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Abstract— The main advantage of using an interval-based
distance for interval-based data lies on the fact that it preserves
the underlying imprecision on intervals which is usually lost
when real-valued distances are applied. One of the main
problems when using interval-based distance in fuzzy clustering
algorithms is the way to obtain the center of the groups.
In this case, it is necessary to make adaptations in order to
obtain those centers. Therefore, in this paper, we propose the
use of the family of H-operator to proposed three approaches
to transform the interval-based membership matrix into real-
valued membership matrix and, as a consequence, to calculate
the centers of the groups in interval-based fuzzy clustering
algorithms. In this case, we will perform a comparative analysis
using the three different approaches proposed in this paper,
using seven interval-based datasets (four synthetic and three
real datasets). As a result of this analysis, we will observe that
the proposed approaches achieved better performance than all
analyzed methods for interval-based methods.

I. INTRODUCTION

DATA CLUSTERING is a field that has been largely
studied in the machine learning subject. By definition,

data clustering is a set of algorithms that aims to divide
objects into groups, in such a way that objects (instances) in
one cluster are very similar and objects in different clusters
are very dissimilar. In other words, these algorithms have
a goal to find an ideal division of the objects in which
there is high similarity among objects of one group and high
dissimilarity among objects of different groups[18].

There are several clustering algorithms proposed in the
literature and they can be broadly divided into two categories:
hard (crisp) and fuzzy (soft) clustering. In hard clustering, an
instance belongs to one and only one cluster, while in fuzzy
clustering, an instance may belong to more than one cluster
with a certain membership degree (membership matrix). In
this paper, we will work with fuzzy clustering algorithms.

The characterization of a clustering problem is represented
by a dataset (set of organized information, resulting from an
experiment or observation), which is frequently related to
problems found daily. Recently, the scientific community has
driven its attention to numeric data with interval nature, since
closed intervals are data that represent numeric information
endowed with impreciseness, which are normally captured
from measures of real world.

One of the first formal work on interval-based data was
reported in [26]. For interval-based similarity measures, for
instance, recently the notion of interval-based distances were
investigated on the studies as in [14] and [31]. However,
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none of those studies provided a wide investigation on the
subject. In [28], the authors proposed the first notion of an
interval-based metric, called i-metric. They also proposed
a theoretical way to calculate the similarity (d

km

distance)
in interval-based data for this proposed metric (i-metric).
In addition, they performed a theoretical investigation and
provided suitable theoretical definitions, using interval-based
data that includes definitions proposed in [31] and [14].

In [8], the authors have provided a practical framework
based on the theoretical approach for interval-based distance
proposed in [28]. They applied this framework in the context
of clustering algorithms. As a result, they have adapted
two well-known fuzzy clustering algorithms to interval-based
data: Interval-based Fuzzy c-Means (IbFcM) and Interval-
based ckMeans (IbckM). The authors have also proposed
interval-based validation indexes. According to the authors,
the empirical analysis showed the usefulness of applying the
d

km

distance in clustering problems.
However, one of the main problems when using interval-

based distances in fuzzy clustering algorithms is the way
to obtain the center of the groups. This is because it is
not possible to use directly the interval-based membership
matrix using the interval arithmetic proposed in [26] to
calculate the centers of the groups (the imprecision of the
interval-based data increases drastically). In this case, the
interval-based membership matrix has to be transformed into
a real-valued membership matrix (or simply membership
matrix). Nevertheless, this transformation usually causes loss
of information.

In this paper, we propose three different approaches to
transform the interval-based membership matrix into real-
valued membership matrix. These proposed approaches aim
to smooth out the mentioned loss of information. To achieve
that, we use H-operators to guide this transformation. In
order to assess the performance of the proposed approach,
an empirical analysis will be conducted. In this analysis,
the proposed approaches will be applied to interval-based
FCM (Fuzzy c-Means) algorithm. In addition, we will use
seven datasets and evaluate the performance of the clustering
algorithms through the use of an external index, called Cor-
rect Rand cluster validity measure. For comparison purposes,
some existing distance measures and interval-based clustering
algorithms will be used in this analysis.

This paper is organized into seven sections and it is
structured in the following way: Section II introduces the
notion of interval-based metrics. Section III presents the
clustering algorithms. Section IV describes the proposed
methods. Section V describes the experimental setting up
for the empirical analysis and it illustrates the experimental
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results. Section VI describes the results and discussion while
Section VII presents the final remarks of this paper.

II. INTERVAL MATHEMATICS

In this section, some important concepts of interval math-
ematics (IM) and interval-based metrics are presented.

A. Interval Arithmetic

Interval mathematics is based on the studies of Ramon
Moore [22] and Sunaga [20]. They provided a way to deal
with the lack of accuracy during numerical calculations
which normally comes from the imprecision of data inputs,
physical limitations of machines, rounding errors, among
others. In order to deal with those types of imprecisions,
many researches can be found in the literature, such as in [7]
and [22].

In this section, we present some relevant concepts which
can be found in the literature; e.g. [22]. Here, the set of real
intervals will be denoted by IR.

Definition 1: The set X = {x 2 R | x  x  x},
represented by X = [x;x] is called closed interval with
endpoints x and x, or, here, simply interval. X is a non-
negative interval, X � 0, whenever x � 0. It is said to be
negative, X < 0, if x < 0. X is degenerate, if x = x.

Definition 2 (Arithmetic): Let X,Y 2 I(R). The opera-
tions of addition, subtraction, multiplication and division on
intervals are defined in the following way:

1) Addition: X + Y = [x+ y, x+ y]
2) Subtraction: X + (�Y ) = [x� y, x� y]
3) Multiplication:

X · Y = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)];
4) Pseudo inverse Multiplication: X�1 = 1

X

= [ 1
x

; 1
x

] and
0 /2 X

5) Division: X/Y = [x, x2] · (1/[y, y]), where 1/[y, y] =
[1/y, 1/y] if 0 /2 [y, y].

There are situations in which the division leads to an
enlargement of the resulting intervals.

B. Metrics

There are several generalizations of the concept of metric.
On the one hand, there are the generalizations made by
modifying the metric axioms, see [1] or [30]. On the other
hand, there are generalizations which modify the valuation of
the metric; see [21] and [19]. The generalization used here
was proposed by Santana and Santiago [28] and has both
characteristics. In that paper, based on the theory developed
in [13], the authors proposed an interval-based generalization
for usual metrics, in such a way that instead of functions of
the form d : M ⇥M ! R, they provided functions with the
signature: d : M ⇥M ! I(R)+, where I(R)+ is the set of
closed intervals with non-negative endpoints. Those functions
were proposed to be used to model measurements with
impreciseness; for example: a digital measurement instrument
that captures the distance between two points of M and stores
the resulting value in a machine memory as intervals, [a; b].

The authors in [28] introduced the notion of
interval-based metrics, which is a function of the form

d : M ⇥ M ! I(R)+ satisfying some axioms (which will
be presented below). The question was: What would be a
suitable interval-based metric if M = I(R)? Since intervals
are entities which represent an imprecise real number
together with an error information, it is reasonable that
given two distinct intervals [a; b] and [c; d], d([a; b], [c; d])
be {d(x, y) | x 2 [a; b] ^ y 2 [c; d]}. A function like this
will be according to the Interval Representation paradigm
investigated in [29]. The interval-based metric which satisfy
this requirement is called km-metric and is described in the
following section.

C. Km-Metric

All the items required to define km-metric is reproduced
here and can also be found in [28] and [13]. Before we
go further, let us introduce some well-known order-theoretic
terminology.

Given a non-empty set A, a binary relation, , on A is
called partial order, whenever it is reflexive, symmetric and
transitive. The pair hA,i is called partially ordered set or
just poset. If A has an element ? such that ?  x, 8x 2 A,
then this element is called the bottom element of A and the
structure hA,,?i is called poset with bottom element.

Definition 3 ([28]): Given a poset A and a non-empty
subset D ✓ A, D is called d-directed set if for every
x, y 2 D, there exist z 2 D, such that z  x, y. A binary
relation, R, on A is called semi-auxiliary relation for 
whenever:

1) If xRy, then x  y;
2) If x  y, xRz and z  w, then xRw.
A poset hA,,?i endowed with a semi-auxiliary relation,

R, has separable bottom element, whenever A is a d-
directed set, such that for each pair of elements a, b 2 A,
with ?Ra and ?Rb, there is z 2 A, such that z  a, b and
?Rz.

Definition 4 (i-Distance Valuation,[13]): A Valuation for
i-Distances (VID) is a partial order hA,, R,?i with sepa-
rable bottom element ?.

Example 1: A well-known VID is the usual
h[0,+1),, <, 0i, which is the valuation of Euclidean
metric.

The next definition states the generalization of the metric
proposed by Santana in [13].

Definition 5 (i-Metric,[13]): Let M be a non-empty set
and V = hA,, R,?i a VID. A function d : M⇥M �! A is
called V-valued i-metric , or just i-metric when the context
is clear, whenever:

1) d(a, b) = ? iff a = b;
2) d(a, b) = d(b, a), for every a, b 2 M ;
3) If d(a, b)R", for some " 2 A with ?R", then there

exists � 2 A, with ?R�, such that d(b, c)R� )
d(a, c)R".

In this case, the triple (M,d,V) is called i-metric space.
In [28], the authors proposed some VID’s for intervals

giving rise to idea of interval-based metrics, one of such VID
is based on Kulish-Miranker order and proved to be suitable
to provide a metric able to follow the Interval Representation
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Paradigm [29]; namely: The km-metric. In what follows we
reproduce those notions.

A VID of the form ⌦ = hI(R)+,, R, [0, 0]i receives
a special name, it is called Interval Metric Valuation or
just (IMV). An i-metric valued in this structure is named
interval metric. Since in this paper we will use just this
kind of distance, we will make an abuse of language and also
call them as i-metrics (in this case meaning interval metrics).
Rewriting the definitions for this kind of VID, an interval-
based metric will have the following definition:

Definition 6: Let M be a non-empty set and ⌦ =
hI(R)+,, R, [0, 0]i an IMV. A function d : M ⇥M ! ⌦ is
called an interval metric, i-metric, if it satisfies:

1) d(x, y) = [0, 0] iff x = y;
2) d(x, y) = d(y, x), for all x, y 2 M ;
3) If d(x, y)R✏, for some ✏ 2 I(R)+ � {[0, 0]}, then

exists � 2 I(R)+ � {[0, 0]} such that if z 2 I(R) and
d(y, z)R�, then d(x, z)R✏.

In this case, the triple (M,d,⌦) is called i-metric space.
All the mathematics developed by Santana in [13] aimed

to provide a distance which captures the important concept of
interval representation [29]. To achieve that, the author built
an IMV which is based on the Kulisch-Miranker order. The
resulting interval metric was called km-metric.

Definition 7 (Kulisch-Miranker Order [28]): Given two
intervals X,Y 2 IR, the Kulisch-Miranker order on
I(R),

km

, is defined by X 
km

Y iff x  y and x  y.

Definition 8: [28] Let be the binary relation, ⌧, on I(R)+:
1) [0, 0] ⌧ X , for all X 2 I(R)+;
2) If x, y > 0, then [0, x] ⌧ [0, y] , x < y;
3) If x, x, y, y > 0, then X ⌧ Y , (x < y) ^ (x < y).

Theorem 1: [28] The structure hI(R)+,
km

,⌧, [0, 0]i is
a d-directed set with separable bottom element [0, 0], and
hence a VID.

Theorem 2: According to [13], [28], given two distinct
intervals X,Y 2 I(R), let be the set of euclidean distances
between the elements of X and Y , respectively: D

XY

=
{d(x, y);x 2 X and y 2 Y }. The function d

km

: I(R) ⇥
I(R) ! hI(R)+,

km

,⌧, [0, 0]i defined by:

d

km

(X,Y ) =

⇢

[0, 0] , if X = Y

[minD
XY

,maxD
XY

] , if X 6= Y

,

(1)
which is an interval i-metric.

An important issue about interval functions is related to
its computation. In order to answer this question, Santana in
[13] provided the following theorem:

Theorem 3: Given X , Y 2 I(R), we have: d
km

(X,Y ) =
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

[0, 0] , if X = Y

[d(x, y), d(x, y)] , if x < y

[d(x, y), d(x, y) , if y < x

[0, d(x, y)] , if X <

km

Y and X \ Y 6= ;
[0, d(x, y) , if Y <

km

X and X \ Y 6= ;
[0,max(d(x, y); d(x, y))] , if X = Y and (X ⇢ Y orY ⇢ X)

.

(2)

The main idea is to use an interval-based i-metric instead
of a metric to measure the distance between two interval data.
It lies on the fact that the interval data carries an imprecision
and this imprecision is completely lost when a standard
metric maps them onto a single and exact real number. Since
D

XY

contains the values of the distance between all pairs
(x, y) 2 X ⇥ Y , it is an interval which contains the exact
distance, d(x, y), between the exact values, x and y, codified
respectively by the intervals X and Y .

III. CLUSTERING ALGORITHMS

As mentioned previously, there are several clustering al-
gorithms proposed in the literature and they can be broadly
divided into two categories: hard (crisp) and fuzzy (soft) clus-
tering. For fuzzy clustering, we will use a well-known fuzzy
clustering algorithm, which is Fuzzy C-Means (FCM)[4].
Therefore, this algorithm will be briefly described in the next
subsection. We will also describe one of the main aspects
when adapting fuzzy clustering algorithms for interval-based
data, which is the use of an interval-based fuzzy membership
matrix.

A. Fuzzy c-means (FCM)

One of the most popular methods for finding fuzzy parti-
tions is FCM [4]. The FCM algorithm tries to find groups of
data, minimizing the objective function in Eq.(3).

J

m

(U, V ) =

c

X

j=1

n

X

j=1

µ

m

ij

d(x
i

, v

j

)2, (3)

where: n is the data quantity; c is number of clusters
considered in the algorithm, predefined; m is a fuzzification
parameter, with m > 1; µ

ij

is membership degree that x
i

is in
v

j

, where x

i

is the i-th data and v

j

is the center (prototype) of
j-th cluster, and d(x

i

, v

j

), or only d

ij

, is the distance between
x

i

and v

j

.
Given a data set X = {x1, . . . , xn

} we cluster them in
groups, in which each group is represented by its prototype,
i.e an element of V = {v1, . . . , vc}. FCM is based on fuzzy
logic [33], each instance is not only associated to a cluster, but
has a membership degree for each of the centroids existing
in the process. The set of all fuzzy c-partition is

M
fcn

= {U 2 Rcn|0  µ

ij

 1, (1  j  c)(1  i  n) ;(4)
P

c

i=1 µij

= 1, 8i;
P

n

j=1 µij

> 0, 8j
o

.

Let U 2 M
fcn

, partition matrix, the minimization of
J

m

(U, V ) is achieved with respect to µ

ij

in Eq.(5) and with
respect to center v

j

in Eq.(6).

µ

ij

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1
c

X

k=1

✓

d

ij

d

ik

◆

2
m�1

,if I
i

= ;, (5a)

1

|I
i

| ,if I
i

6= ; and j 2 I

i

, (5b)

0 ,if I
i

6= ; and j /2 I

i

, (5c)
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for all i, j where I

i

= {j|d
ij

= 0} and |I
i

| is cardinality of
I

i

.

v

j

=

n

X

i=1

(µ
ij

)mx

i

n

X

i=1

(µ
ij

)m
, 8j (1  j  c). (6)

The minimization steps are iterated until the change in
any criteria drops below a certain threshold. There are many
ways to initialize FCM and, in this paper, we chose c objects
randomly from the dataset itself to serve as the initial cluster
centers, which seems to work well in almost all cases. This
algorithm ends when there are only negligible changes in the
objective function, where ✏ is a pre-determined constant.

The following subsection show how algorithm FCM it is
adapted for work with interval distances and interval-valued
fuzzy set.

B. Interval-based fuzzy membership

A symbolic interval-based variable X 2 �, where � is a set
of s-dimension vector of closed intervals. Given a dataset � =
{x1, . . . , xk

, . . . , x

n

} with distinct points in s dimensions
x

k

= (x1
k

, . . . , x

s

k

) 2 I(R)s such that xi

k

= [xi

k

, x

i

k

].

The datasets X and the set of prototypes V are intervals. In
other words, X and V 2 I(R)s. Therefore we can define an
interval-based distance, d : I(R)s⇥I(R)s �! I(R). The d

km

is an interval-based metric (i-metric), such as in Eq.(2), and
X,Y 2 I(R)s, the interval-based distance, d, is then defined
as:

d(X,Y ) =

v

u

u

t

s

X

k=1

d

km

(Xk

, Y

k)2. (7)

Once we have defined an interval-based distance metric,
we need to adapt some fuzzy clustering algorithms to be
used with interval-based data.

For fuzzy clustering using an interval-based distance, the
similarity measure µ

ij

also needs to be an interval. Therefore,
the U matrix needs to be adapted. Now consider the interval-
based matrix U = [u

ij

] ⇢ I([0, 1])n⇥c, where u

ij

=
[u

ij

, u

ij

], like the interval-based distance.

In [8], the authors proposed the best interval representation
for the classical function as the approach to calculate fuzzy

membership Eq.(5), defined by

u

ij

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

⇥

minµ
ij

,maxµ
ij

⇤

,if I
i

= ; and E

i

= ;
⇥

0,maxµ
ij

⇤

,if I
i

6= ; and j /2 I

i

and E

i

= ;
⇥

minµ
ij

, 1
⇤

,if I
i

6= ; and j 2 I

i

andE
i

= ; and|I
i

| = 1
⇥

0, 1
⇤

,if I
i

6= ; and j 2 I

i

andE
i

= ; and|I
i

| > 1
⇥

0, 0
⇤

,if E
i

6= ; and j /2 E

i

and I

i

= ;


1

|E
i

| ,
1

|E
i

|

�

,if E
i

6= ; and j 2 E

i

and I

i

= ;


0,
1

1 + |E
i

|

�

,if I
i

6= ; and E

i

6= ;

and i 2 I

i



1

|I
i

|+ |E
i

| ,
1

|E
i

|

�

,if I
i

6= ; and E

i

6= ;

and j 2 E

i

.

(8)

where I

i

= {j|0 2 d

ij

and d

ij

6= [0, 0]} and E

i

= {j|d
ij

=
[0, 0]}, besides |I

i

| and |E
i

| the cardinality of I

i

and E

i

,
respectively. Moreover, minµ

ij

and maxµ
ij

are defined as
follows:

minµ
ij

=
1

j�1
X

k=1

✓

d

ij

d

ik

◆

2
m�1

+ 1 +

c

X

k=j+1

✓

d

ij

d

ik

◆

2
m�1

,

(9)

maxµ
ij

=
1

j�1
X

k=1

✓

d

ij

d

ik

◆

2
m�1

+ 1 +

c

X

k=j+1

✓

d

ij

d

ik

◆

2
m�1

.

(10)
where d is the interval-based distance, i.e., is generated by
i-metric Eq.(7).

Nevertheless, U obtained for Eq.(8) does not satisfy the
constraint that

P

c

j=1[uij

, u

ij

] = [1, 1], in the classical FCM
algorithm. In other words, the sum of all intervals will only
be degenerated if and only if these intervals are degenerated.
Therefore, the set of all c-partition interval-valued is

M
ivfcn

= {U 2 I(R)cn|[0, 0]  u

ij

 [1, 1] (11)
(1  j  c)(1  i  n);

P

n

i=1 uij

> [0, 0], 8i} .

In addition, the main drawback is the calculation of interval
prototypes, because the standard operators of multiplication
and division, defined by the Moore interval arithmetic, in-
creased imprecision even further. For example, Fig. 1(a)
shown an initial set of five interval variables and two proto-
types (dashed rectangles) and Fig. 1(b) shown the new centers
obtained from interval-valued memberships fuzzy, which led
to inconsistent results.

The following section presents the proposed approaches
and it shows how algorithms FCM can be adapted for solving
these problem with matrix U.
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(a)

(b)

Fig. 1. The initial configuration (a) and the clusters center obtained (b)
with U.

IV. THE PROPOSED APPROACHES

The IbFcM (Interval-based Fuzzy c-Means), proposed in
[8], has the same structure of the classical FCM, presented in
subsection III-A. In this paper, we propose an adaptation of
IbFcM, in which, after calculating interval membership (U),
we define a different approach to define (U), which contains
degenerate intervals. This definition is because the original
U is not appropriate to calculate the centers of the groups.

The literature of interval-valued fuzzy sets provides some
tools that help to transform the interval-valued fuzzy sets in
fuzzy set. For example, the Atanassov’s operator [3] and K-
operator [27]. Therefore, we propose the use of an operator,
H-operator, in the context of fuzzy clustering problems, that
has two important properties, which are: it does not make
modifications if all intervals of matrix U are degenerated and
any admissible total order [5] can be used. In this case, we
can ensure that IbFcM can be used with punctual data and
the interpretation of the order is preserved.

Now consider bU 2 M
ivfcn

is an interval (degenerate)
representation of matrix U 2 M

fcn

. In other words, bU
ij

=
[U

ij

,U
ij

]. In addition, let U 2 M
ivfcn

= [u
ij

] where
u

ij

= [a
ij

, b

ij

].
Definition 9: A family of functions (H), where H :

M
ivfcn

�! M
fcn

, is a H-operator if it verifies the following
conditions:

1) H(bU) = U,

2) if U
ij


km

U
ip

then H(U)
ij

 H(U)
ip

Proposition 1: H
b

(based in boundaries of intervals) is H-
operator defined by

µ

ij

=

8

>

>

>

>

>

<

>

>

>

>

>

:

a

ij

2

c

X

k=1

a

ik

+
b

ij

2

c

X

k=1

b

ik

,
c

X

k=1

a

ik

6= 0

b

ij

P

c

k=1 bik
, otherwise

(12)

Proof. Based on Definition (1), Let U 2 M
ivfcn

. It follows
that: (1) bU

ij

= [U
ij

,U
ij

], then H(bU)
ij

=
aij

2
Pc

k=1 aik
+

bij

2
Pc

k=1 bik
=

aij

2 +
aij

2 = a

ij

= b

ij

= U
ij

(2) if U
ij


km

U
ip

then aij

2
Pc

k=1 aik
+

bij

2
Pc

k=1 bik
 aip

2
Pc

k=1 aik
+

bip

2
Pc

k=1 bik

because a

ij

 a

ip

^ b

ij

 b

ip

.
Example 2: Motived by H

b

, others H�operators can be
defined as follows:

i) H
mp

(based on midpoint of intervals) is defined

µ

ij

=
(aij+bij)

2
P

c

k=1
(aik+bik)

2

(13)

ii)H
xu

(based on the Xu and Yager[32] order) is defined

µij =

8
>>>><

>>>>:

(aij + bij)

2
Pc

k=1
(aik + bik)

+
(bij � aij)

2
Pc

k=1
(bik � aik)

,
Pc

k=1(bik � aik) 6= 0

(aij + bij)
Pc

k=1
(aik + bik)

, otherwise

(14)

Therefore, the objective function presented in Eq.(15) and
the calculation of the centers of the groups in Eq.(16) are
adaptations of U using the H-operator instead of the original
U, obtained by Eq.(8).

J

m

=

n

X

k=1

c

X

i=1

µ

m

ij

d

IM

(x
i

; v
j

)2, (15)

where: n is the interval-based data size; c is predefined
number of clusters considered in the algorithm; m is a
fuzzification parameter, for m > 1; u

ij

is membership
(degenerate interval) degree that x

i

in v

j

; x

i

is the i-th
interval data; v

j

is the center (interval) of j-th clustering and
d(x

i

, v

j

), is an interval-based distance (i-metric) between x

i

and v

j

.
The input of the generic H-operator algorithm is n interval-

based data, the number of prototypes c and m value. The
main steps of this algorithm are:

1) Start V with c objects randomly from the dataset to
serve as the initial cluster centers;

2) Calculate the matrix U 2 M
ivfnc

interval membership
function fuzzy as shown in Eq.(8);

3) Calculate the matrix matrix U contains intervals de-
generated using H(U), where H is H-operator .

4) Calculate J

m

using Eq.(15);
5) Calculate the new prototype of the cluster j using U:

The value v

j

is the interval [v
j

, v

j

], which can be
obtained;

v

j

=

P

n

i=1 µ
m

ij

x

i

P

n

i=1 µ
m

ij

v

j

=

P

n

i=1 µ
m

ij

x

i

P

n

i=1 µ
m

ij

; (16)
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6) Return to step 2 until a convergence criteria is reached.
This happens when the minimization process stagnates,
(d

km

(Jnew

m

, J

old

m

)2  ✏), where ✏ is a pre-determined
constant.

In this paper, we propose three different approaches. In
this case, each H�operator characterize a different approach,
because they update the centers of the groups in a different
way. They were obtained by different U, given U. Therefore,
we propose three different approaches of IbFcM, that were
used to update the centers of the clusters, which are:

• IbFcM-H
b

uses H
b

Eq. (12) in the step 3 as an H-
operator;

• IbFcM-H
mp

uses H
mp

Eq. (13) in the step 3 as an H-
operator;

• IbFcM-H
xu

uses H
xu

Eq. (14) in the step 3 as an H-
operator.

V. EXPERIMENTAL ANALYSIS

In order to evaluate the feasibility of the proposed ap-
proaches, an empirical analysis is conducted. In order to
assess the results obtained by the clustering algorithms, an
external index, called Corrected Rand (CR), [17], is used.
This index compares the goal partition with the partition ob-
tained from the clustering algorithm. The CR index delivers
values that lies in the interval [�1, 1], where values close
to one indicates the perfect agreement between partitions,
whereas values near zero (or negatives) correspond to cluster
agreement found by random. This index does not needs any
adaptation to work with interval-based data.

In this methodology, we perform 100 replications and we
use the average correct Rand Index CR of all 100 replication.
In addition, we compared the results obtained by these
methods with some existing interval-based methods in the
literature.

The algorithms were implemented in Python
(www.python.org) using the MPMATH library
(http://docs.sympy.org/dev/modules/mpmath) to represent
the interval-based data. Moreover, we use the fuzzification
parameter, m, equals 2 and a stopping condition of
[1e�4

, 1e�4].
A. Dataset

As already mentioned, we use seven datasets, four syn-
thetic interval-valued datasets and three real interval-valued
datasets, which are: city temperatures, fish and car.

1) Synthetic symbolic interval datasets: In this paper, we
recreate the dataset proposed in [6]. In order to test the
clustering algorithms, we used four artificial datasets of the
seven datasets proposed in [6], which are: 2Dim, 3Dim, 5Dim
and Sun. In 3Dim and 5Dim datasets, unlike [6], the number
of points used in this paper is 300. Table I presents a brief
description of the artificial datasets.

The 2Dim dataset consists of two groups of 200 data points
each, linearly separated in to two dimensions. In addition, the
Sun dataset consists of five groups oriented in different ways.
This set contains 195 data points in two dimensions.

The 3D dataset 3Dim consists of four groups of equal size
that are arranged on the vertices’s of a tetrahedron in a three-
dimensional space. This dataset contains 300 data points.

TABLE I
DESCRIPTION OF THE FOUR INTERVAL-BASED ARTIFICIAL DATASETS

Database Number of Number Number of
name data points Cluster Variables
2Dim 200 2 2
3Dim 300 4 3
5Dim 300 4 5
Sun 195 5 2

Finally, the 5Dim dataset contains groups that are of various
shapes and sizes in a space with five dimensions.

2) Real Interval-Valued Datasets: In this section we
present the real interval-valued datasets that will be used in
this empirical analysis, which are:
City temperature symbolic interval dataset: The city
temperature symbolic Interval dataset [16] represents the
temperature in different cities around the world. These cities
were put into groups using expert knowledge. It results in
four clusters of cities. The cities belonging to cluster 1 are
located between 0� and 40� latitudes and the cities which are
classified under cluster 2 are located between 40� and 60�

latitudes. Mauritius and Tehran are classified as members of
singleton classes 3 and 4, respectively.

The table II presents the cluster distribution based on the
human observer which originally created this dataset.

TABLE II
CLUSTER DISTRIBUTION OF THE TEMPERATURE DATASET

Cluster no Sample name
I Bahraim Bombay Cairo Calcutta Colombo

Dubai Hong Kong Kula Lampur Madras
Manila Mexico Nairobi New Delhi Sydney

II Amsterdam Athens Copenhagen Frankfurt
Geneva Lisbon London Madrid Moscow Munich
New York Paris Rome San Francisco Seoul
Stockholm Tokyo Toronto Vienna Zurich

III Mauritius
IV Tehran

For each city (instance), we have 12 interval-based at-
tributes and each one represents the minimum and maximum
and temperature of the city in a month.

Car Symbolic Interval Dataset: The car symbolic interval
dataset, described in Table III, considers a set of 33 car
models (objects) described by 8 interval variables and one
categorical variable, which is divided into 4 classes: Utili-
tarian, Berlina, Sporting and Luxury. These classes have 10,
8, 8 and 7 instances, respectively, as described in table III.
The interval-valued variables are Price, Engine Capacity, Top
Speed, Acceleration, Step, Length, Width and Height.

TABLE III
DESCRIPTION OF THE CAR SYMBOLIC INTERVAL DATASET

Var. individuals Price ... Height Category
Alfa 145 [27 806, 33 596] . . . [143, 143] Utility
Alfa 156 [41 593, 62 291] ... [142,142] Sedan
...

...
...

...
...

Rover 25 [21 492, 33 042] ... [142,142] Utility
Passat [39 676, 63 455] ... [146,146] Luxury

Fish Symbolic Interval Dataset: Fish symbolic interval
data set represents 12 fish species of freshwater, where each
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specie is described by 13 symbolic interval variables, which
are: Length, Weight, Muscle, Intestine, Stomach, Gills, Liver,
Kidneys, Liver/Muscle, Kidneys/Muscle, Gills/Muscle, Intes-
tine/Muscle and Stomach/Muscle. These species are grouped
four classes, Carnivorous, Detritivorous, Omnivorous and
Herbivorous.

VI. RESULTS AND DISCUSSION

For the empirical analysis with synthetic and real datasets,
100 replications are considered the mean and standard de-
viation of the index CR (presented in Subsection V) are
presented.

Table IV synthesizes the results for the three proposed
approaches, IbFcM-H

b

, IbFcM-H
xu

and IbFcM-H
mp

, for the
synthetic datasets. As it can be observed from Table IV, the
CR values show that the proposed algorithms are capable of
producing a good partitioning of the interval-based data, since
all CR values are close to 1 (the obtained partitions are close
to the optimal partition). For the 2Dim and 3Dim datasets,
we obtained CR equal to 1. These datasets are considered
as simple and the optimal partition can be easily obtained
(classes are easily separable). Of the other two datasets,
although we did not obtain CR values equal to 1, they are
very close to 1.

Of the proposed approaches, the IbFcM-H
b

algorithm
showed the best CR results for synthetic datasets.

TABLE IV
THE AVERAGE CR VALUES FOR ALL ARTIFICIAL INTERVAL-BASED

DATASETS.

Datasets IbFcM-H
b

IbFcM-H
xu

IbFcM-H
mp

2Dim 1(0) 1(0) 1(0)
3Dim 1(0) 1(0) 1(0)
5Dim 0.908(0.911) 0.849(0.997) 0.844(0.175)
Sun 0.912(0.098) 0.9(0.09) 0.849(0.088)

Table V synthesizes the CR values obtained by the three
proposed algorithms, IbFcM-H

b

, IbFcM-H
xu

and IbFcM-
H

mp

, applied to the interval-based real datasets. Generally
speaking, the proposed algorithms demonstrated good CR
results, in almost all cases. The only exception is the use
of IbFcM-H

mp

for fish dataset (CR value lower than 0.5).
Unlike the synthetic dataset, the IbFcM-H

xu

approach
achieved the best CR result for two datasets (Fish and
Temperature datasets), while IbFcM-H

mp

achieved the best
CR value in the remaining dataset.

TABLE V
THE AVERAGE CR VALUES FOR ALL REAL INTERVAL-BASED DATASETS.

Datasets IbFcM-H
b

IbFcM-H
xu

IbFcM-H
mp

Fish 0.766(0.301) 0.767(0.263) 0.348(0.072)
Car 0.68(0.605) 0.706(0.581) 0.792(0.733)
Temperature 0.657(0.477) 0.877(0.554) 0.78(0.397)

In order to evaluate the performance of the proposed algo-
rithms, we also make a comparative analysis of the proposed
approaches with existing algorithms in the literature. For
this analysis, we used the best CR value obtained from 100
replications. Unlike the previous analysis, we use the best
CR value because we only found the best CR value in the
literature of the analyzed algorithms. In order to perform a

fair comparison, we also represent the best CR value of the
proposed algorithms.

Table VI synthesizes the results of the proposed approaches
to the Fish dataset, comparing with existing algorithms for
this interval-based dataset. We can observe that the CR values
of two proposed methods are higher than all algorithms found
in the literature. The existing algorithm that achieved CR
value closest to the proposed algorithms is KKM-IV[23], with
CR equals to 0.629. Even though, we have an improvement in
CR performance of almost 15% for two proposed approaches,
when compared with the KKM-IV algorithm.

TABLE VI
COMPARATIVE RESULTS FOR THE FISH DATASET.

Algorithm CR
IbFcM-H

b

0.766
IbFcM-H

xu

0.767
IbFcM-H

mp

0.348
MFCMdd-RWL-[11] 0.488
CARD-R[11] 0.160
FKCN[9] 0.209
IFKCN-FD[9] 0.043
IFCM-C [25] 0.161
IPCM [25] 0.318
IPCM-E [25] 0.369
IKCM-F[12] 0.021
IVKCM-K-LP[12] 0.275
IVKMCM-F[12] 0.034
IVKMCM-F-LP[12] 0.275
KM-IV[23] 0.610
KKM-IV[23] 0.629
FCM-IV[24] 0.466
KFCM-IV[24] 0.714

Table VII illustrates the best CR values for the Cars dataset.
From Table VII, we can observe that all three proposed
algorithms obtained higher CR values than all analyzed
existing algorithms. It is important to highlight that even
the worst proposed approach, IbFcM-H

b

, obtained CR higher
than all analyzed algorithms, around 5% higher than the best
existing algorithm, MFCMdd-RWL-P.

TABLE VII
COMPARATIVE RESULTS FOR THE FISH DATASET.

Algorithm CR
IbFcM-H

b

0.68
IbFcM-H

xu

0.706
IbFcM-H

mp

0.792
MFCMdd-RWL-P [11] 0.614
CARD-R [11] 0.525
FKCN[9] 0.061
IFKCN-FD[9] 0.11
IKCM-F [12] 0.225
IVKCM-K [12] 0.225
IVKCM-K-LP [12] 0.499
IVKMCM-F [12] 0.225
IVKMCM-F-LP [12] 0.499
IFCM[10] 0.56
IFCMADC [10] 0.52

Finally, Table VIII illustrates the CR values for the Tem-
perature dataset. The results in this table show that, once
again, the quality of the obtained partitions of two proposed
methods is higher than all other analyzed algorithms. For
the best proposed approach, IbFcM-H

xu

, the improvement
in the CR values is around 16%, when compared with the
best existing algorithm, IRBF.
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TABLE VIII
RESULTS FOUND IN THE LITERATURE FOR THE DATASET Temperature.

Algorithm CR
IbFcM-H

b

0.657
IbFcM-H

xu

0.877
IbFcM-H

mp

0.78
FKCN[9] 0.260
IFKCN-FD[9] 0.285
KM [2] 0.574
IRBF[2] 0.724
IPF[2] 0.499
Interval ckMeans[15] 0.517
KM-IV[23] 0.610
KKM-IV[23] 0.629
FCM-IV[24] 0.466
KFCM-IV[24] 0.714
IFCM [10] 0.46
IFCMADC [10] 0.50

VII. FINAL REMARKS

In this paper, a family of H-operator was proposed to be
used in order to obtain three different approaches to define
the centers of the groups in interval-based fuzzy clustering
algorithms. In this case, we used a well-known fuzzy clus-
tering algorithm, fuzzy c-means, adapted in three versions,
which are: IbFcM-H

b

, IbFcM-H
xu

and IbFcM-H
mp

.
In order to evaluate the feasibility of the proposed ap-

proaches, an empirical analysis was conducted. In this anal-
ysis, the proposed algorithms were analyzed using seven
interval-based datasets. In addition, they were compared
with some existing interval-based clustering algorithms. The
comparative analysis was based on an external index, called
correct rand (CR), using only three interval-based datasets.

For all interval-based real datasets, the obtained CR re-
sults showed that the proposed approaches outperformed all
existing algorithms, in all the cases. These results are very
promising since it can be seen as an efficient way to deal
with interval-based data. The use of more datasets and a more
extensive comparative analysis are the subject of an on-going
research.
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[19] I. Kramosil and J. Michálek. Fuzzy metrics and statistical metric
spaces. Kybernetika, 11(5):336–344, 1975.

[20] Svetoslav Markov and Kohshi Okumura. The contribution of t.
sunaga to interval analysis and reliable computing. In Tibor Csendes,
editor, Developments in Reliable Computing, pages 167–188. Springer
Netherlands, 1999.

[21] K. Menger. Statistical metrics. Proceedings of the National Academy
of Sciences of the United States of America, 28(12):535, 1942.

[22] R. E. Moore. Interval Arithmetic and Automatic Error Analysis in
Digital Computing. Technical report (Stanford University. Applied
Mathematics and Statistics Laboratory). Department of Mathematics,
Stanford University., 1962.

[23] B. Pimentel, A. Costa, and R. Souza. A partitioning method for
symbolic interval data based on kernelized metric. In Proceedings of
the 20th ACM international conference on Information and knowledge
management, pages 2189–2192. ACM, 2011.

[24] B.A. Pimentel, A.F.B.F. da Costa, and R. M C R De Souza. Kernel-
based fuzzy clustering of interval data. In Fuzzy Systems (FUZZ), 2011
IEEE International Conference on, pages 497–501, 2011.

[25] B.A. Pimentel and R.M.C.R. de Souza. Possibilistic approach to
clustering of interval data. In Systems, Man, and Cybernetics (SMC),
2012 IEEE International Conference on, pages 190–195, 2012.

[26] R. B. Kearfott R. E. Moore and M. J. Cloud. Introduction to Interval
Analysis. Society for Industrial and Applied Mathematics, 2009.

[27] R.H.S. Reiser and B. Bedregal. K-operators: An approach to the gen-
eration of interval-valued fuzzy implications from fuzzy implications
and vice versa. Information Sciences, 2013.

[28] F. Santana and R. Santiago. Interval metrics, topology and continuous
functions. Computational and Applied Mathematics, 32(3):459–470,
2013.

[29] R. H. N. Santiago, B. C. Bedregal, and B. M. Acióly. Formal aspects
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mento digital de sinais intervalares. PhD thesis, Universidade Federal
do Rio Grande do Norte, 2009.

[32] Z. Xu and R. R. Yager. Some geometric aggregation operators based
on intuitionistic fuzzy sets. International journal of general systems,
35(4):417–433, 2006.

[33] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 – 353,
1965.

s

244




