Fuzzy MEBN handles the semantics analysis by
making use of First-order Fuzzy Logic, and manages un-
certainty by employing Fuzzy Bayesian Networks as its
causal reasoning core. In other words, Fuzzy MEBN adds the
imprecise knowledge representation and reasoning capability
to the conventional MEBN by incorporating Fuzzy logic into
both its semantics and causal sides.

Results show that proper implementation of Fuzzy MEBN
enables imprecise knowledge representation and reasoning,
which can be used to tackle many real world applications
such as collision warning in Vehicular Ad-hoc Networks
area. Our future work will involve the incorporation of im-
precise contextual information represented by Fuzzy MFrags
when generating the Situation-Specific Fuzzy Bayesian Net-
work and performing inference on it.
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